½ÃÀ庸°í¼­
»óǰÄÚµå
1715454

¼¼°èÀÇ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå : Á¦°ø, Àç·á, ±â¼ú, ¿ëµµº° - ¿¹Ãø(2025-2030³â)

Microfluidics Market by Offerings, Material, Technology, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 184 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 192¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 208¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 8.51%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 340¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Executive Summary ¼Ò°³: ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ÇÁ·±Æ¼¾îÀÇ ¹ßÀü

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2023³â 192¾ï 3,000¸¸ ´Þ·¯
¿¹»ó ¿¬µµ : 2024³â 208¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 340¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 8.51%

¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º °øÇÐÀº »ý¹°ÇÐÀû, È­ÇÐÀû, Á¦¾à °øÁ¤ÀÇ ½ÇÇà ¹æ½ÄÀ» ¿ÏÀüÈ÷ ¹Ù²Ù¾î ³õÀº Çõ¸íÀûÀÎ ºÐ¾ß·Î µîÀåÇß½À´Ï´Ù. ÃÖ±Ù ¸î ³â µ¿¾È Çõ½ÅÀûÀÎ ¼³°è¿Í Á¤¹Ð °øÇÐÀÇ »óÈ£ ÀÛ¿ëÀº ºñ¾àÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÏ¿© ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¿¡¼­ ȹ±âÀûÀÎ ÀÀ¿ëÀ» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ÇöÀç »óȲÀº ±Þ¼ÓÇÑ ±â¼ú µµÀÔ, ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¸¶ÀÌÅ©·Î ½ºÄÉÀÏ ¼öÁØ¿¡¼­ À¯Ã¼ ¿ªÇп¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ÀÌÇØ·Î Ư¡Áö¾îÁý´Ï´Ù.

ÀÌ °³¿ä´Â ¿À´Ã³¯ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Ãֽе¿Çâ°ú ¿ªµ¿ÀûÀÎ º¯È­¸¦ ÀÚ¼¼È÷ Á¶»çÇß½À´Ï´Ù. Á¦Ç°, Àç·á, ±â¼ú, ¿ëµµÀÇ ÁøÈ­¸¦ °ËÅäÇÏ°í ¼¼ºÐÈ­ ÀλçÀÌÆ®¿Í Áö¿ª ¿ªÇп¡ ´ëÇØ ÀÚ¼¼È÷ ¼³¸íÇÕ´Ï´Ù. Á¾ÇÕÀûÀÎ °üÁ¡À» Á¦°øÇÔÀ¸·Î½á ÀÌÇØ°ü°èÀÚµéÀÌ ±âȸ¸¦ Æ÷ÂøÇÏ°í µµÀüÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. »ó¼¼ÇÑ ºÐ¼®°ú ½Ç¿ëÀûÀÎ ÀÎÅÚ¸®Àü½º¿¡ ÁßÁ¡À» µÐ ÀÌ ¸®ºä´Â ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ºÎ¹®¿¡¼­ Çõ½ÅÀ» ÁÖµµÇÏ°í »õ·Î¿î ½ÃÀå ±âȸ¸¦ Æ÷ÂøÇϰíÀÚ ÇÏ´Â ÀÇ»ç°áÁ¤±ÇÀÚµéÀÌ ¹Ýµå½Ã Àоî¾ß ÇÒ Çʵ¶¼­ÀÔ´Ï´Ù.

Áß¿äÇÑ µ¥ÀÌÅ͸¦ ½ÉÃþÀûÀ¸·Î ºÐ¼®ÇÏ¿© ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎÀ» öÀúÈ÷ Á¶»çÇÔÀ¸·Î½á ÀÌ ºÎ¹®ÀÇ Á¶»ç ¹æ¹ý°ú »ó¾÷Àû Àü·«À» À籸¼ºÇÏ´Â Èû¿¡ ´ëÇÑ Ãß°¡ Á¶»ç¸¦ À§ÇÑ °ß°íÇÑ ±â¹ÝÀ» ±¸ÃàÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

