시장보고서
상품코드
1717179

세계의 로봇 제초기 시장 : 컴포넌트, 유형, 오퍼레이션 유형, 판매채널, 용도, 최종 용도별-세계 예측2025-2030

Robotic Weeding Machines Market by Component, Type, Operation Type, Sales Channel, Application, End-Use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

로봇 제초기 시장은 2024년 4억 9,577만 달러, 2025년에는 5억 3,534만 달러에 이르고, CAGR 8.19%로 성장하여 2030년에는 7억 9,551만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 4억 9,577만 달러
추정 연도 : 2025년 5억 3,534만 달러
예측 연도 : 2030년 7억 9,551만 달러
CAGR(%) 8.19%

로봇 제초기는 최첨단 자동화와 식물 및 토양 역학에 대한 복잡한 이해를 통합하여 현대 농업의 범위를 재정의했습니다. 빠르게 진화하는 오늘날의 농업 환경에서 이러한 첨단 기계의 채택은 환경적 지속가능성과 효율성을 보장하면서 일관된 성과를 달성할 수 있도록 돕습니다. 이 보고서는 이 혁신적인 분야를 주도하는 기술 발전, 시장 역학, 새로운 동향을 종합적으로 살펴봅니다.

로봇 공학, 인공지능, 정밀 기계학의 접점에서 탄생한 최신 로봇 제초 시스템은 기존의 방식을 훨씬 뛰어넘어 진화하고 있습니다. 기존의 노동집약적인 방식을 뛰어넘어 보다 효율적일 뿐만 아니라 자원 배분을 최적화하고 화학물질 사용량을 크게 줄이는 자동화 솔루션을 도입하고 있습니다. 산업계와 정부 모두 지속가능성에 초점을 맞추고 있기 때문에 이러한 기계들은 환경을 보호하면서 수확량을 증가시키는 두 가지 유망한 이점을 제공합니다.

이 보고서는 과거 동향과 미래 시장 잠재력을 통합하여 이러한 광범위한 기술 변화의 배경을 밝히고, 독자들에게 기술 혁신이 농업 관행을 어떻게 재구성하고 있는지에 대한 심층적인 전망을 제공합니다. 이 보고서는 이러한 기계의 기술적 복잡성과 시장 확대를 촉진하는 요인을 모두 검토하여 이해관계자들이 이러한 혁신을 이해하고 효과적으로 활용할 수 있는 프레임워크를 구축합니다.

로봇 제초기 시장의 변화

이 산업은 디지털 혁신이 전통적인 농업 관행과 결합하는 진정한 변혁의 시기를 맞이하고 있습니다. 센서 기반 내비게이션, 머신러닝 알고리즘, 강화된 자율성 기능 등의 발전은 로봇 제초기의 운영 프레임워크를 총체적으로 재정의하고 있습니다. 이러한 파괴적인 진화는 잡초를 식별하고 제거하는 데 있어 정확성과 정밀도를 높이고, 불필요한 토양 파괴를 줄이면서 작물 전체의 건강성을 최적화합니다.

이러한 변화는 제품의 효율성을 높일 뿐만 아니라 소프트웨어와 하드웨어의 통합을 심화시키고 있습니다. 이러한 피벗 포인트는 다양한 환경 조건에서 원활하게 작동하고 가장 까다로운 지형에서도 안정적인 성능을 보장할 수 있는 시스템으로의 전환을 시사합니다. 기술의 진화는 연구개발에 대한 막대한 투자로 뒷받침되고 있으며, 그 결과 다양한 운영 환경에 대응할 수 있는 보다 견고하고 적응력이 뛰어난 시스템이 탄생하고 있습니다.

그 결과, 기업들은 이제 사용자 친화적이고 미션 크리티컬하며 확장 가능한 기술을 적극적으로 활용할 수 있게 되었습니다. 이해관계자들은 로봇 공학의 한계에 도전하는 파트너 및 기술 제공업체와 협력하여 이러한 혁신의 물결을 활용하고, 궁극적으로 농업 자동화 부문 전체에 변화를 가져올 수 있는 표준을 세우고자 합니다.

