시장보고서
상품코드
1717193

세계의 AI 엣지 컴퓨팅 시장 : 컴포넌트, 데이터 소스, 네트워크 접속성, 조직 규모, 도입 형태, 최종사용자 산업별 - 예측(2025-2030년)

AI Edge Computing Market by Component, Data Source, Network Connectivity, Organization Size, Deployment Mode, End-User Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

AI 엣지 컴퓨팅 시장의 2023년 시장 규모는 466억 6,000만 달러로 평가되었습니다. 2024년에는 557억 7,000만 달러에 이르고, CAGR 20.54%로 성장하여 2030년에는 1,726억 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2023년 466억 6,000만 달러
추정 연도 : 2024년 557억 7,000만 달러
예측 연도 : 2030년 1,726억 달러
CAGR(%) 20.54%

빠르게 진화하는 기술 세계에서 인공지능과 엣지 컴퓨팅의 결합은 업무 관행과 비즈니스 성과를 재정의하는 패러다임의 전환을 의미하며, AI 기능과 분산형 엣지 네트워크의 결합은 데이터를 더 빠르게 처리하고, 더 가까운 곳에서 의사결정을 내리고, 전례 없는 혁신의 새로운 시대를 열어가고 있습니다. 전례 없이 빠른 속도로 혁신을 실현할 수 있는 새로운 시대가 도래하고 있습니다. 본 보고서에서는 AI 엣지 컴퓨팅의 혁신 동향, 주요 부문에 대한 통찰력, 지역별 동향, 주요 기업의 전략적 움직임에 대해 상세하게 살펴보고자 합니다.

AI와 엣지 컴퓨팅의 통합은 상호 연결된 디지털 세상에서 실시간 데이터 분석, 처리 지연 감소, 보안 강화의 필요성에 의해 추진되고 있습니다. 다양한 분야의 조직들이 지능형 자동화 및 동적 프로세스 최적화를 우선순위에 두고 있으며, 이는 AI 알고리즘을 네트워크 엣지에 전략적으로 배치함으로써 가능합니다. 이러한 접근 방식은 중앙 집중식 데이터센터와 관련된 위험을 줄이면서 확장성과 응답성을 강화합니다. 산업계가 복잡한 디지털 솔루션을 계속 채택함에 따라 민첩하고 탄력적인 인프라의 중요성이 점점 더 커지고 있습니다.

이 분석을 시작하기에 앞서, AI 엣지 컴퓨팅의 변화는 점진적인 것이 아니라 기술이 비즈니스 운영을 지원하는 방식에 있어 진화의 도약이라는 점을 인식하는 것이 중요합니다. 이 보고서는 이해관계자들이 이러한 변화를 탐색하고 활용하는 데 필요한 통찰력을 제공하는 것을 목표로 합니다. 이 보고서는 최신 연구와 업계 동향을 바탕으로 권위 있는 견해를 제시하며, 의사결정권자와 전문가들에게 필수적인 가이드가 될 것입니다.

AI 엣지 컴퓨팅 시장의 변화

디지털을 둘러싼 환경은 컴퓨팅 파워, 데이터 분석, 인공지능 기능을 활용하여 비즈니스의 방식을 크게 변화시키는 변화를 목격하고 있습니다. 에지 컴퓨팅이 성숙해지면서 실시간 용도과 지능형 자동화를 실현하는 중요한 요소로 자리 잡고 있습니다. 시장 역학은 산업 자동화에서 소비자 중심 용도에 이르기까지 다양한 이용 사례를 지원하기 위해 현지화된 데이터 처리와 고급 분석을 통합하는 데 점점 더 중점을 두면서 진화하고 있습니다.

최근의 발전은 컴퓨팅 리소스의 분산화를 촉진하여 조직이 멀리 떨어진 클라우드 서비스에만 의존하지 않고 그 자리에서 데이터를 처리할 수 있는 권한을 부여하고 있습니다. 이러한 분산화는 대기 시간 단축과 사이버 물리 시스템 강화를 위한 투자의 급증과 함께 이루어지고 있습니다. 전반적으로 AI, 센서 기술, 고급 네트워킹 프레임워크를 통합한 강력한 엔드투엔드 생태계를 구축하는 것이 더욱 중요해지고 있습니다.