»óȲÀÇ Àüȯ: ¸¶ÀÌÅ©·ÎÀ¯Ã¼°øÇÐÀÇ ÀçÁ¤ÀÇ

¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ºÎ¹®Àº °æÁ¦Àû, ±â¼úÀû, ±ÔÁ¦Àû ȯ°æÀ» Áö¼ÓÀûÀ¸·Î ÀçÆíÇÏ´Â Èû¿¡ ÈûÀÔ¾î ÆÐ·¯´ÙÀÓÀÇ ÀüȯÀÌ ÁøÇà ÁßÀÔ´Ï´Ù. ¼ÒÇüÈ­ ¹× Á¦¾î ±â¼úÀÇ ¹ßÀüÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ¿© ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º °øÇÐÀ» º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ºÎ¹®ÀÇ ÁøÈ­´Â µðÁöÅÐ ¹× ÀÚµ¿È­ ±â¼úÀÇ ½ÉÃþÀûÀÎ ÅëÇÕÀÌ Æ¯Â¡À̸ç, ¿¬±¸ ¹× »ó¾÷È­ ³ë·ÂÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾÷°è´Â ¹Î°¨µµ Çâ»ó, ´ÙÁßÈ­ ±â´É, °£¼ÒÈ­µÈ ¿öÅ©Ç÷ο츦 Á¦°øÇÏ´Â Â÷¼¼´ë ±â±â¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­´Â °èÀýÀû º¯È­°¡ ¾Æ´Ï¶ó Á¤È®¼º, È®À强, ±âÁ¸ ½ÇÇè½Ç ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀÌ ¸Å¿ì Áß¿äÇÏ´Ù´Â ¿ì¼±¼øÀ§ÀÇ ±Ùº»ÀûÀÎ À籸¼ºÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â Çõ½ÅÀ» ÀúÇØÇÏÁö ¾Ê°í ¾ÈÀü¼ºÀ» º¸ÀåÇϸ鼭 ÀÌ·¯ÇÑ ±â¼ú¿¡ Á¡Â÷ÀûÀ¸·Î ÀûÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çй®Àû ¿¬±¸¿Í »ê¾÷Àû ÀÀ¿ëÀÇ À¶ÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó, »õ·Î¿î ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼Ö·ç¼Ç ½ÃÀå Ãâ½Ã ½Ã°£ÀÌ ´ÜÃàµÇ°í ÀÖÀ¸¸ç, À̸¦ °¡Àå ¸ÕÀú µµÀÔÇÏ´Â ±â¾÷ÀÌ °æÀï ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ÀÌ·¯ÇÑ ÀüȯÀº ¸¶ÀÌÅ©·ÎÀ¯Ã¼°øÇÐÀÌ ´õ ÀÌ»ó Æ´»õ ½ÃÀåÀÌ ¾Æ´Ï¶ó Áø´Ü, ½Å¾à°³¹ß, ȯ°æ ¸ð´ÏÅ͸µ, ±× ÀÌ»óÀÇ ±¤¹üÀ§ÇÑ Àǹ̸¦ Áö´Ñ ±Þ¼ºÀå ºÐ¾ßÀÓÀ» º¸¿©ÁÝ´Ï´Ù. º¯È­ÇÏ´Â ¿ªÇÐÀº Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» À§ÇÑ °­ÀμºÀ» ±¸ÃàÇÏ´Â µ¿½Ã¿¡ ÆÄ±«ÀûÀÎ Æ®·»µå¸¦ Ȱ¿ëÇÏ´Â ¹ÎøÇÑ Àü·«À» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ºÎ¹®¿¡ ´ëÇÑ ÅëÂû·Â ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå ¿ªÇп¡ ´ëÇÑ ÀÌÇØ