주요 세분화 통찰력 상세한 시장 세분화 세부 시장 세분화

시장 세분화는 로봇 제초기의 전반적인 상황을 뒷받침하는 복잡한 차별화 계층을 드러냅니다. 사용 된 구성 요소에 따라 시장을 세분화하면 블레이드 메커니즘, 섀시, 제어 장치, 추진 시스템, 로봇 팔, 흡입 시스템과 같은 중요한 요소가 성능과 신뢰성을 형성하는 데 매우 중요한 역할을한다는 것을 알 수 있습니다. 이러한 구성 요소는 작동 효율을 정의할 뿐만 아니라 다양한 응용 분야에서 기계의 적합성을 결정합니다.

마찬가지로, 유형에 따른 분류는 전기식, 기계식, 열식 제초기를 구분합니다. 각 유형은 특정 작업 과제와 자원 제약에 대응하고 맞춤형 설계 구성을 통해 정밀 농업을 최적화할 수 있도록 보장합니다. 로봇 시스템이 자율 또는 반자율 모드로 작동하기 때문에 안전과 효율성을 손상시키지 않고 인간의 개입을 줄이는 경향이 점점 더 강해지고 있음을 알 수 있습니다.

또한, 직접 판매, 대리점, 소매점, 임대 계약은 다양하고 역동적인 시장 침투 경로를 형성하기 때문에 판매 채널은 새로운 시장 세분화 계층을 도입합니다. 또한 농작물 생산, 환경 보호, 농업, 정원 관리, 원예의 구분에 따라 사용 패턴뿐만 아니라 잠재적인 시장 규모를 결정하는 용도 기반 세분화를 통해 통찰력을 얻을 수 있습니다. 마지막으로 최종 용도를 고려할 때, 농업 농장, 게임 공원, 공공 정원으로 전략적으로 분류하면 인구통계학적, 지리적 사용 시나리오를 세밀하게 이해하고 특정 최종 사용자의 니즈와 시장 상황에 맞는 제품을 개발할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 해결해야 할 과제
  • 시장 세분화 분석
  • Porter’s Five Forces 분석
  • PESTLE 분석
    • 정치
    • 경제
    • 사회
    • 기술
    • 법률
    • 환경

제6장 로봇 제초기 시장 : 컴포넌트별

  • 블레이드 메커니즘
  • 섀시
  • 제어 장치
  • 추진 시스템
  • 로봇 암
  • 흡입 시스템

제7장 로봇 제초기 시장 : 유형별

  • 전동 제초기
  • 기계식 제초기
  • 열 제초기

제8장 로봇 제초기 시장 : 조작 유형별

  • 자율 운전
  • 반자율 운전

제9장 로봇 제초기 시장 : 판매채널별

  • 직접 판매
  • 유통업체 및 소매업체
  • 리스계약

제10장 로봇 제초기 시장 : 용도별

  • 작물 생산
  • 환경보전
  • 농업
  • 정원 유지관리
  • 원예

제11장 로봇 제초기 시장 : 최종 용도별

  • 농장
  • 게임 파크
  • 퍼블릭 가든

제12장 아메리카의 로봇 제초기 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제13장 아시아태평양의 로봇 제초기 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제14장 유럽, 중동 및 아프리카의 로봇 제초기 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카공화국
  • 스페인
  • 스웨덴
  • 스위스
  • 튀르키예
  • 아랍에미리트(UAE)
  • 영국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 리스트

  • Adigo AS
  • AGCO Corporation
  • Autonomous Solutions, Inc.
  • Carbon Autonomous Robotic Systems, Inc.
  • CARRE SAS
  • Dahlia Robotics GmbH
  • Ecorobotix SA
  • Energreen S.p.A.
  • F. Poulsen Engineering ApS
  • FarmDroid ApS
  • FarmWise Labs, Inc.
  • Forlinx Embedded Technology Co., Ltd.
  • Garford Farm Machinery Ltd.
  • John Deere Group
  • Kubota Corporation
  • LEMKEN GmbH & Co. KG
  • Naio Technologies SAS
  • Odd.Bot B.V.
  • PeK Automotive d.o.o.
  • Robert Bosch GmbH
  • Rowbot Systems LLC
  • SeedSpider Inc.
  • Small Robot Company
  • SwarmFarm Robotics
  • Tertill Corporation
  • VitiBot
LSH 25.05.19

The Robotic Weeding Machines Market was valued at USD 495.77 million in 2024 and is projected to grow to USD 535.34 million in 2025, with a CAGR of 8.19%, reaching USD 795.51 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 495.77 million
Estimated Year [2025] USD 535.34 million
Forecast Year [2030] USD 795.51 million
CAGR (%) 8.19%

Robotic weeding machines have redefined the scope of modern agriculture by integrating cutting-edge automation with an intricate understanding of plant and soil mechanics. In today's fast-evolving agricultural environment, the adoption of these advanced machines delivers consistent performance while ensuring environmental sustainability and efficiency. This report provides a comprehensive overview that explores the technological progress, market dynamics, and emerging trends that drive this innovative sector.