기업들은 기존의 IT 아키텍처를 재검토하고 유연성, 확장성, 운영 효율성을 제공하는 분산형 시스템을 선택하려 하고 있습니다. 이러한 변화는 시스템 수명과 성능을 향상시키는 실시간 모니터링 및 상태 기반 유지보수 전략에 의해 더욱 가속화되고 있습니다. 중앙 집중식 데이터 처리에서 로컬 인텔리전스로의 전환은 시스템 관리에 대한 보다 탄력적이고 혁신적인 접근 방식을 촉진하고 있습니다. 기업들이 이러한 길을 계속 모색하는 가운데, 새로운 기술은 엣지와 클라우드의 경계를 더욱 모호하게 만들어 레거시 시장과 새로운 시장 모두에서 경쟁 우위를 촉진할 것으로 예측됩니다.

이러한 분산형 인텔리전스로의 전환은 진화하는 규제 기준, 데이터 프라이버시에 대한 우려, 에너지 효율적 운영의 필요성 등을 배경으로 하고 있습니다. 그 결과, 보다 신속하고 정보에 입각한 의사결정 과정을 촉진하는 동시에 고객 경험을 향상시킬 수 있는 생태계를 구축할 수 있습니다. 이러한 역동적인 환경 속에서 이해관계자들은 전례 없는 도전과 새로운 기회에 직면하고 있습니다.

주요 세분화 인사이트

상세한 세분화 분석을 통해 AI 엣지 컴퓨팅 분야 시장 성장 촉진요인과 진화하는 트렌드의 뉘앙스를 이해할 수 있습니다. 아키텍처의 관점에서 시장은 여러 가지 렌즈를 통해 살펴볼 수 있습니다. 이 세분화에서는 시장을 하드웨어, 서비스, 소프트웨어로 나누고, 하드웨어는 다시 마이크로프로세서, 네트워크 장비, 센서로 세분화합니다. 이를 보완하는 서비스 부문은 설치 및 통합, 유지보수 및 지원, 교육, 컨설팅 등의 영역을 통해 조사되었으며, 각 부문은 AI 엣지 컴퓨팅 솔루션의 전반적인 구축 및 운영의 성공에 매우 중요한 역할을 합니다.

컴포넌트 기반 세분화 외에도 데이터 소스를 기반으로 시장을 분석합니다. 이 관점은 생체 데이터, 모바일 데이터, 센서 데이터 등 실시간 분석 및 지능형 의사 결정 프로세스의 중추를 형성하는 광범위한 정보 입력을 포괄합니다. 다양한 데이터 스트림을 활용하는 능력은 예측 분석 및 머신러닝 용도의 핵심을 형성하여 많은 산업 분야의 업무 패러다임에 혁명을 일으키고 있습니다.

또 다른 중요한 세분화 모델은 AI 에지 컴퓨팅 솔루션의 효과적인 기능에 필수적인 네트워크 연결에 대한 것입니다. 최신 구축은 5G 네트워크의 견고성에 달려 있으며, Wi-Fi 네트워크와 기존 유선 네트워크의 보완을 통해 신뢰할 수 있는 고속 데이터 교환을 가능하게 합니다. 연결성이 계속 진화하는 가운데, 이러한 네트워크는 원활한 운영을 지원할 뿐만 아니라 확장성과 미래지향적인 솔루션을 촉진합니다.

조직의 규모에 따라 시장을 평가하면 더 많은 통찰력을 얻을 수 있습니다. 대기업과 중소기업은 각각 다른 니즈와 도입률을 보이고 있으며, 규모에 따라 다양한 영향을 미치고 있습니다. 도입 형태는 추가적인 세분화 기준이며, 시장은 온-클라우드와 On-Premise 도입 형태로 분류됩니다. 이 분석은 기업이 가장 적합하고 비용 효율적인 도입 프레임워크를 선택할 때 고려해야 할 전략적 고려 사항을 강조합니다.