¸¶ÀÌÅ©·ÎÇ÷çÀÌµå ½ÃÀåÀÇ ÁøÈ­´Â ¼ºÀå°ú Çõ½ÅÀ» ÃËÁøÇÏ´Â ÇÙ½É ¿ä¼Ò¸¦ °­Á¶ÇÏ´Â ½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®À» ÅëÇØ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå ºÐ¼®ÀÇ ÁÖ¿ä ·»Áî Áß Çϳª´Â Á¦°ø Á¦Ç°À» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. ÀÌ ¹üÁÖ¿¡¼­ ½ÃÀåÀº ±â±â, ŰƮ, ½Ã¾à, ½Ã¾à, ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç µî ´Ù¾çÇÑ ½ºÆåÆ®·³¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ±â±â ¿µ¿ª¿¡¼­´Â ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º Ĩ, ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ÆßÇÁ, ¼¾¼­, ¹ëºê µî ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½Ã½ºÅÛÀÇ ±â´ÉÀû ´Ù¾ç¼º°ú È¿À²¼º¿¡ °íÀ¯ÇÏ°Ô ±â¿©ÇÏ´Â ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃá ½ÉÃþÀûÀÎ ¿¬±¸°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¼¼ºÐÈ­ ÃàÀº Àç·á °úÇÐÀÇ ¿µ¿ª¿¡ ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå ºÐ¼®¿¡´Â º¹ÇÕÀç·á, À¯¸®, °íºÐÀÚ, Æú¸®¸Ó, ½Ç¸®ÄÜ µîÀÇ Àç·á°¡ Æ÷ÇԵ˴ϴÙ. ƯÈ÷ Æú¸®¸Ó¿¡ ÁÖ¸ñÇÏ¿© Æú¸®µð¸ÞÆ¿½Ç·Ï»ê(PDMS), Æú¸®½ºÆ¼·», ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½ µîÀ¸·Î ºÐ·ùÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼ºÐÈ­´Â Á¦Ç°ÀÇ ¼º´É, ºñ¿ë, È®À强À» ÀÌÇØÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.

¶ÇÇÑ, ±â¼ú ±â¹Ý ¼¼ºÐÈ­´Â ¶Ç ÇϳªÀÇ ÅëÂû·Â °èÃþÀ» Ãß°¡ÇÕ´Ï´Ù. ÀÌ ¿¬±¸´Â µðÁöÅÐ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½ºÇÐ, ¾×Àû ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½ºÇÐ, ÀÇ·á¿ë ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½ºÇÐ, Á¾ÀÌ ±â¹Ý ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½ºÇп¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, °¢°¢ ¶Ñ·ÇÇÑ ÀåÁ¡, ó¸® È¿À²¼º, ÀÀ¿ë °¡´É¼ºÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¿ëµµº°·Î ½ÃÀåÀ» ¼¼ºÐÈ­ÇÏ¿© Çмú ¹× ¿¬±¸ºÎÅÍ ÀÓ»ó Áø´Ü, ȯ°æ ¹× »ê¾÷ ºÐ¼®, ½Äǰ ¹× ³ó¾÷ ǰÁú °ü¸®, Á¦¾à ¹× ¹ÙÀÌ¿À °³¹ß±îÁö ´Ù¾çÇÑ ºÎ¹®À» Á¶¸íÇÒ ¼ö ÀÖ½À´Ï´Ù. Áø´ÜÇÐ ºÐ¾ß¿¡¼­´Â Ç÷¾× °Ë»ç ¹× °¨¿°¼º Áúȯ °¨Áö, ȯ°æ ºÐ¾ß¿¡¼­´Â È­ÇÐ ºÐ¼® ¹× ¼öÁú °Ë»ç µîÀÌ Æ÷ÇԵ˴ϴÙ. ¸¶Âù°¡Áö·Î ½Äǰ ¹× ³ó¾÷ÀÇ ¹Ì½ÃÀû Æò°¡¿¡¼­´Â ½Äǰ ¾ÈÀü¼º °Ë»ç, ¿µ¾ç ¼ººÐ ºÐ¼®, ǰÁú °ü¸®°¡ Æò°¡µÇ¸ç, Á¦¾à ¹× »ý¸í°øÇРŬ·¯½ºÅÍ¿¡¼­´Â ¾à¹° Àü´Þ ¹× ¾àµ¿ÇÐ ¿¬±¸¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

°¢ ¼¼ºÐÈ­ ¿ä¼Ò´Â Á¾ÇÕÀûÀÎ ½ÃÀå ±×¸²¿¡ ±â¿©ÇÒ »Ó¸¸ ¾Æ´Ï¶ó Çõ½Å°ú ¿ì¼ö¼ºÀ» Ãß±¸ÇÏ´Â ±â¾÷ÀÇ Àü·«Àû Ÿ°ÙÆÃÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÎ¹® °£ÀÇ »óÈ£ÀÇÁ¸¼ºÀº ¿À´Ã³¯ ½ÃÀå¿¡ ¸¸¿¬ÇÑ ´Ù¸éÀûÀÎ ¼ºÀå Àü·«°ú °æÀï ȯ°æÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • ÇØ°áÇØ¾ß ÇÒ °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter¡¯s Five Forces ºÐ¼®
  • PESTLE ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå : Á¦°ø Á¦Ç°º°

