½ÃÀ庸°í¼­
»óǰÄÚµå
1714714

À¯ÀüÀÚ Ä¡·á ½ÃÀå : º¤ÅÍ À¯Çüº°, Ä¡·á ¸ð´Þ¸®Æ¼º°, Ç¥Àû À¯Àüüº°, Àü´Þ ¸ðµåº°, Åõ¿© °æ·Îº°, ȯÀÚ À¯Çüº°, Ä¡·á ºÐ¾ßº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Gene Therapy Market by Vector Type, Treatment Modality, Target Genome, Delivery Mode, Route of Administration, Patient Type, Therapeutic Area, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 188 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À¯ÀüÀÚ Ä¡·á ½ÃÀåÀº 2023³â¿¡ 82¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2024³â¿¡´Â 103¾ï 1,000¸¸ ´Þ·¯, CAGR 27.15%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 446¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2023³â 82¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2024³â 103¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 446¾ï 1,000¸¸ ´Þ·¯
CAGR(%) 27.15%

À¯ÀüÀÚ Ä¡·á´Â ÀÌ·ÐÀû °¡´É¼º¿¡¼­ º¹ÀâÇÑ Áúº´ Ä¡·áÀÇ ½Ç¿ëÀû Ãʼ®À¸·Î ºü¸£°Ô ½ÂÈ­µÇ¾ú½À´Ï´Ù. À¯Àüü ÆíÁý, º¤ÅÍ °³¹ß, Ä¡·á Àü·«ÀÇ ÁøÈ­°¡ ÁøÇàµÇ¸é¼­ ºÒÄ¡º´À¸·Î ¿©°ÜÁö´ø Áúº´ Ä¡·á¿¡ Àü·Ê ¾ø´Â ±æÀ» ¿­¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ²÷ÀÓ¾ø´Â ±â¼ú Çõ½ÅÀÇ È¯°æ ¼Ó¿¡¼­ ±â¾÷µéÀº À¯ÀüÀÚ Ä¡·áÀÇ ÀáÀç·ÂÀ» Ȱ¿ëÇÏ¿© À¯ÀüÀÚ ÀÌ»óÀ» Á÷Á¢ Ç¥ÀûÀ¸·Î »ï°í ÀÖ½À´Ï´Ù. °ø°ø ¹× ¹Î°£ ÅõÀÚ¿¡ ÀÇÇÑ ±¤¹üÀ§ÇÑ Á¶»ç°¡ ½ÃÀå ½ÂÀΰú ¼¼°è º¸±ÞÀÇ ±æÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

º» º¸°í¼­´Â À¯ÀüÀÚ Ä¡·áÁ¦ »ê¾÷ÀÇ ÇöȲÀ» Á¤¸®Çϰí, ¾÷°è ȯ°æÀ» Çü¼ºÇÏ´Â ÁÖ¿ä µ¿Çâ, ±â¼ú Çõ½Å, ±ÔÁ¦ ÇöȲ¿¡ ´ëÇØ ³íÀÇÇÕ´Ï´Ù. ÀÓ»óÀû ¼º°ø, °úÁ¦, ¹Ì·¡ ¹æÇ⼺À» ¸íÈ®È÷ ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ½ÃÀå ¿ªÇÐ ¹× »õ·Î¿î ÆÐÅÏ¿¡ ´ëÇÑ Ã¶ÀúÇÑ Á¶»ç¸¦ ÅëÇØ °úÇÐÀû ¾ö°ÝÇÔ°ú ¹è·Á°¡ ¸¸³ª´Â º¯È­ÀÇ ¼³µæ·Â ÀÖ´Â ½ºÅ丮°¡ µå·¯³³´Ï´Ù. ÃÖ÷´Ü »ý¸í°øÇбâ¼ú°ú È®½ÇÇÑ ÀÓ»ó µ¥ÀÌÅÍÀÇ ÅëÇÕÀº À¯ÀüÀÚ Ä¡·áÀÇ º¯ÇõÀû °¡´É¼ºÀ» °­Á¶Çϰí, µ¶ÀÚµéÀ» ¸ÂÃãÇü ÀÇ·á°¡ Ç¥ÁØÀÌ µÇ´Â ¹Ì·¡·Î ¾È³»ÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ¹è°æ¿¡¼­ ¿¬±¸ÀÚºÎÅÍ ÀÇ»ç°áÁ¤±ÇÀÚ±îÁö ¸ðµç ÀÌÇØ°ü°èÀÚµéÀº ±âÁ¸ÀÇ Àü·«À» ÀçÆò°¡ÇÒ °ÍÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ Ã¥Àº À¯ÀüÀÚ Ä¡·áÀÇ È¹±âÀûÀÎ ¹ßÀüÀ» ÃËÁøÇÏ´Â °Å½ÃÀû µ¿Çâ°ú ¼¼ºÎÀûÀÎ ¼¼ºÎ »çÇ×À» ¸íÈ®È÷ Çϱâ À§ÇØ ½ÅÁßÇÏ°Ô ±¸¼ºµÇ¾ú½À´Ï´Ù. ÀÌ Ã¥¿¡ ¼ö·ÏµÈ Á¾ÇÕÀûÀÎ ºÐ¼®À» ÅëÇØ ÀÌ ºÐ¾ßÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ» µÞ¹ÞħÇÏ´Â Çõ½Å, ±ÔÁ¦, ½ÃÀå ¿ªÇÐÀÇ »óÈ£ ÀÛ¿ë¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖÀ» °ÍÀÔ´Ï´Ù.