Emerging from the confluence of robotics, artificial intelligence, and precision mechanics, modern robotic weeder systems have evolved far beyond conventional methods. They have transcended traditional labor-intensive practices, introducing automation solutions that are not only more efficient but also help optimize resource allocation and significantly reduce chemical usage. As industries and governments alike refocus on sustainability initiatives, these machines offer a promising dual advantage of boosting yield while preserving the environment.

This report contextualizes these broad technological shifts by synthesizing historical trends with future market potential, providing readers with an in-depth perspective on how innovation is reshaping farming practices. The narrative examines both the technological intricacies behind these machines and the factors fueling market expansion, establishing a framework for stakeholders to understand and leverage these innovations effectively.

Transformative Shifts in the Robotic Weeding Machine Landscape

The industry is experiencing a truly transformative phase where digital innovation converges with traditional agricultural practices. Advancements such as sensor-led navigation, machine learning algorithms, and enhanced autonomy capabilities have collectively redefined the operational framework of robotic weeding machines. This disruptive evolution facilitates precision and accuracy in weed identification and removal, optimizing overall crop health while reducing unnecessary soil disruption.

These shifts have not only elevated product efficiency but have also generated deeper integration between software and hardware aspects. Such pivot points signal a move toward systems that can operate seamlessly under varying environmental conditions, ensuring consistent performance even in the most challenging terrain. The technological evolution is backed by significant investments in research and development, resulting in increasingly robust and adaptable systems that cater to a range of operational environments.

Consequently, businesses now have the prospect of proactive engagement with technology that is user-friendly, mission-critical, and scalable. Stakeholders are keen to leverage this wave of innovation by aligning with partners and technology providers who continuously push the envelope in robotics, ultimately setting a transformative standard for the entire agricultural automation sector.

Key Segmentation Insights: Detailed Market Partitioning

The market segmentation reveals intricate layers of differentiation that underpin the overall landscape of robotic weeding machines. By disaggregating the market based on the components used, one recognizes that critical elements such as blade mechanisms, chassis, control unit, propulsion system, robotic arms, and suction systems play pivotal roles in shaping performance and reliability. These components not only define operational efficiency but also dictate the machine's suitability across diverse applications.

Similarly, the categorization based on type distinguishes between electric, mechanical, and thermal weeders. Each type addresses specific operational challenges and resource constraints, ensuring that precision agriculture is optimized through tailor-made design configurations. An insightful dimension emerges upon reviewing operation types; with robotic systems functioning on either autonomous or semi-autonomous modes, it becomes evident that the trend leans increasingly toward reducing human intervention without compromising safety or efficiency.

Furthermore, the sales channels introduce another layer of market subdivision, as direct sales, distributors and retailers, and leasing agreements create pathways for market penetration that are both diverse and dynamic. Insight is also drawn from application-based segmentation where distinctions in crop production, environmental conservation, farming, garden maintenance, and horticulture determine not only usage patterns but also potential market size. Finally, when considering end-use, the strategic breakdown into agricultural farms, game parks, and public gardens provides a granular understanding of the demographic and geographic usage scenarios, aligning product development with specific end-user needs and market conditions.

Based on Component, market is studied across Blade Mechanisms, Chassis, Control Unit, Propulsion System, Robotic Arms, and Suction Systems.

Based on Type, market is studied across Electric Weeders, Mechanical Weeders, and Thermal Weeders.

Based on Operation Type, market is studied across Autonomous Operation and Semi Autonomous Operation.

Based on Sales Channel, market is studied across Direct Sales, Distributors & Retailers, and Leasing Agreements.

Based on Application, market is studied across Crop Production, Environmental Conservation, Farming, Garden Maintenance, and Horticulture.

Based on End-Use, market is studied across Agricultural Farms, Game Parks, and Public Gardens.

Critical Regional Trends Shaping the Industry Landscape

Regional dynamics significantly influence the entry and expansion of robotic weeding technologies. Analysis reveals that transformative growth is evident in regions such as the Americas, where technological adoption is propelled by extensive agricultural research initiatives and robust investment ecosystems. This progression is equally mirrored in the combined region of Europe, Middle East, and Africa where evolving regulatory frameworks and sustainability mandates drive market participation.