마지막으로, 최종 사용자 산업별 세분화에서는 자동차, 은행, 금융서비스 및 보험(BFSI), 가전, 에너지 및 유틸리티, 정부 및 공공 부문, 헬스케어, 소매, 통신 등의 분야에서 AI 엣지 컴퓨팅이 광범위하고 다양하게 적용되고 있음을 확인할 수 있었습니다. 이들 산업은 AI와 엣지 컴퓨팅의 이점을 활용하여 업무 효율성을 높이고, 안전 프로토콜을 개선하며, 소비자 경험을 혁신하고 있습니다. 각 산업은 고유한 과제와 기회를 제시하고 있으며, 시장이 역동적이고 다면적인 모습을 유지할 수 있도록 보장하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 해결해야 할 과제
  • 시장 세분화 분석
  • Porter’s Five Forces 분석
  • PESTLE 분석
    • 정치
    • 경제
    • 사회
    • 기술
    • 법률
    • 환경

제6장 AI 엣지 컴퓨팅 시장 : 컴포넌트별

  • 하드웨어
    • 마이크로프로세서
    • 네트워크 장비
    • 센서
  • 서비스
    • 설치 및 통합
    • 유지관리 및 지원
    • 트레이닝 및 컨설팅
  • 소프트웨어

제7장 AI 엣지 컴퓨팅 시장 : 데이터 소스별

  • 생체인식 데이터
  • 모바일 데이터
  • 센서 데이터

제8장 AI 엣지 컴퓨팅 시장 : 네트워크 접속별

  • 5G 네트워크
  • Wi-Fi 네트워크
  • 유선 네트워크

제9장 AI 엣지 컴퓨팅 시장 : 조직 규모별

  • 대기업
  • 중소기업

제10장 AI 엣지 컴퓨팅 시장 : 전개 모드별

  • On-Cloud
  • On-Premise

제11장 AI 엣지 컴퓨팅 시장 : 최종사용자 업계별

  • 자동차
  • 은행, 금융서비스 및 보험(BFSI)
  • 가전
  • 에너지 및 유틸리티
  • 정부 및 공공 부문
  • 헬스케어
  • 소매
  • 통신

제12장 아메리카의 AI 엣지 컴퓨팅 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제13장 아시아태평양의 AI 엣지 컴퓨팅 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제14장 유럽, 중동 및 아프리카의 AI 엣지 컴퓨팅 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카공화국
  • 스페인
  • 스웨덴
  • 스위스
  • 튀르키예
  • 아랍에미리트(UAE)
  • 영국

제15장 경쟁 구도

  • 시장 점유율 분석, 2023
  • FPNV 포지셔닝 매트릭스, 2023
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 리스트

  • Accenture PLC
  • Advanced Micro Devices, Inc.
  • Amazon Web Services, Inc.
  • Arm Holdings plc
  • C3.ai, Inc.
  • Capgemini SE
  • Cisco Systems, Inc.
  • Cognizant Technology Solutions Corporation
  • Dell Technologies Inc.
  • Fujitsu Limited
  • Google LLC by Alphabet Inc.
  • Hewlett Packard Enterprise Company
  • Huawei Technologies Co., Ltd.
  • Infosys Limited
  • Intel Corporation
  • International Business Machines Corporation
  • MediaTek Inc.
  • Microsoft Corporation
  • Nippon Telegraph and Telephone Corporation
  • NVIDIA Corporation
  • NXP Semiconductors N.V.
  • Oracle Corporation
  • Palantir Technologies Inc.
  • Panasonic Holdings Corporation
  • QUALCOMM Incorporated
  • Robert Bosch GmbH
  • Samsung Electronics Co., Ltd.
  • SAP SE
  • Siemens AG
  • Tata Consultancy Services Limited
  • Texas Instruments Incorporated
  • Wipro Limited
LSH 25.05.19

The AI Edge Computing Market was valued at USD 46.66 billion in 2023 and is projected to grow to USD 55.77 billion in 2024, with a CAGR of 20.54%, reaching USD 172.60 billion by 2030.