  • ¼­·Ð
  • ±â±â
    • ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º Ĩ
    • ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ÆßÇÁ
    • ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¾¼­
    • ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¹ëºê
  • ŰƮ ¹× ½Ã¾à
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå : Àç·áº°

  • ¼­·Ð
  • º¹ÇÕÀç·á
  • À¯¸®
  • Æú¸®¸Ó
    • Æú¸®µð¸ÞÆ¿½Ç·Ï»ê(PDMS)
    • Æú¸®½ºÆ¼·»
    • ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½
  • ½Ç¸®ÄÜ

Á¦8Àå ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå : ±â¼úº°

  • ¼­·Ð
  • µðÁöÅÐ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º
  • µå·Ó·¿ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º
  • ÀÇ·á ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º
  • Á¾ÀÌ ±â¹Ý ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º

Á¦9Àå ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • Çмú ¿¬±¸
  • Áø´Ü
    • Ç÷¾× °Ë»ç
    • °¨¿°Áõ °¨Áö
  • ȯ°æ ¹× »ê¾÷
    • È­Çкм®
    • ¼öÁú °Ë»ç
  • ½Äǰ ¹× ³ó¾÷
    • ½Äǰ¾ÈÀü °Ë»ç
    • ¿µ¾ç ¼ººÐ ºÐ¼®
    • ǰÁú °ü¸®
  • Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö
    • ¾à¹° Àü´Þ
    • ¾à¹° µ¿·ÂÇÐ

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå

  • ¼­·Ð
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå

  • ¼­·Ð
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½ÃÀå

  • ¼­·Ð
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • Æ¢¸£Å°¿¹
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Abaxis, Inc. by Zoetis Inc.
  • AbCellera Biologics Inc.
  • Achira Labs Pvt. Ltd.
  • Agilent Technologies, Inc.
  • ALLOYZMES Pte Ltd
  • Ascent Bio-Nano Technologies, Inc.
  • Bio-Rad Laboratories, Inc.
  • BioFluidica
  • Biosurfit SA
  • Cellix Ltd.
  • Danaher Corporation
  • Elvesys Group
  • F. Hoffmann-La Roche Ltd.
  • Fluigent S.A.
  • Idex Corporation
  • Illumina, Inc.
  • Micronit B.V.
  • Mission Bio, Inc.
  • NanoCellect Biomedical
  • Okomera
  • OPKO Health, Inc.
  • Parallel Fluidics, Inc.
  • PerkinElmer Inc.
  • QuidelOrtho Corporation
  • Sphere Fluidics Limited
  • Standard BioTools Inc.
  • Syensqo
  • Thermo Fisher Scientific, Inc.
  • Unchained Labs
  • World Precision Instruments
LSH

The Microfluidics Market was valued at USD 19.23 billion in 2023 and is projected to grow to USD 20.81 billion in 2024, with a CAGR of 8.51%, reaching USD 34.08 billion by 2030.

Executive Summary Introduction: Advancing the Microfluidics Frontier

KEY MARKET STATISTICS
Base Year [2023] USD 19.23 billion
Estimated Year [2024] USD 20.81 billion
Forecast Year [2030] USD 34.08 billion
CAGR (%) 8.51%

Microfluidics has emerged as a revolutionary field, transforming the way biological, chemical, and pharmaceutical processes are executed. In recent years, the interplay of innovative design and precision engineering has driven exponential growth and enabled groundbreaking applications across various scientific domains. The current landscape is characterized by rapid technology adoption, increased investment in R&D, and a broader understanding of fluid dynamics at microscale levels.

This summary provides an in-depth exploration into modern trends and dynamic shifts influencing the market today. It examines evolution in product offerings, materials, technologies, and applications, elaborating on segmentation insights and regional dynamics. The purpose is to offer a comprehensive perspective, enabling stakeholders to identify opportunities and mitigate challenges. With a strong emphasis on detailed analysis and actionable intelligence, this review is essential reading for decision-makers seeking to drive innovation and capture emerging market opportunities in the microfluidics sector.