Meanwhile, the Asia-Pacific region has emerged as a fertile ground for rapid expansion, spurred by mass-scale agricultural practices and a strong drive for operational efficiency. Technology adoption in these regions is buoyed by proactive governmental incentives and strategic partnerships geared toward modernizing farming infrastructure. These geographic segments collectively offer a comprehensive stage on which companies can tailor their offerings to meet diverse climatic, regulatory, and consumer-specific needs, thereby driving innovation and competitive advantage across the board.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Leading Market Players Driving Innovation Across the Sector

A constellation of industry leaders has taken center stage in advancing the robotic weeding machine landscape. Innovators such as Adigo AS and AGCO Corporation have infused the market with practical automation solutions that address current challenges in agricultural precision. The momentum continues with trailblazers like Autonomous Solutions, Inc. and Carbon Autonomous Robotic Systems, Inc., whose investments have underscored the link between state-of-the-art technology and operational reliability.

Companies like CARRE SAS and Dahlia Robotics GmbH have also expanded the technological frontier, driving innovation through constant research and iterative development. Ecorobotix SA and Energreen S.p.A. are recognized for their commitment to sustainability, evolving designs that not only cater to performance excellence but also align with eco-friendly practices. Other notable players such as F. Poulsen Engineering ApS and FarmDroid ApS further enhance market dynamics by combining robust hardware installations with intuitive software integrations.

The industry continues to evolve with significant contributions from pioneers like FarmWise Labs, Inc. and Forlinx Embedded Technology Co., Ltd. that bring disruptive ideas to traditional farming methodologies. Additionally, industry stalwarts including Garford Farm Machinery Ltd., John Deere Group, and Kubota Corporation have a longstanding reputation for integrating advanced technologies. With continued initiatives from LEMKEN GmbH & Co. KG, Naio Technologies SAS, Odd.Bot B.V., PeK Automotive d.o.o., and Robert Bosch GmbH, the market maintains a competitive edge that is both comprehensive and forward-thinking. Emerging entities such as Rowbot Systems LLC, SeedSpider Inc., Small Robot Company, SwarmFarm Robotics, Tertill Corporation, and VitiBot contribute by experimenting with modular designs and scalable platforms, reinforcing the industry's commitment to innovation and efficiency.

The report delves into recent significant developments in the Robotic Weeding Machines Market, highlighting leading vendors and their innovative profiles. These include Adigo AS, AGCO Corporation, Autonomous Solutions, Inc., Carbon Autonomous Robotic Systems, Inc., CARRE SAS, Dahlia Robotics GmbH, Ecorobotix SA, Energreen S.p.A., F. Poulsen Engineering ApS, FarmDroid ApS, FarmWise Labs, Inc., Forlinx Embedded Technology Co., Ltd., Garford Farm Machinery Ltd., John Deere Group, Kubota Corporation, LEMKEN GmbH & Co. KG, Naio Technologies SAS, Odd.Bot B.V., PeK Automotive d.o.o., Robert Bosch GmbH, Rowbot Systems LLC, SeedSpider Inc., Small Robot Company, SwarmFarm Robotics, Tertill Corporation, and VitiBot. Strategic Recommendations for Industry Leaders

For market leaders, harnessing the potential of robotic weeding technology requires a strategic focus on innovation, collaboration, and market adaptation. It is essential to amplify investment in research and development to push the boundaries of system efficiency and operational reliability. Companies must also consider forming strategic partnerships to integrate emerging technologies such as artificial intelligence and machine learning, thereby fostering product enhancements that align with evolving market demands.

Organizations should assess opportunities for market diversification by tailoring product lines for distinct segmentation dimensions such as component design, operation type, and application profiles. Emphasizing a customer-centric approach that factors in regional requirements and sustainability mandates can greatly enhance market penetration. Furthermore, prioritizing robust after-sales support combined with a strong focus on customization will allow firms to build and maintain competitive differentiation in increasingly mature markets.

Leaders are encouraged to invest in skill enhancement and cross-functional team collaboration, ensuring that technological shifts are not only embraced but also leveraged for long-term strategic growth. By focusing on these actionable strategies, industry players can position themselves at the forefront of agricultural innovation and reap the rewards of a rapidly evolving market.