KEY MARKET STATISTICS
Base Year [2023] USD 46.66 billion
Estimated Year [2024] USD 55.77 billion
Forecast Year [2030] USD 172.60 billion
CAGR (%) 20.54%

In the rapidly evolving world of technology, the convergence of artificial intelligence and edge computing represents a paradigm shift that is redefining operational practices and business outcomes. The fusion of AI capabilities with distributed edge networks has ushered in a new era where data is processed faster, decisions are made closer to the source, and innovation is unleashed at an unprecedented pace. This report presents an in-depth executive summary, exploring transformative trends, key segmentation insights, regional dynamics, and the strategic moves of leading companies within the AI edge computing landscape.

The integration of AI and edge computing is driven by the need for real-time data analytics, reduced latency in processing, and enhanced security in an increasingly interconnected digital world. Organizations across sectors are prioritizing intelligent automation and dynamic process optimization, which are enabled by strategically positioning AI algorithms at the edge of networks. This approach mitigates the risks associated with centralized data centers while enhancing scalability and responsiveness. As industries continue to adopt complex digital solutions, the significance of agile, resilient infrastructures grows ever more pronounced.

As we embark on this analysis, it is important to recognize that the transformation in AI edge computing is not merely incremental but rather an evolutionary leap in how technology supports business operations. The content herein is designed to provide stakeholders with the insights necessary to navigate and capitalize on these changes. The report draws upon the latest research and industry trends to present an authoritative perspective, making it an essential guide for decision-makers and experts alike.

Transformative Shifts in the Landscape

The digital landscape has witnessed profound transformative shifts that are reshaping how businesses leverage computing power, data analytics, and artificial intelligence functionalities. As edge computing continues to mature, it is becoming a critical enabler of real-time applications and intelligent automation. Market dynamics are evolving with an increasing focus on integrating localized data processing and advanced analytics to support a wide array of use cases, from industrial automation to consumer-centric applications.

Recent advancements have driven the decentralization of computational resources, empowering organizations to process data in situ rather than relying solely on distant cloud services. This decentralization is accompanied by a surge in investments aimed at reducing latency and strengthening cyber-physical systems. Overall, greater emphasis is being placed on developing robust end-to-end ecosystems that incorporate AI, sensor technologies, and advanced networking frameworks.

Companies are rethinking traditional IT architectures in favor of distributed systems that offer flexibility, scalability, and operational efficiency. These shifts are further accelerated by real-time monitoring and condition-based maintenance strategies that enhance system longevity and performance. The transition from centralized data processing to localized intelligence has fostered a more resilient and innovative approach to system management. As organizations continue exploring these avenues, emerging technologies promise to further blur the lines between edge and cloud, driving competitive advantage in both legacy and new markets.

This shift towards decentralized intelligence is set against a backdrop of evolving regulatory standards, data privacy concerns, and the need for energy-efficient operations. The resulting ecosystem is one that encourages faster, more informed decision-making processes while simultaneously delivering enhanced customer experiences. In this dynamic environment, stakeholders are presented with both unprecedented challenges and emergent opportunities.

Key Segmentation Insights

A detailed segmentation analysis provides a nuanced understanding of the market drivers and evolving trends within the AI edge computing space. From an architectural perspective, the market is viewed through multiple lenses, beginning with the primary categorization based on component. This segmentation divides the market into hardware, services, and software segments, with hardware further dissected into microprocessors, networking equipment, and sensors. Complementing these, the services segment is explored through domains such as installation and integration, maintenance and support, as well as training and consulting activities, each playing a pivotal role in the overall deployment and operational success of AI edge computing solutions.