By delving into key data points and providing a thorough examination of drivers and impediments, the discussion aims to establish a robust foundation for further inquiry into the forces that are reshaping research methodologies and commercial strategies in the field.

Transformative Shifts in the Landscape: Redefining Microfluidics

The microfluidics sector is undergoing a paradigm shift fueled by forces that continuously reshape its economic, technological, and regulatory environment. Advances in miniaturization and control techniques have driven innovation, making microfluidics more efficient and cost-effective. Moreover, the sector's evolution is characterized by a deeper integration of digital and automation technologies, which are further propelling research and commercialization efforts.

Industry players are actively investing in next-generation devices that offer enhanced sensitivity, multiplexing capabilities, and streamlined workflows. This evolution is not seasonal but reflects a fundamental realignment of priorities where precision, scalability, and integration with existing lab systems are pivotal. Regulatory frameworks are slowly adapting to accommodate these technologies, ensuring safety without stifling innovation. Increased convergence of academic research and industrial application has also expedited time-to-market for emergent microfluidic solutions, allowing early adopters a competitive edge.

These transformative shifts indicate that microfluidics is no longer a niche field but a burgeoning arena with wide-ranging implications for diagnostics, drug discovery, environmental monitoring, and beyond. The changing dynamics call for agile strategies to take advantage of disruptive trends while building resilience for long-term sustainability.

Key Segmentation Insights: Unpacking the Microfluidics Market Dynamics

The evolution of the microfluidics market can be understood through a meticulous breakdown of its segmentation, which highlights the critical components driving growth and innovation. One of the primary lenses for market analysis is based on offerings. Under this category, the market spans a spectrum that includes instruments, kits, reagents, and software solutions. Within the instruments domain, detailed studies focus on sub-segments such as microfluidic chips, microfluidic pumps, sensors, and valves, each contributing uniquely to the functional versatility and efficiency of microfluidic systems.

Another key segmentation pivot lies in the realm of material sciences. The market analysis incorporates materials such as composites, glass, polymers, and silicon. Special attention is given to polymers, which are further dissected into varieties like polydimethylsiloxane (PDMS), polystyrene, and thermoplastics. This nuanced breakdown is essential for understanding product performance attributes, cost implications, and scalability.

Further, technology-based segmentation adds another layer of insight. Research focuses on digital microfluidics, droplet microfluidics, medical microfluidics, and paper-based microfluidics, each showcasing distinct advantages, processing efficiencies, and application potentials. Finally, segmenting the market based on application sheds light on areas ranging from academia and research to clinical diagnostics, environmental and industrial analysis, food and agriculture quality control, and pharmaceutical and biotechnology developments. These applications are analyzed in greater detail; diagnostics involve blood testing and infectious disease detection, while environmental sectors explore chemical analysis and water quality testing. Similarly, nuanced assessments in food and agriculture evaluate food safety testing, nutrient content analysis, and quality control, and the pharmaceutical and biotechnology clusters emphasize drug delivery and pharmacokinetic studies.

Each segmentation factor not only contributes to a comprehensive market picture but also facilitates strategic targeting for businesses seeking to innovate and excel. The interdependencies among these segments underscore the multifaceted growth strategies and competitive landscape prevalent in today's market.

Based on Offerings, market is studied across Instruments, Kits and Reagents, and Software. The Instruments is further studied across Microfluidic Chips, Microfluidic Pumps, Microfluidic Sensors, and Microfluidic Valves.

Based on Material, market is studied across Composites, Glass, Polymers, and Silicon. The Polymers is further studied across Polydimethylsiloxane (PDMS), Polystyrene, and Thermoplastics.

Based on Technology, market is studied across Digital Microfluidics, Droplet Microfluidics, Medical Microfluidics, and Paper-Based Microfluidics.

Based on Application, market is studied across Academia & Research, Diagnostics, Environmental & Industrial, Food & Agriculture, and Pharmaceutical & Biotechnology. The Diagnostics is further studied across Blood Testing and Infectious Disease Detection. The Environmental & Industrial is further studied across Chemical Analysis and Water Quality Testing. The Food & Agriculture is further studied across Food Safety Testing, Nutrient Content Analysis, and Quality Control. The Pharmaceutical & Biotechnology is further studied across Drug Delivery and Pharmacokinetics.