À¯ÀüÀÚ Ä¡·áÁ¦ ½ÃÀåÀÇ º¯È­

À¯ÀüÀÚ Ä¡·á ºÐ¾ß´Â ÀÇ·á ¼­ºñ½º Á¦°øÀÇ ÆÐ·¯´ÙÀÓÀ» ÀçÁ¤ÀÇÇÏ´Â Çõ½ÅÀûÀÎ º¯È­¸¦ °æÇèÇϰí ÀÖÀ¸¸ç, CRISPR°ú °°Àº À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ¹ßÀüÀº ¿¬±¸ÀÚµéÀÌ À¯Àü¼º ÁúȯÀ» ±³Á¤ÇÏ´Â ¼Óµµ¸¦ °¡¼ÓÈ­ÇÏ¿© ±âÁ¸ Ä¡·á¹ýÀÌ ½ÇÆÐÇÑ °÷¿¡ Èñ¸ÁÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº Çй®Àû Áøº¸¿Í »ê¾÷°èÀÇ ÅõÀÚ°¡ °ø»ý°ü°è¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖÀ¸¸ç, ÀÇÇÐÀûÀ¸·Î °¡´ÉÇÑ °ÍÀÇ ÇѰ踦 ²÷ÀÓ¾øÀÌ ³ÐÇô°¡°í ÀÖ½À´Ï´Ù.

ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÀüÀº ÀüÅëÀûÀÎ Ä¡·á¹ý¿¡¼­ º¸´Ù Ç¥ÀûÈ­µÈ À¯ÀüÀÚ °³ÀÔÀ¸·ÎÀÇ Àüȯ¿¡ ±âÀÎÇÕ´Ï´Ù. ´Ù¾çÇÑ ¿ëµµÀÇ ÀÓ»ó½ÃÇèÀÌ È¯ÀÚ ¿¹Èĸ¦ °³¼±ÇÑ´Ù´Â ¼³µæ·Â ÀÖ´Â Áõ°Å¸¦ Á¦°øÇϸ鼭 Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã±Ý ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ÀÓ»ó ÇÁ·ÎÅäÄÝÀÇ º¯È­»Ó¸¸ ¾Æ´Ï¶ó Çõ½ÅÀûÀÎ Ä¡·á¹ýÀ» ¼ö¿ëÇϱâ À§ÇÑ ±ÔÁ¦ ȯ°æÀÇ ÀçÆò°¡¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ±ÔÁ¦ ´ç±¹Àº ȯÀÚ¿¡ ´ëÇÑ ½Å¼ÓÇÑ Á¢±Ù°ú ¾ö°ÝÇÑ ¾ÈÀü¼º Æò°¡¸¦ º¸ÀåÇϱâ À§ÇØ Á¡Á¡ ´õ ¸¹Àº ÇÁ·Î¼¼½º¸¦ Àû¿ëÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¿Í µ¥ÀÌÅÍ ºÐ¼® ¹× ÀΰøÁö´ÉÀÇ °áÇÕÀ¸·Î À¯¸ÁÇÑ Ä¡·áÁ¦ Èĺ¸¹°ÁúÀ» È¿À²ÀûÀ¸·Î ¹ß°ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀû Á¢±Ù ¹æ½ÄÀº ÀǾàǰ °³¹ß°ú °ü·ÃµÈ ½Ã°£°ú ºñ¿ëÀ» Àý°¨Çϰí, ½ÇÇè½Ç¿¡¼­ÀÇ È¹±âÀûÀÎ ¹ß°ß¿¡¼­ ÀÓ»óÀ¸·Î °¡´Â °úÁ¤À» °¡¼ÓÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ Ä¡·á°¡ °è¼Ó ÁÖ¸ñ¹Þ°í ÀÖ´Â °¡¿îµ¥, ½ÃÀå ÁøÀÔ ±â¾÷µéÀº ¿¬±¸ ¿ì¼±¼øÀ§¸¦ ÀçÁ¶Á¤Çϰí Ä¡·á ÁßÀçÀÇ È¿°ú¿Í ¾ÈÀü¼ºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ´Â Â÷¼¼´ë ±â¼ú¿¡ ÅõÀÚÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹ßÀüÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.

À¯ÀüÀÚ Ä¡·á ½ÃÀå ÁÖ¿ä ¼¼ºÐÈ­ ÀλçÀÌÆ®

À¯ÀüÀÚ Ä¡·áÁ¦ ½ÃÀåÀ» ÀÚ¼¼È÷ ºÐ¼®ÇÏ¸é ±â¼úÀû, Ä¡·áÀû ÀÀ¿ëÀÇ ´Ù¾ç¼ºÀ» Æ÷°ýÇÏ´Â ¹Ì¹¦ÇÑ ¼¼ºÐÈ­ Àü·«ÀÇ Á߿伺ÀÌ ºÎ°¢µË´Ï´Ù. º¤ÅÍ À¯Çü¿¡ µû¸¥ ¼¼ºÐÈ­¸¦ ÅëÇØ ºñ¹ÙÀÌ·¯½º¼º º¤ÅÍ¿Í ¹ÙÀÌ·¯½º¼º º¤ÅÍÀÇ ¾ç±ØÈ­¸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. ºñ¹ÙÀÌ·¯½º¼º º¤ÅÍ ¿µ¿ª¿¡¼­´Â ¸®Æ÷Æå¼ÇÀ̳ª Çö󽺹̵å DNA¿Í °°Àº Àü´Þ ¸ÞÄ¿´ÏÁòÀÌ »ç¿ëÀÇ ¿ëÀ̼º°ú ºñ±³Àû °£´ÜÇÑ Á¦Á¶ °øÁ¤À¸·Î ÀÎÇØ ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¹Ý¸é, ¾Æµ¥³ë ºÎ¼Ó ¹ÙÀÌ·¯½º(AAV), ¾Æµ¥³ë¹ÙÀÌ·¯½º, Ç츣Æä½º ¹ÙÀÌ·¯½º(HSV), ·¹Æ®·Î¹ÙÀÌ·¯½º º¤ÅÍ¿Í °°Àº ¹ÙÀÌ·¯½º º¤ÅÍ´Â ´õ ³ôÀº µµÀÔ È¿À²°ú Áö¼ÓÀûÀÎ À¯ÀüÀÚ ¹ßÇöÀ» Á¦°øÇÏ¿© ¸¸¼ºÁúȯ¿¡ ¸Å·ÂÀûÀÔ´Ï´Ù.