Conclusion: Strategic Insights for a Transformative Future

The evolution of robotic weeding machines embodies a compelling narrative of how advanced robotics can transform traditional agricultural practices. Technological innovation, market segmentation, regional dynamics, and competitive industry leadership have collectively underscored the sector's potential to redefine productivity and sustainable practices in agriculture.

The insights highlighted in this analysis provide a blueprint for understanding the market's multidimensional framework. From dissecting intricate segmentation details to mapping out regional trends and competitive advances, the report lays the foundation for strategic decision-making. The continual integration of digital advancements with traditional agricultural techniques signals a future where efficiency and sustainability converge. Industry leaders are therefore provided not only with an understanding of the current landscape but also with actionable strategies to drive future growth and competitive advantage.

Ultimately, this comprehensive analysis paves the way for stakeholders to recognize the broader implications of investing in robotic weeding technology-a move that is likely to set the tone for future advancements in the agricultural sector.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increased awareness of climate change and environmental conservation globally
      • 5.1.1.2. Growing labor shortages in rural areas worldwide
      • 5.1.1.3. Expanding government incentives and subsidies supporting integration of precision agriculture technologies
    • 5.1.2. Restraints
      • 5.1.2.1. High upfront capital investment and maintenance costs
    • 5.1.3. Opportunities
      • 5.1.3.1. Integration of advanced sensor technology with robotic weeding machines
      • 5.1.3.2. Surge in automation in organic farming operations
    • 5.1.4. Challenges
      • 5.1.4.1. Integration issues in traditional farming practices
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Increasing adoption of blade mechanisms for precision and durability to handle
    • 5.2.2. Application: Expanding application of robotic weeding machines in farming
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Robotic Weeding Machines Market, by Component

  • 6.1. Introduction
  • 6.2. Blade Mechanisms
  • 6.3. Chassis
  • 6.4. Control Unit
  • 6.5. Propulsion System
  • 6.6. Robotic Arms
  • 6.7. Suction Systems

7. Robotic Weeding Machines Market, by Type

  • 7.1. Introduction
  • 7.2. Electric Weeders
  • 7.3. Mechanical Weeders
  • 7.4. Thermal Weeders

8. Robotic Weeding Machines Market, by Operation Type

  • 8.1. Introduction
  • 8.2. Autonomous Operation
  • 8.3. Semi Autonomous Operation

9. Robotic Weeding Machines Market, by Sales Channel

  • 9.1. Introduction
  • 9.2. Direct Sales
  • 9.3. Distributors & Retailers
  • 9.4. Leasing Agreements

10. Robotic Weeding Machines Market, by Application

  • 10.1. Introduction
  • 10.2. Crop Production
  • 10.3. Environmental Conservation
  • 10.4. Farming
  • 10.5. Garden Maintenance
  • 10.6. Horticulture

11. Robotic Weeding Machines Market, by End-Use

  • 11.1. Introduction
  • 11.2. Agricultural Farms
  • 11.3. Game Parks
  • 11.4. Public Gardens

12. Americas Robotic Weeding Machines Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Robotic Weeding Machines Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Robotic Weeding Machines Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Odd.Bot secures EUR 2 million in pre-Series A funding to accelerate the market rollout of its autonomous Maverick robot
    • 15.3.2. Bulgarian Smart Farm Robotix secures EUR 2.36 million EIC funding to propel solar-powered, autonomous weeding solutions
    • 15.3.3. Carbon Robotics enhances global precision agriculture with a new track LaserWeeder
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Adigo AS
  • 2. AGCO Corporation
  • 3. Autonomous Solutions, Inc.
  • 4. Carbon Autonomous Robotic Systems, Inc.
  • 5. CARRE SAS
  • 6. Dahlia Robotics GmbH
  • 7. Ecorobotix SA
  • 8. Energreen S.p.A.
  • 9. F. Poulsen Engineering ApS
  • 10. FarmDroid ApS
  • 11. FarmWise Labs, Inc.
  • 12. Forlinx Embedded Technology Co., Ltd.
  • 13. Garford Farm Machinery Ltd.
  • 14. John Deere Group
  • 15. Kubota Corporation
  • 16. LEMKEN GmbH & Co. KG
  • 17. Naio Technologies SAS
  • 18. Odd.Bot B.V.
  • 19. PeK Automotive d.o.o.
  • 20. Robert Bosch GmbH
  • 21. Rowbot Systems LLC
  • 22. SeedSpider Inc.
  • 23. Small Robot Company
  • 24. SwarmFarm Robotics
  • 25. Tertill Corporation
  • 26. VitiBot
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제