Key Regional Insights: Navigating Global Market Dynamics

A thorough examination of the microfluidics market reveals distinct regional insights that shape opportunities and present unique challenges. The Americas possess a robust infrastructure and established research base, driving early adoption and continuous innovation. The intrinsic synergy between academic institutions, industry giants, and regulatory bodies in this region stimulates advancements and fosters a competitive market environment.

In parallel, the region encompassing Europe, the Middle East, and Africa serves as a critical hub for specialized research and niche applications. Evolving regulatory frameworks and government incentives in these areas further contribute to dynamic growth trajectories. The integration of traditional manufacturing capabilities with modern technological innovations has led to increased collaborations that promote sustainable market expansion.

Asia-Pacific is emerging as a transformative powerhouse in microfluidics. With expanding healthcare spending and a strong emphasis on digital transformation, this region is rapidly embracing advanced manufacturing protocols and innovative design methodologies. The combination of a vibrant research community and an adaptive regulatory environment has allowed for quicker deployment of novel systems to address local challenges.

Together, these regions contribute to a global landscape that is as diverse as it is interconnected, with each playing a vital role in shaping the future of microfluidics research and commercial success.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Key Companies Insights: Driving the Industry's Digital Revolution

The microfluidics ecosystem is accented by a roster of prominent companies that are spearheading innovation and market leadership. Key players such as Abaxis, Inc. by Zoetis Inc. and AbCellera Biologics Inc. are notable for their breakthroughs in device miniaturization and precision diagnostics, bringing innovative technologies to forefront. Emerging companies like Achira Labs Pvt. Ltd. and ALLOYZMES Pte Ltd are rapidly establishing themselves through agile development practices and strategic partnerships.

Multinational powerhouses including Agilent Technologies, Inc., Danaher Corporation, and F. Hoffmann-La Roche Ltd. provide substantial backing with their extensive research resources and global networks, thereby mitigating risks associated with R&D and accelerating go-to-market strategies. Companies such as Ascent Bio-Nano Technologies, Inc. and Bio-Rad Laboratories, Inc. continually push the envelope by exploring novel applications of microfluidics in diagnostics and therapeutic delivery.

Smaller specialized firms, including BioFluidica, Biosurfit SA, and Cellix Ltd., have cemented niche positions by focusing on targeted applications and custom solutions. Other significant names like Elvesys Group, Fluigent S.A., and Idex Corporation are also playing crucial roles in the evolution of microfluidic systems by providing innovative tools that enhance analytical performance. Industry leaders such as Illumina, Inc., Micronit B.V., Mission Bio, Inc., and NanoCellect Biomedical serve as key catalysts in integrating data analytics with microfluidic technology. Companies like Okomera, OPKO Health, Inc., Parallel Fluidics, Inc., and PerkinElmer Inc. round out the list, ensuring that the competitive landscape remains dynamic and responsive to market needs. The inclusion of QuidelOrtho Corporation, Sphere Fluidics Limited, Standard BioTools Inc., Syensqo, Thermo Fisher Scientific, Inc., Unchained Labs, and World Precision Instruments further reinforces the diversity and depth of players driving market innovation.

Collectively, these visionaries represent a cross-section of the industry's capacity to adapt, innovate, and set new benchmarks for excellence in a rapidly evolving technological milieu.

The report delves into recent significant developments in the Microfluidics Market, highlighting leading vendors and their innovative profiles. These include Abaxis, Inc. by Zoetis Inc., AbCellera Biologics Inc., Achira Labs Pvt. Ltd., Agilent Technologies, Inc., ALLOYZMES Pte Ltd, Ascent Bio-Nano Technologies, Inc., Bio-Rad Laboratories, Inc., BioFluidica, Biosurfit SA, Cellix Ltd., Danaher Corporation, Elvesys Group, F. Hoffmann-La Roche Ltd., Fluigent S.A., Idex Corporation, Illumina, Inc., Micronit B.V., Mission Bio, Inc., NanoCellect Biomedical, Okomera, OPKO Health, Inc., Parallel Fluidics, Inc., PerkinElmer Inc., QuidelOrtho Corporation, Sphere Fluidics Limited, Standard BioTools Inc., Syensqo, Thermo Fisher Scientific, Inc., Unchained Labs, and World Precision Instruments. Actionable Recommendations for Industry Leaders: Strategies for Sustained Growth