Ä¡·á¹ýÀ» °í·ÁÇÒ ¶§, »ý½Ä¼¼Æ÷ Ä¡·á¿Í ü¼¼Æ÷ Ä¡·áÀÇ ±¸ºÐÀÌ Áß¿äÇÕ´Ï´Ù. »ý½Ä¼¼Æ÷ Ä¡·á´Â ±Ùº»ÀûÀÎ ¼öÁØ¿¡¼­ À¯ÀüÀÚ ¿À·ù¸¦ ±³Á¤ÇÒ ¼ö ÀÖÁö¸¸, ¿©ÀüÈ÷ ³í¶õÀÇ ¿©Áö°¡ ÀÖ°í ±ÔÁ¦°¡ ¾ö°ÝÇÕ´Ï´Ù. À̿ʹ ´ëÁ¶ÀûÀ¸·Î ü¼¼Æ÷ Ä¡·á´Â ÁÖ·Î À¯ÀüÀÚ °­È­¿Í À¯ÀüÀÚ ¾ïÁ¦ ±â¼ú¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, »ó´ëÀûÀ¸·Î À§ÇèÀÌ ³·°í ÀÓ»ó Àû¿ëÀÌ ´õ ½±±â ¶§¹®¿¡ °è¼Ó ÃßÁø·ÂÀ» ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýµéÀº À¯ÀüÀû À¯ÀüÀÚ ±¸¼ºÀ» ¹Ù²ÙÁö ¾Ê°í Áúº´ÀÇ ±Ùº»ÀûÀÎ ¿øÀÎÀ» Ÿ±êÀ¸·Î ÇÏ´Â º¯ÇüÀÌ °¡´ÉÇÕ´Ï´Ù.

´õ¿í ¼¼ºÐÈ­µÈ ÀλçÀÌÆ®´Â Ç¥Àû À¯ÀüüÀÇ º¯Çü¿¡µµ Àû¿ëµÇ¸ç, DNA º¯Çü°ú RNA º¯Çü »çÀÌ·Î ÃÊÁ¡ÀÌ À̵¿Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, RNA ±â¼úÀÇ Çõ½ÅÀº ¹ÙÀÌ·¯½º °¨¿°À̳ª ´ë»ç ÀÌ»ó°ú °°Àº º´Å»ý¸®¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÏ´Ù´Â °ÍÀÌ ÀÔÁõµÇ°í ÀÖÁö¸¸, ÀüÅëÀûÀÎ DNA º¯Çü ±â¼úÀº Àå±âÀûÀÎ Ä¡·á ¼Ö·ç¼Ç¿¡ ¿©ÀüÈ÷ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, Àü´Þ ¹æ½Ä°ú Åõ¿© °æ·Î¿¡ µû¸¥ ºÐ·ù°¡ ½ÃÀå »óȲÀ» ´õ¿í Á¤±³ÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. ±ÙÀ° ³», ¾È±¸ ³», Á¤¸Æ ³»¿Í °°Àº Åõ¿© °æ·Î¿Í ÇÔ²² »ýü ¿Ü ¹× »ýü ³» Àü´Þ ½Ã½ºÅÛÀÌ ºñÆÇÀûÀ¸·Î Æò°¡µÇ°í ÀÖÀ¸¸ç, °¢°¢ È¿´É°ú ȯÀÚ ¼øÀÀµµ Ãø¸é¿¡¼­ ¶Ñ·ÇÇÑ ÀÌÁ¡À» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ȯÀÚ À¯Çü ¹× Ä¡·á ºÐ¾ß¿¡ µû¸¥ ¼¼ºÐÈ­¸¦ ÅëÇØ ½ÃÀå ¼ö¿ä¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ °³¿ä¸¦ Á¦°øÇÕ´Ï´Ù. ¼ºÀΠȯÀÚ±º°ú ¼Ò¾Æ ȯÀÚ±ºÀ» ±¸ºÐÇÏ¿© Ç¥ÀûÈ­µÈ Ä¡·á Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖÀ¸¸ç, ½ÉÇ÷°üÁúȯ, °¨¿°¼º Áúȯ, ´Ü¹ß¼º Áúȯ, Á¾¾ç Áúȯ¿¡ °ÉÄ£ Ä¡·á ºÐ¾ß¿¡¼­´Â ƯÁ¤ ÀÓ»óÀû À̽´¸¦ ¼³¸íÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ½ÉÇ÷°üÁúȯÀ» °ü»óµ¿¸ÆÁúȯ°ú ½ÉºÎÀüÀ¸·Î ºÐ·ùÇϸé ȯÀÚ °³°³Àο¡ ¸Â´Â À¯ÀüÀÚ Ä¡·á°¡ ÇÊ¿äÇÏ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù. °¨¿°¼º Áúȯ¿¡µµ ºñ½ÁÇÑ ¼¼ºÐÈ­°¡ Àû¿ëµÇ¸ç, BÇü °£¿°°ú HIV°¡ ½ÃÀåÀÇ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ³¶Æ÷¼º¼¶À¯Áõ¿¡¼­ Ç÷¿ìº´, °â»ó ÀûÇ÷±¸ ºóÇ÷¿¡ À̸£´Â ´Ü¹ß¼º Áúȯ¿¡ ´ëÇÑ ºÐ¼®Àº Á¤¹Ð Ä¡·á¿¡ ´ëÇÑ Áß¿äÇÑ ¿ä±¸°¡ ºÎ°¢µÇ°í, Á¾¾ç¼º ÁúȯÀº Ç÷¾× ¾Ç¼º Á¾¾ç°ú °íÇü Á¾¾çÀ¸·Î ºÐ·ùµÇ¾î °¢°¢ ¸ÂÃãÇü Ä¡·á¹ýÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, À§Å¹¿¬±¸±â°ü, º´¿ø ¹× Ŭ¸®´Ð, Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷, ¿¬±¸±â°ü µî ÃÖÁ¾»ç¿ëÀÚ¸¦ ±â¹ÝÀ¸·Î ÇÑ ¼¼ºÐÈ­´Â À¯ÀüÀÚ Ä¡·áÁ¦ °³¹ß ¹× »ó¾÷È­ÀÇ ¿ªµ¿ÀûÀÎ »óȲÀ» ¹Ý¿µÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´Ù°¢ÀûÀÎ ¼¼ºÐÈ­ Á¢±Ù ¹æ½ÄÀº ½ÃÀå µ¿Çâ¿¡ ´ëÇÑ º¸´Ù ±íÀº ÀÌÇØ¸¦ µ½°í, ÀÌÇØ°ü°èÀÚµéÀÌ ¸ñÇ¥ Ä¡·á¹ý, Àα¸Åë°èÇÐÀû, ±â¼úÀû ±âÁØ¿¡ µû¶ó Á¤±³ÇÑ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • ÇØ°áÇØ¾ß ÇÒ °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter¡¯s Five Forces ºÐ¼®
  • PESTLE ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå º¤ÅÍ À¯Çüº°