In addition to the component-based segmentation, the market has been analyzed based on data sources. This perspective covers the broad spectrum of information inputs including biometric data, mobile data, and sensor data, which together form the backbone of real-time analytics and intelligent decision-making processes. The ability to harness varied data streams forms the crux of predictive analytics and machine learning applications that are revolutionizing the operational paradigms in numerous industries.

Another critical segmentation model addresses network connectivity, which is integral to the effective functionality of AI edge computing solutions. Modern deployments hinge on the robustness of 5G networks, complemented by Wi-Fi networks and conventional wired networks that together ensure reliable, high-speed data exchanges. As connectivity continues to evolve, these networks not only support seamless operations but also promote scalability and future-ready solutions.

Further insight is offered by evaluating the market based on organization size. Both large enterprises and small and medium enterprises exhibit differentiated needs and adoption rates, illustrating a varied impact across scales. The deployment mode is a further segmentation criterion, with the market being judiciously divided between on-cloud and on-premise deployments. This analysis underscores the strategic considerations that organizations make in choosing the most appropriate and cost-effective deployment framework.

Lastly, segmentation by end-user industry reveals a broad and diversified application of AI edge computing across sectors such as automotive, BFSI, consumer electronics, energy and utilities, government and public sector, healthcare, retail, and telecommunications. These industries are leveraging the benefits of AI and edge computing to drive operational efficiencies, improve safety protocols, and transform consumer experiences. Each industry presents its own set of challenges and opportunities, ensuring that the market remains both dynamic and multifaceted.

Based on Component, market is studied across Hardware, Services, and Software. The Hardware is further studied across Microprocessors, Networking Equipment, and Sensors. The Services is further studied across Installation & Integration, Maintenance & Support, and Training & Consulting.

Based on Data Source, market is studied across Biometric Data, Mobile Data, and Sensor Data.

Based on Network Connectivity, market is studied across 5G Networks, Wi-Fi Networks, and Wired Networks.

Based on Organization Size, market is studied across Large Enterprises and Small & Medium Enterprises.

Based on Deployment Mode, market is studied across On-Cloud and On-Premise.

Based on End-User Industry, market is studied across Automotive, BFSI, Consumer Electronics, Energy & Utilities, Government & Public Sector, Healthcare, Retail, and Telecommunications.

Key Regional Insights

An in-depth regional analysis highlights the distinct dynamics that define AI edge computing across different parts of the world. Distinctive trends are evident across the Americas, Europe, Middle East & Africa, and Asia-Pacific, with each region displaying unique drivers and market conditions.

In the Americas, a combination of technological innovation and robust infrastructure has spurred significant advancements within the space. Investment in research and development, coupled with supportive government policies, has laid a strong foundation for the rapid adoption of AI edge computing solutions. This region continues to see a fusion of established tech giants and emerging startups, each contributing to the overall ecosystem with groundbreaking innovations.

Within Europe, Middle East & Africa (EMEA), there is a growing emphasis on aligning digital transformation strategies with secure and sustainable practices. Regulatory frameworks in these regions are evolving to ensure data integrity and privacy while simultaneously encouraging market expansion. This delicate balance between regulatory oversight and market dynamism makes the region a fertile ground for testing and implementing next-generation edge computing applications.

The Asia-Pacific region stands out for its rapid technological adoption and a burgeoning base of digital enterprises. Economies in this region have demonstrated an impressive ability to integrate advanced connectivity, AI, and IoT technologies at scale. The strong push towards smart city initiatives, comprehensive digital infrastructures, and substantial investments in R&D are all key factors bolstering AI edge computing deployments here. These regional insights emphasize the need for tailored strategies that consider the particular strengths and challenges inherent to each geographic area.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Georgia, Illinois, Massachusetts, New York, Ohio, Pennsylvania, Texas, and Washington. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Key Companies Insights

An examination of the competitive landscape reveals that industry leadership in AI edge computing is determined by the capability to innovate, scale, and integrate diverse technological components. Prominent players such as Accenture PLC and Advanced Micro Devices, Inc. have demonstrated their expertise in honing edge-focused solutions that incorporate advanced chip architectures and seamless systems integration. The role of cloud powerhouses like Amazon Web Services, Inc. and Google LLC by Alphabet Inc. cannot be understated, as they have significantly contributed to redefining data processing paradigms and the operational flexibility companies now demand.