To foster sustainable growth in the transforming landscape of microfluidics, industry leaders must focus on integrating multidisciplinary approaches and leveraging technological synergies. It is crucial to invest in emerging sub-segments by enhancing capabilities around microfabrication, automation, and data analytics. Collaborations between academic and commercial sectors can facilitate the development of robust, scalable solutions that reflect real-world application needs. Additionally, adopting agile innovation frameworks and taking proactive measures to anticipate evolving regulatory requirements will be key strategies for staying ahead in a competitive market.

Leaders should emphasize the mix of product diversification and targeted research initiatives, ensuring that areas such as advanced sensor technologies and next-generation material applications are prioritized. This not only builds a more resilient portfolio of offerings but also enhances market position in rapidly evolving geographic territories. By harnessing insights from segmentation, companies can tailor their strategies to address niche demands, which in turn supports improved product reliability and user adoption across diverse sectors.

Conclusion: Charting the Future of Microfluidics

In summary, the microfluidics market stands at the cusp of an expansive transformation, driven by technological, material, and regional dynamics that are interwoven into an intricate industry tapestry. The segmentation analysis provides a clear roadmap of critical growth segments ranging from instruments and materials to advanced technologies and diverse applications. Regional disparities underscore the need for localized strategies, while the dynamic interplay of key companies highlights the competitive spirit that defines this innovative sector.

As the market continues to evolve, the insights and recommendations provided herein serve as a guide towards leveraging existing opportunities. The emphasis on data-driven decision-making and strategic partnerships will empower industry participants to not only navigate challenges but also to capitalize on emerging trends that promise to redefine the boundaries of what is possible in microfluidics.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increased focus on personalized medicine propelling innovations in microfluidic technologies
      • 5.1.1.2. Expanding application of microfluidics in pharmaceuticals, drug delivery, and therapeutic monitoring
      • 5.1.1.3. Increasing investment in research and development activities in the microfluidics sector
    • 5.1.2. Restraints
      • 5.1.2.1. High initial investment costs create an entry barrier for small and medium enterprises in microfluidics
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing advancements in nanotechnology enhancing capabilities of microfluidics in cancer research and treatment
      • 5.1.3.2. Integration of microfluidics with wearable sensors for real-time health monitoring
    • 5.1.4. Challenges
      • 5.1.4.1. Lack of standardization in microfluidic devices complicating the regulatory approval processes
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Offerings: High demand for microfluidic instruments for carrying out operations such as reactions, separations, or the detection of various micro compounds
    • 5.2.2. Material: Rising preference for polymer material in optoelectronic applications
    • 5.2.3. Technology: Burgeoning need for digital microfluidics technology in diagnostics and pharmaceutical research
    • 5.2.4. Application: Expanding application of microfluidics in diagnostics
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Microfluidics Market, by Offerings

  • 6.1. Introduction
  • 6.2. Instruments
    • 6.2.1. Microfluidic Chips
    • 6.2.2. Microfluidic Pumps
    • 6.2.3. Microfluidic Sensors
    • 6.2.4. Microfluidic Valves
  • 6.3. Kits and Reagents
  • 6.4. Software

7. Microfluidics Market, by Material

  • 7.1. Introduction
  • 7.2. Composites
  • 7.3. Glass
  • 7.4. Polymers
    • 7.4.1. Polydimethylsiloxane (PDMS)
    • 7.4.2. Polystyrene
    • 7.4.3. Thermoplastics
  • 7.5. Silicon

8. Microfluidics Market, by Technology

  • 8.1. Introduction
  • 8.2. Digital Microfluidics
  • 8.3. Droplet Microfluidics
  • 8.4. Medical Microfluidics
  • 8.5. Paper-Based Microfluidics