  • ºñ¹ÙÀÌ·¯½º º¤ÅÍ
    • ¸®Æ÷Æå¼Ç
    • Çö󽺹̵å DNA
  • ¹ÙÀÌ·¯½º º¤ÅÍ
    • ¾Æµ¥³ë ºÎ¼Ó ¹ÙÀÌ·¯½º(AAV) º¤ÅÍ
    • ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍ
    • ´Ü¼øÆ÷Áø¹ÙÀÌ·¯½º(HSV) º¤ÅÍ
    • ·¹Æ®·Î¹ÙÀÌ·¯½º º¤ÅÍ

Á¦7Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå : Ä¡·á¹ýº°

  • »ý½Ä¼¼Æ÷ ¿ä¹ý
  • ü¼¼Æ÷ ¿ä¹ý
    • À¯ÀüÀÚ Áõ°­ ¿ä¹ý
    • À¯ÀüÀÚ ¾ïÁ¦ ¿ä¹ý

Á¦8Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå Ç¥Àû À¯Àüüº°

  • DNA º¯¼º
  • RNA º¯¼º

Á¦9Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå Àü´Þ ¸ðµåº°

  • »ýü¿Ü
  • »ýü³»

Á¦10Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå : Åõ¿© °æ·Îº°

  • ±ÙÀ°³»
  • ¾È³»
  • Á¤¸Æ³»

Á¦11Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå : ȯÀÚ À¯Çüº°

  • ¼ºÀΠȯÀÚ
  • ¼Ò¾Æ ȯÀÚ

Á¦12Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå : Ä¡·á ºÐ¾ßº°

  • ½ÉÇ÷°üÁúȯ
    • °ü»óµ¿¸ÆÁúȯ
    • ½ÉºÎÀü
  • °¨¿°Áõ
    • BÇü °£¿°
    • HIV
  • ´ÜÀÏ À¯ÀüÁúȯ
    • ³¶Æ÷¼º¼¶À¯Áõ
    • Ç÷¿ìº´
    • °â»ó ÀûÇ÷±¸ ºóÇ÷
  • Á¾¾ç¼º Áúȯ
    • Á¶Ç÷ ¾Ç¼º Á¾¾ç
    • °íÇü Á¾¾ç

Á¦13Àå À¯ÀüÀÚ Ä¡·á ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÓ»ó½ÃÇè¼öʱâ°ü
  • º´¿ø°ú Áø·á¼Ò
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • Á¶»ç±â°ü

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ À¯ÀüÀÚ Ä¡·á ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ À¯ÀüÀÚ Ä¡·á ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ À¯ÀüÀÚ Ä¡·á ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • Æ¢¸£Å°¿¹
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Abeona Therapeutics Inc.
  • Adaptimmune Therapeutics PLC
  • Adverum Biotechnologies, Inc.
  • AGC Biologics
  • Alnylam Pharmaceuticals, Inc.
  • American Gene Technologies Inc.
  • Amgen Inc.
  • AnGes, Inc.
  • Astellas Pharma Inc.
  • Biogen Inc.
  • bluebird bio, Inc.
  • Cellectis S.A.
  • CRISPR Therapeutics AG
  • Danaher Corporation
  • Editas Medicine, Inc.
  • F. Hoffmann-La Roche Ltd.
  • Gilead Sciences, Inc.
  • Intellia Therapeutics
  • Ionis Pharmaceuticals, Inc.
  • Johnson & Johnson
  • Merck KGaA
  • Mustang Bio, Inc.
  • Novartis AG
  • Orchard Therapeutics PLC
  • Poseida Therapeutics, Inc.
  • Sangamo Therapeutics, Inc.
  • Sarepta Therapeutics, Inc.
  • Sibiono GeneTech Co. Ltd.
  • Syncona Limited
  • ViGeneron GmbH
  • Voyager Therapeutics Inc.
ksm 25.05.14

The Gene Therapy Market was valued at USD 8.29 billion in 2023 and is projected to grow to USD 10.31 billion in 2024, with a CAGR of 27.15%, reaching USD 44.61 billion by 2030.