Key market drivers are further illustrated by the endeavors of firms such as Arm Holdings plc, C3.ai, Inc., and Capgemini SE, which are at the forefront of providing sophisticated software platforms and integrated frameworks. Cisco Systems, Inc. and Cognizant Technology Solutions Corporation have deftly intertwined networking prowess with digital consultancy, thereby forming the backbone of secure and efficient edge ecosystems. Similarly, leading technology conglomerates including Dell Technologies Inc., Fujitsu Limited, and Hewlett Packard Enterprise Company continue to push the boundaries of hardware innovation, ensuring high-performance solutions that accommodate the increasing data demands of real-time AI applications.

Other dominant players such as Huawei Technologies Co., Ltd. and Infosys Limited have bolstered their market positions by investing heavily in research and development, merging traditional IT practices with forward-looking AI capabilities. Intel Corporation, International Business Machines Corporation, and MediaTek Inc. have also been instrumental in developing and commercializing microprocessor technologies that underpin modern edge computing architectures. Meanwhile, industry titans like Microsoft Corporation, Nippon Telegraph and Telephone Corporation, and NVIDIA Corporation have set benchmarks in software optimization and AI algorithm enhancements.

The market's competitive edge is further defined by the contributions of companies such as NXP Semiconductors N.V., Oracle Corporation, and Palantir Technologies Inc., which are driving the evolution of data analytics and system integration. Distinguished players like Panasonic Holdings Corporation, QUALCOMM Incorporated, Robert Bosch GmbH, and Samsung Electronics Co., Ltd. continue to influence market dynamics through technological partnerships and strategic investments. Moreover, SAP SE, Siemens AG, Tata Consultancy Services Limited, Texas Instruments Incorporated, and Wipro Limited exemplify the industry's commitment to innovation and operational excellence. Each of these companies has carved a niche in the AI edge computing domain by delivering scalable, secure, and efficient solutions that cater to an increasingly diverse clientele.

The report delves into recent significant developments in the AI Edge Computing Market, highlighting leading vendors and their innovative profiles. These include Accenture PLC, Advanced Micro Devices, Inc., Amazon Web Services, Inc., Arm Holdings plc, C3.ai, Inc., Capgemini SE, Cisco Systems, Inc., Cognizant Technology Solutions Corporation, Dell Technologies Inc., Fujitsu Limited, Google LLC by Alphabet Inc., Hewlett Packard Enterprise Company, Huawei Technologies Co., Ltd., Infosys Limited, Intel Corporation, International Business Machines Corporation, MediaTek Inc., Microsoft Corporation, Nippon Telegraph and Telephone Corporation, NVIDIA Corporation, NXP Semiconductors N.V., Oracle Corporation, Palantir Technologies Inc., Panasonic Holdings Corporation, QUALCOMM Incorporated, Robert Bosch GmbH, Samsung Electronics Co., Ltd., SAP SE, Siemens AG, Tata Consultancy Services Limited, Texas Instruments Incorporated, and Wipro Limited. Actionable Recommendations for Industry Leaders

To navigate the complexities and opportunities within the AI edge computing landscape, industry leaders must adopt a forward-looking, agile strategy. It is critical to invest in research and development that addresses not only current market needs but also anticipates future technological shifts. Leaders should assess their existing IT architectures and consider integrating edge computing frameworks that allow for rapid scalability and improved real-time analytics.

Emphasis should be placed on strengthening collaboration between different business units, technology providers, and academic institutions. This cross-collaboration fosters innovation and streamlines the adoption of cutting-edge technologies in a manner that is both efficient and secure. Additionally, a comprehensive review of data pipelines is advisable, ensuring that diverse data sources are fully leveraged to enhance AI-driven decision-making and drive operational improvements.