9. Microfluidics Market, by Application

  • 9.1. Introduction
  • 9.2. Academia & Research
  • 9.3. Diagnostics
    • 9.3.1. Blood Testing
    • 9.3.2. Infectious Disease Detection
  • 9.4. Environmental & Industrial
    • 9.4.1. Chemical Analysis
    • 9.4.2. Water Quality Testing
  • 9.5. Food & Agriculture
    • 9.5.1. Food Safety Testing
    • 9.5.2. Nutrient Content Analysis
    • 9.5.3. Quality Control
  • 9.6. Pharmaceutical & Biotechnology
    • 9.6.1. Drug Delivery
    • 9.6.2. Pharmacokinetics

10. Americas Microfluidics Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Microfluidics Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Microfluidics Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Sphere Fluidics launches Cyto-Mine Chroma with early access program to enhance single-cell analysis
    • 13.3.2. Syensqo and Emulseo partner to integrate advanced Galden PFPE into microfluidic systems, enhancing diagnostics and drug delivery solutions
    • 13.3.3. Parallel Fluidics secures USD 7 million seed funding to transform on-demand microfluidic manufacturing
    • 13.3.4. Okomera secures EUR 1.5 million grant to advance microfluidics and AI-powered CRISPR editing platform
    • 13.3.5. World Precision Instruments and Elvesys join forces to innovate microfluidic solutions for transformative research in life sciences
    • 13.3.6. Allozymes and Adisseo partners to enhance animal feed production with advanced microfluidics technology
    • 13.3.7. Goodfellow acquires Potomac Photonics to enhance microfluidics innovation
    • 13.3.8. Fluidic Sciences revitalizes protein interaction analysis with Microfluidic Diffusional Sizing technology relaunch
    • 13.3.9. Cipla ups investment in point-of-care testing firm Achira Labs
    • 13.3.10. Takara Bio launches innovative dissolvable microfluidic technology
    • 13.3.11. Mekonos partners with Accelerated Biosciences for advanced biomanufacturing to enhance cell engineering
    • 13.3.12. RAB-Microfluidics secures contract with global energy company boosting industry growth
    • 13.3.13. C-CAMP's OptiDrop enhances cost-effective single-cell analysis
    • 13.3.14. SpinChip Diagnostics secures NOK 115 million investment from bioMerieux to accelerate commercialization
    • 13.3.15. Nuclera and Sharp Life Science partners to enhance digital microfluidics for drug discovery
    • 13.3.16. Flow Circuits and Rapid Fluidics join forces to accelerate microfluidic system development
    • 13.3.17. Finnadvance and BioSurfaces forge partnership to enhance microfluidic systems with Bio-Spun scaffolds
    • 13.3.18. Roche acquires LumiraDx's Point-of-Care Technology for USD 295 million to enhance its diagnostic portfolio
    • 13.3.19. Bio-Techne to acquire Swiss spatial biology firm Lunaphore
  • 13.4. Strategy Analysis & Recommendation
    • 13.4.1. Agilent Technologies, Inc.
    • 13.4.2. Bio-Rad Laboratories, Inc.
    • 13.4.3. Danaher Corporation
    • 13.4.4. Thermo Fisher Scientific, Inc.

Companies Mentioned

  • 1. Abaxis, Inc. by Zoetis Inc.
  • 2. AbCellera Biologics Inc.
  • 3. Achira Labs Pvt. Ltd.
  • 4. Agilent Technologies, Inc.
  • 5. ALLOYZMES Pte Ltd
  • 6. Ascent Bio-Nano Technologies, Inc.
  • 7. Bio-Rad Laboratories, Inc.
  • 8. BioFluidica
  • 9. Biosurfit SA
  • 10. Cellix Ltd.
  • 11. Danaher Corporation
  • 12. Elvesys Group
  • 13. F. Hoffmann-La Roche Ltd.
  • 14. Fluigent S.A.
  • 15. Idex Corporation
  • 16. Illumina, Inc.
  • 17. Micronit B.V.
  • 18. Mission Bio, Inc.
  • 19. NanoCellect Biomedical
  • 20. Okomera
  • 21. OPKO Health, Inc.
  • 22. Parallel Fluidics, Inc.
  • 23. PerkinElmer Inc.
  • 24. QuidelOrtho Corporation
  • 25. Sphere Fluidics Limited
  • 26. Standard BioTools Inc.
  • 27. Syensqo
  • 28. Thermo Fisher Scientific, Inc.
  • 29. Unchained Labs
  • 30. World Precision Instruments
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