KEY MARKET STATISTICS
Base Year [2023] USD 8.29 billion
Estimated Year [2024] USD 10.31 billion
Forecast Year [2030] USD 44.61 billion
CAGR (%) 27.15%

Gene therapy has rapidly ascended from a theoretical possibility to a practical cornerstone in the treatment of complex diseases. The ongoing evolution in genomic editing, vector development, and therapeutic strategies has opened unprecedented avenues in treating conditions once deemed incurable. In this environment of relentless innovation, companies harness the potential of gene therapy to target genetic anomalies directly. Extensive research, fueled by both public and private investment, is shaping the path to market approval and global adoption.

This report encapsulates the current state of the gene therapy industry while discussing key trends, technological breakthroughs, and regulatory frameworks that continue to reshape the landscape. Emphasis is placed on the delineation of clinical successes, challenges, and future directions. A thorough exploration of the market dynamics and emerging patterns reveals a compelling narrative of transformation, where scientific rigor meets compassionate care. The integration of advanced biotechnologies with robust clinical data underscores the transformative potential of gene therapy and invites the reader to envision a future where personalized medicine becomes the norm.

Against this backdrop, stakeholders ranging from researchers to decision-makers are encouraged to re-evaluate conventional strategies. The discussion is carefully structured to provide clarity on both the macro trends and fine-grained details that drive breakthroughs in gene therapy. As you navigate through the comprehensive analysis presented here, you will gain insights into the interplay of innovation, regulation, and market dynamics that underpin the sector's rapid progression.

Transformative Shifts in the Gene Therapy Landscape

The gene therapy sector has experienced transformative shifts that redefine the paradigms of healthcare delivery. Advancements in gene editing technologies such as CRISPR have accelerated the pace at which researchers can correct genetic disorders, offering hope where traditional treatments have failed. The rapid development in this field is driven by a symbiotic relationship between academic advancements and industrial investments, consistently pushing the boundaries of what is medically possible.

A notable evolution stems from the transition from conventional treatments to more targeted genetic interventions. Clinical trials across various applications have provided compelling evidence of improved patient outcomes, fueling a renewed focus on precision medicine. This shift is not only changing clinical protocols, but it also necessitates a reassessment of the regulatory landscape to accommodate innovative therapeutic methods. Consequently, regulatory agencies are increasingly adapting processes to ensure both rapid patient access and rigorous safety evaluations.

Moreover, the convergence of biotechnology with data analytics and artificial intelligence has enabled the efficient discovery of promising therapeutic candidates. This integrated approach is instrumental in reducing the time and cost associated with drug development, thus accelerating the journey from laboratory breakthroughs to clinical reality. As gene therapy continues to garner attention, market participants are reaping the benefits of these advancements by realigning their research priorities and investing in next-generation technologies that further enhance the efficacy and safety of therapeutic interventions.

Key Segmentation Insights in Gene Therapy Markets

A detailed analysis of the gene therapy market underscores the importance of a nuanced segmentation strategy that encapsulates the diversity of technological and therapeutic applications. The segmentation based on vector type reveals a bifurcation between non-viral and viral vectors. Within the realm of non-viral vectors, delivery mechanisms such as lipofection and plasmid DNA have gained traction due to their ease of use and comparatively simple production processes. Meanwhile, viral vectors, including adeno-associated virus (AAV), adenovirus, herpes simplex virus (HSV), and retrovirus vectors, offer higher transduction efficiencies and sustained gene expression, making them attractive for chronic conditions.

When considering treatment modality, the distinction between germline therapy and somatic cell therapy becomes crucial. Germline therapy, which has the potential to correct genetic errors at a fundamental level, remains controversial and heavily regulated. In contrast, somatic cell therapy, primarily focused on gene augmentation and gene suppression techniques, continues to gain momentum due to its relatively lower risk profile and more straightforward clinical applications. These methodologies allow for modifications that target the underlying cause of disease without altering the hereditary genetic makeup.

Further segmentation insights extend to target genome modifications, where the focus shifts between DNA and RNA modifications. Innovations in RNA technology, for instance, are proving pivotal in rapidly addressing conditions such as viral infections and metabolic disorders, while traditional DNA modification techniques remain essential for long-term therapeutic solutions. Additional layers of categorization through delivery mode and route of administration further refine the market landscape. Ex vivo and in vivo delivery systems are critically evaluated alongside administration routes such as intramuscular, intraocular, and intravenous methods, each offering distinct advantages in terms of efficacy and patient compliance.

Additional segmentation based on patient type and therapeutic area provides a comprehensive overview of market demand. Differentiating between adult and pediatric patient populations ensures targeted treatment strategies, while therapeutic segments spanning cardiovascular diseases, infectious diseases, monogenic disorders, and oncological conditions outline specific clinical challenges. The classification of cardiovascular conditions into coronary artery disease and heart failure, for example, highlights the specific demand for tailored gene therapy interventions. Similar granularity is applied to infectious conditions, with hepatitis B and HIV capturing significant market attention. The analysis of monogenic disorders-ranging from cystic fibrosis to hemophilia and sickle cell anemia-underscores the critical need for precision therapies, whereas oncological disorders are dissected into hematological malignancies and solid tumors, each demanding bespoke treatment modalities.