It is also important for decision-makers to explore partnerships that can bridge the gap between on-cloud and on-premise deployment models, thereby creating hybrid solutions that maximize the benefits of both. Embracing standardized protocols and frameworks for network connectivity, particularly with the advent of 5G technologies, will further enhance the performance of edge systems. A focus on robust cybersecurity measures and proactive maintenance strategies is paramount to mitigate risks and ensure system resilience in the face of evolving threats.

Furthermore, given the diverse needs of various organization sizes and industry sectors, it is essential to tailor technological solutions to fit specific strategic objectives. Leaders should adopt customer-centric strategies that not only improve service delivery but also enhance overall performance metrics across different operational spheres. This approach, combined with a regional awareness that appreciates the unique characteristics of markets such as the Americas, EMEA, and Asia-Pacific, will optimize both resource allocation and market response.

Finally, continuous monitoring of market trends and adapting to regulatory shifts are key to sustaining long-term success. Industry leaders are encouraged to periodically re-evaluate their technology road maps and remain agile in their decision-making processes to capitalize on emerging opportunities.

Conclusion

In summary, the landscape of AI edge computing is characterized by its rapid evolution and transformative impact across various industries. The integration of AI with distributed edge networks is pushing the boundaries of traditional processing paradigms by enabling real-time data analytics and localized decision-making. This executive summary has provided a detailed exploration of the key forces shaping the market, including comprehensive segmentation analyses, regional dynamics, and insights from leading industry players.

The multifaceted approach outlined in this report reveals a market that is not only diversified in its technological components but also strategically segmented to address the unique needs of different organizations and industry verticals. The technology is emerging as a critical enabler for enhanced operational efficiency, improved customer experiences, and a competitive edge in an increasingly complex digital environment.

As market conditions continue to evolve, it is imperative for organizations to remain vigilant and adaptable. The strategic insights and recommendations offered herein aim to guide industry leaders as they refine their technological investments and optimize deployment strategies. Ultimately, the future of AI edge computing lies in its ability to deliver both operational excellence and meaningful business outcomes, setting the stage for a new era of digital transformation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for real-time data processing capabilities utilizes AI edge computing
      • 5.1.1.2. Growth in autonomous vehicles and smart city initiatives demand for AI-edge computing abilities
      • 5.1.1.3. Expansion of 5G networks enhancing edge capabilities
    • 5.1.2. Restraints
      • 5.1.2.1. Limited processing power compared to centralized cloud systems
    • 5.1.3. Opportunities
      • 5.1.3.1. Rising innovation in the financial sector with AI edge solutions for fraud detection and prevention
      • 5.1.3.2. Increasing collaborations and partnerships with service providers to enhance efficiency of AI edge computing
    • 5.1.4. Challenges
      • 5.1.4.1. Complexity in the implementation of edge AI solutions
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Rising demand of installation & integration services for proper integration of new technologies into existing systems
    • 5.2.2. Data Source: Utilization of biometric data for faster authentication and personalized user experiences
    • 5.2.3. Network Connectivity: Preference for 5G networks due to high-speed data transmission capabilities
    • 5.2.4. Organization Size: Growing usage of large enterprises due to their robust financial resources
    • 5.2.5. Deployment Mode: Increasing on-cloud deployment for its scalability, cost-efficiency, and ease of access
    • 5.2.6. End-User Industry: Adaption of AI edge computing in automotive sector to improve safety measures
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. AI Edge Computing Market, by Component

  • 6.1. Introduction
  • 6.2. Hardware
    • 6.2.1. Microprocessors
    • 6.2.2. Networking Equipment
    • 6.2.3. Sensors
  • 6.3. Services
    • 6.3.1. Installation & Integration
    • 6.3.2. Maintenance & Support
    • 6.3.3. Training & Consulting
  • 6.4. Software