Finally, segmentation based on end-users, including contract research organizations, hospitals and clinics, pharmaceutical and biotech companies, and research institutes, reflects the dynamic landscape of gene therapy development and commercialization. This multi-dimensional segmentation approach supports a deeper understanding of market trends, enabling stakeholders to deploy refined strategies based on targeted therapeutic, demographic, and technological criteria.

Based on Vector Type, market is studied across Non-Viral Vectors and Viral Vectors. The Non-Viral Vectors is further studied across Lipofection and Plasmid DNA. The Viral Vectors is further studied across Adeno-Associated Virus (AAV) Vectors, Adenovirus Vectors, Herpes Simplex Virus (HSV) Vectors, and Retrovirus Vectors.

Based on Treatment Modality, market is studied across Germline Therapy and Somatic Cell Therapy. The Somatic Cell Therapy is further studied across Gene Augmentation Therapy and Gene Suppression Therapy.

Based on Target Genome, market is studied across DNA Modification and RNA Modification.

Based on Delivery Mode, market is studied across Ex Vivo and In Vivo.

Based on Route of Administration, market is studied across Intramuscular, Intraocular, and Intravenous.

Based on Patient Type, market is studied across Adult Patients and Pediatric Patients.

Based on Therapeutic Area, market is studied across Cardiovascular Diseases, Infectious Diseases, Monogenic Disorders, and Oncological Disorders. The Cardiovascular Diseases is further studied across Coronary Artery Disease and Heart Failure. The Infectious Diseases is further studied across Hepatitis B and HIV. The Monogenic Disorders is further studied across Cystic Fibrosis, Hemophilia, and Sickle Cell Anemia. The Oncological Disorders is further studied across Hematological Malignancies and Solid Tumors.

Based on End-User, market is studied across Contract Research Organizations, Hospitals & Clinics, Pharmaceutical & Biotech Companies, and Research Institutes.

Key Regional Insights Shaping Global Gene Therapy Markets

Regional dynamics play a pivotal role in the evolution of the gene therapy market. The Americas have emerged as a dominant region where innovation and robust clinical pipelines drive significant market value. Collaborative efforts between regulatory bodies, academic institutions, and biotech companies have fostered a conducive environment for advanced clinical trials and accelerated product approvals. This progress underscores the region's commitment to integrating breakthrough therapies into mainstream healthcare.

Europe, the Middle East, and Africa bring a diverse set of regulatory frameworks and market maturities, which translate into a region characterized by both high innovation intensity and localized challenges. The region boasts world-class research facilities and a rich history of biomedical breakthroughs, thereby acting as a fertile ground for the translation of gene therapy from bench to bedside. Strategic collaborations and harmonized regulatory initiatives have been instrumental in bolstering market acceptance and patient access in these territories.

The Asia-Pacific region, with its rapidly growing economies and expanding healthcare infrastructure, offers fertile ground for future gene therapy advancements. Increasing investments in pharmaceutical R&D and technology adoption are accelerating the implementation of gene therapies, especially in countries where rising disposable incomes and enhanced healthcare systems are driving demand. As these regions continue to mature, they are likely to become significant contributors to the global gene therapy market, underscoring the importance of tailoring strategies to diverse regulatory and socio-economic environments.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Key Companies Setting the Pace in Gene Therapy Innovation

The competitive landscape in gene therapy is punctuated by a range of visionary companies that are pushing the boundaries of medical science. Innovators like Abeona Therapeutics Inc. and Adaptimmune Therapeutics PLC are rapidly advancing novel therapeutic platforms that promise to redefine patient outcomes. Other industry pioneers, such as Adverum Biotechnologies, Inc. and AGC Biologics, focus on optimizing vector delivery systems and scalable manufacturing processes, accentuating the operational prowess required for market success.

Major players are also leveraging rich pipelines and strategic partnerships to build resilient portfolios focused on rare and common genetic disorders alike. Esteemed organizations including Alnylam Pharmaceuticals, Inc. and American Gene Technologies Inc. continue to invest in robust R&D activities, while Amgen Inc. and AnGes, Inc. harness state-of-the-art biotechnologies to enhance the safety and specificity of gene therapies. The likes of Astellas Pharma Inc. and Biogen Inc. are setting benchmarks in clinical innovation, further amplified by the disruptive potential of bluebird bio, Inc. and Cellectis S.A.

Companies such as CRISPR Therapeutics AG and Editas Medicine, Inc. are leading the charge in precision genome editing technologies, attracting keen investor interest and regulatory support alike. Larger conglomerates like Danaher Corporation and F. Hoffmann-La Roche Ltd. bring pharmaceutical might and expansive market reach, while industry stalwarts including Gilead Sciences, Inc. and Intellia Therapeutics refine the scientific rigour behind clinical trial designs. Ionis Pharmaceuticals, Inc., along with Johnson & Johnson and Merck KGaA, continues to expand their therapeutic horizons by integrating gene therapies into broader treatment regimens. Storied innovators like Mustang Bio, Inc. and Novartis AG are demonstrating remarkable agility in navigating the complex interplay of clinical innovation and commercial viability. The strategic visions of Orchard Therapeutics PLC, Poseida Therapeutics, Inc., and Sangamo Therapeutics, Inc. further illuminate pathways to market integration, with Sarepta Therapeutics, Inc., Sibiono GeneTech Co. Ltd., Syncona Limited, ViGeneron GmbH, and Voyager Therapeutics Inc. rounding out a comprehensive tapestry of industry excellence.