7. AI Edge Computing Market, by Data Source

  • 7.1. Introduction
  • 7.2. Biometric Data
  • 7.3. Mobile Data
  • 7.4. Sensor Data

8. AI Edge Computing Market, by Network Connectivity

  • 8.1. Introduction
  • 8.2. 5G Networks
  • 8.3. Wi-Fi Networks
  • 8.4. Wired Networks

9. AI Edge Computing Market, by Organization Size

  • 9.1. Introduction
  • 9.2. Large Enterprises
  • 9.3. Small & Medium Enterprises

10. AI Edge Computing Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. On-Cloud
  • 10.3. On-Premise

11. AI Edge Computing Market, by End-User Industry

  • 11.1. Introduction
  • 11.2. Automotive
  • 11.3. BFSI
  • 11.4. Consumer Electronics
  • 11.5. Energy & Utilities
  • 11.6. Government & Public Sector
  • 11.7. Healthcare
  • 11.8. Retail
  • 11.9. Telecommunications

12. Americas AI Edge Computing Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific AI Edge Computing Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa AI Edge Computing Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Aetina enhance edge AI with super mode for NVIDIA Jetson platforms
    • 15.3.2. Blaize partner with alwaysAI to enhance real-time processing with advanced AI edge computing and computer vision solutions
    • 15.3.3. Armada partner with Newlab to establish a global AI edge computing startup ecosystem
    • 15.3.4. MemryX and Variscite partner to enhance edge AI through AI accelerators and System on Module innovations
    • 15.3.5. Verizon and NVIDIA enhance AI with 5G private networks and edge computing for enterprises
    • 15.3.6. DeepGreenX and Veea announce global strategic partnership agreement
    • 15.3.7. Vecow launch next-gen edge AI server platforms to accelerate AI development across diverse applications
    • 15.3.8. NTT DATA launch ultralight edge AI platform for industrial transformation
    • 15.3.9. Armada secures USD 40m in funding by M12 to enhance global edge computing solutions
    • 15.3.10. Cognizant launches Neuro Edge to enhance real-time AI processing across industries
    • 15.3.11. Nokia launches MX Grid to elevate AI edge computing and OT responsiveness in industrial applications
    • 15.3.12. J-Squared Technologies and CVEDIA partner to launch enhanced edge AI solutions
  • 15.4. Strategy Analysis & Recommendation
    • 15.4.1. Cognizant Technology Solutions Corporation
    • 15.4.2. Dell Technologies Inc.
    • 15.4.3. International Business Machines Corporation
    • 15.4.4. NTT Data Group Corporation

Companies Mentioned

  • 1. Accenture PLC
  • 2. Advanced Micro Devices, Inc.
  • 3. Amazon Web Services, Inc.
  • 4. Arm Holdings plc
  • 5. C3.ai, Inc.
  • 6. Capgemini SE
  • 7. Cisco Systems, Inc.
  • 8. Cognizant Technology Solutions Corporation
  • 9. Dell Technologies Inc.
  • 10. Fujitsu Limited
  • 11. Google LLC by Alphabet Inc.
  • 12. Hewlett Packard Enterprise Company
  • 13. Huawei Technologies Co., Ltd.
  • 14. Infosys Limited
  • 15. Intel Corporation
  • 16. International Business Machines Corporation
  • 17. MediaTek Inc.
  • 18. Microsoft Corporation
  • 19. Nippon Telegraph and Telephone Corporation
  • 20. NVIDIA Corporation
  • 21. NXP Semiconductors N.V.
  • 22. Oracle Corporation
  • 23. Palantir Technologies Inc.
  • 24. Panasonic Holdings Corporation
  • 25. QUALCOMM Incorporated
  • 26. Robert Bosch GmbH
  • 27. Samsung Electronics Co., Ltd.
  • 28. SAP SE
  • 29. Siemens AG
  • 30. Tata Consultancy Services Limited
  • 31. Texas Instruments Incorporated
  • 32. Wipro Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제