The report delves into recent significant developments in the Gene Therapy Market, highlighting leading vendors and their innovative profiles. These include Abeona Therapeutics Inc., Adaptimmune Therapeutics PLC, Adverum Biotechnologies, Inc., AGC Biologics, Alnylam Pharmaceuticals, Inc., American Gene Technologies Inc., Amgen Inc., AnGes, Inc., Astellas Pharma Inc., Biogen Inc., bluebird bio, Inc., Cellectis S.A., CRISPR Therapeutics AG, Danaher Corporation, Editas Medicine, Inc., F. Hoffmann-La Roche Ltd., Gilead Sciences, Inc., Intellia Therapeutics, Ionis Pharmaceuticals, Inc., Johnson & Johnson, Merck KGaA, Mustang Bio, Inc., Novartis AG, Orchard Therapeutics PLC, Poseida Therapeutics, Inc., Sangamo Therapeutics, Inc., Sarepta Therapeutics, Inc., Sibiono GeneTech Co. Ltd., Syncona Limited, ViGeneron GmbH, and Voyager Therapeutics Inc.. Actionable Recommendations for Industry Leaders

Industry leaders should focus on leveraging cutting-edge research and consolidating robust partnerships to accelerate market penetration. It is crucial to invest in scalable manufacturing processes that accommodate sophisticated vector development while ensuring quality control and compliance with evolving regulatory standards. Emphasis must be placed on establishing dynamic clinical trial frameworks that are adaptive to emerging scientific data and patient feedback, thereby shortening the timeline from discovery to approval.

Additionally, aligning with strategic innovation clusters and research consortiums can provide valuable insights into regional market dynamics and advanced technological trends. Leaders should also consider diversifying their pipelines by strategically targeting both prevalent and niche therapeutic areas, enabling a balanced portfolio that mitigates market risks. Embedding advanced digital analytics into every phase of the development process can facilitate data-driven decision making, ensuring that product lifecycles are optimized for both clinical efficacy and cost efficiency.

Finally, a proactive engagement with regulatory bodies and industry stakeholders is essential to anticipate shifts in policy and technological landscapes. By staying ahead of the curve through continual investment in innovation and fostering collaborative synergies, industry leaders can drive sustained growth and establish enduring competitive advantages in the gene therapy arena.

Conclusion: Embracing the Future of Transformative Therapeutics

In summary, the gene therapy market is positioned at the intersection of groundbreaking science and evolving clinical realities. The transformative shifts in technological innovation, regulatory modernization, and proactive industry collaboration signal a paradigm where precision medicine can truly revolutionize patient care. By embracing detailed segmentation insights, regional trends, and the diverse strategies of key industry players, stakeholders are equipped to navigate the complexities inherent in this ever-changing landscape.

A clear focus on patient-centric innovation, combined with strategic investments in technology and infrastructure, reaffirms a future where genetic anomalies can be addressed with unprecedented precision and efficacy. The collective momentum of the industry encapsulates a vision for a healthier, more resilient future where gene therapy is integral to mainstream medical practice.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing demand for gene therapy driven by rising prevalence of genetic and rare diseases worldwide
      • 5.1.1.2. Growing public and private funding initiatives supporting gene therapy clinical trials
      • 5.1.1.3. Improved regulatory frameworks accelerating the approval process for innovative gene therapies
    • 5.1.2. Restraints
      • 5.1.2.1. High costs associated with the gene therapy treatment
    • 5.1.3. Opportunities
      • 5.1.3.1. Leveraging AI and machine learning to streamline gene therapy research and development processes
      • 5.1.3.2. Ongoing innovations in CRISPR and other gene-editing technologies
    • 5.1.4. Challenges
      • 5.1.4.1. Operational concerns associated with the gene therapy
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Vector Type: Significant adoption of adeno-associated viruses in ocular and neurological disorders
    • 5.2.2. Treatment Modality: Substantial traction of somatic cell therapy, driven by safer profiles and regulatory acceptability
    • 5.2.3. Target Genome: Burgeoning influence of RNA modification owing to their faster regulatory protocols
    • 5.2.4. Delivery Mode: Growing preference for in vivo delivery characterized by its non-restrictive application
    • 5.2.5. Route of Administration: Proliferating usage of the intravenous administration suitable for a broad spectrum of genetic disorders
    • 5.2.6. Patient Type: Increasing utilization of gene therapies among adult patients owing to the higher incidence of adult-onset genetic disorders
    • 5.2.7. Therapeutic Area: Rising prevalence of infectious diseases demands robust gene therapies
    • 5.2.8. End-User: Expanding importance of the pharmaceutical and biotech companies for gene therapy innovations
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Gene Therapy Market, by Vector Type

  • 6.1. Introduction
  • 6.2. Non-Viral Vectors
    • 6.2.1. Lipofection
    • 6.2.2. Plasmid DNA
  • 6.3. Viral Vectors
    • 6.3.1. Adeno-Associated Virus (AAV) Vectors
    • 6.3.2. Adenovirus Vectors
    • 6.3.3. Herpes Simplex Virus (HSV) Vectors
    • 6.3.4. Retrovirus Vectors

7. Gene Therapy Market, by Treatment Modality

  • 7.1. Introduction
  • 7.2. Germline Therapy
  • 7.3. Somatic Cell Therapy
    • 7.3.1. Gene Augmentation Therapy
    • 7.3.2. Gene Suppression Therapy

8. Gene Therapy Market, by Target Genome

  • 8.1. Introduction
  • 8.2. DNA Modification
  • 8.3. RNA Modification

9. Gene Therapy Market, by Delivery Mode

  • 9.1. Introduction
  • 9.2. Ex Vivo
  • 9.3. In Vivo

10. Gene Therapy Market, by Route of Administration

  • 10.1. Introduction
  • 10.2. Intramuscular
  • 10.3. Intraocular
  • 10.4. Intravenous

11. Gene Therapy Market, by Patient Type

  • 11.1. Introduction
  • 11.2. Adult Patients
  • 11.3. Pediatric Patients

12. Gene Therapy Market, by Therapeutic Area

  • 12.1. Introduction
  • 12.2. Cardiovascular Diseases
    • 12.2.1. Coronary Artery Disease
    • 12.2.2. Heart Failure
  • 12.3. Infectious Diseases
    • 12.3.1. Hepatitis B
    • 12.3.2. HIV
  • 12.4. Monogenic Disorders
    • 12.4.1. Cystic Fibrosis
    • 12.4.2. Hemophilia
    • 12.4.3. Sickle Cell Anemia
  • 12.5. Oncological Disorders
    • 12.5.1. Hematological Malignancies
    • 12.5.2. Solid Tumors

13. Gene Therapy Market, by End-User

  • 13.1. Introduction
  • 13.2. Contract Research Organizations
  • 13.3. Hospitals & Clinics
  • 13.4. Pharmaceutical & Biotech Companies
  • 13.5. Research Institutes

14. Americas Gene Therapy Market

  • 14.1. Introduction
  • 14.2. Argentina
  • 14.3. Brazil
  • 14.4. Canada
  • 14.5. Mexico
  • 14.6. United States

15. Asia-Pacific Gene Therapy Market

  • 15.1. Introduction
  • 15.2. Australia
  • 15.3. China
  • 15.4. India
  • 15.5. Indonesia
  • 15.6. Japan
  • 15.7. Malaysia
  • 15.8. Philippines
  • 15.9. Singapore
  • 15.10. South Korea
  • 15.11. Taiwan
  • 15.12. Thailand
  • 15.13. Vietnam

16. Europe, Middle East & Africa Gene Therapy Market

  • 16.1. Introduction
  • 16.2. Denmark
  • 16.3. Egypt
  • 16.4. Finland
  • 16.5. France
  • 16.6. Germany
  • 16.7. Israel
  • 16.8. Italy
  • 16.9. Netherlands
  • 16.10. Nigeria
  • 16.11. Norway
  • 16.12. Poland
  • 16.13. Qatar
  • 16.14. Russia
  • 16.15. Saudi Arabia
  • 16.16. South Africa
  • 16.17. Spain
  • 16.18. Sweden
  • 16.19. Switzerland
  • 16.20. Turkey
  • 16.21. United Arab Emirates
  • 16.22. United Kingdom

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2023
  • 17.2. FPNV Positioning Matrix, 2023
  • 17.3. Competitive Scenario Analysis
    • 17.3.1. Be Biopharma secures USD 82 million to propel innovative haemophilia B gene therapy into early trials
    • 17.3.2. Fiocruz and GEMMABio collaboration paves the way for affordable gene therapy solutions in Brazil
    • 17.3.3. An exclusive partnership between Astellas Pharma and AviadoBio transforms gene therapy landscape with AVB-101
    • 17.3.4. FDA clearance ushers in AAV vector-based immunotherapy VNX-101 for leukemia trials
    • 17.3.5. CPC launched MicroCNX ULT series for cell and gene therapy cryopreservation
    • 17.3.6. NHS pioneers global first with gene therapy Casgevy to transform thalassemia care
    • 17.3.7. Merck's acquisition of Mirus Bio signals strategic expansion in viral vector bioprocessing capabilities for advancing gene therapy solutions
    • 17.3.8. Pfizer's promising phase 3 trial outcomes highlight potential improvement in hemophilia A gene therapy
    • 17.3.9. Genezen strengthens its production capabilities with acquisition of uniQure's Massachusetts operations
    • 17.3.10. India revolutionizes cancer treatment with its first affordable indigenous CAR-T gene therapy, NexCAR19
    • 17.3.11. Kyowa Kirin expands rare disease gene therapy portfolio with dynamic acquisition of Orchard Therapeutics
    • 17.3.12. Novartis and Voyager Therapeutics partner to revolutionize gene therapy for genetic disorders
  • 17.4. Strategy Analysis & Recommendation
    • 17.4.1. F. Hoffmann-La Roche Ltd.
    • 17.4.2. Novartis AG
    • 17.4.3. Biogen Inc.
    • 17.4.4. Astellas Pharma Inc.

Companies Mentioned

  • 1. Abeona Therapeutics Inc.
  • 2. Adaptimmune Therapeutics PLC
  • 3. Adverum Biotechnologies, Inc.
  • 4. AGC Biologics
  • 5. Alnylam Pharmaceuticals, Inc.
  • 6. American Gene Technologies Inc.
  • 7. Amgen Inc.
  • 8. AnGes, Inc.
  • 9. Astellas Pharma Inc.
  • 10. Biogen Inc.
  • 11. bluebird bio, Inc.
  • 12. Cellectis S.A.
  • 13. CRISPR Therapeutics AG
  • 14. Danaher Corporation
  • 15. Editas Medicine, Inc.
  • 16. F. Hoffmann-La Roche Ltd.
  • 17. Gilead Sciences, Inc.
  • 18. Intellia Therapeutics
  • 19. Ionis Pharmaceuticals, Inc.
  • 20. Johnson & Johnson
  • 21. Merck KGaA
  • 22. Mustang Bio, Inc.
  • 23. Novartis AG
  • 24. Orchard Therapeutics PLC
  • 25. Poseida Therapeutics, Inc.
  • 26. Sangamo Therapeutics, Inc.
  • 27. Sarepta Therapeutics, Inc.
  • 28. Sibiono GeneTech Co. Ltd.
  • 29. Syncona Limited
  • 30. ViGeneron GmbH
  • 31. Voyager Therapeutics Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