시장보고서
상품코드
1803441

AI 칩 시장 : 칩 유형, 기능, 테크놀러지, 용도별 - 세계 예측(2025-2030년)

AI Chip Market by Chip Type, Functionality, Technology, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 183 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

AI 칩 시장은 2024년에 1,124억 3,000만 달러로 평가되었습니다. 2025년에는 1,353억 8,000만 달러에 이르고, CAGR 20.98%로 성장하여 2030년에는 3,526억 3,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 1,124억 3,000만 달러
추정 연도 : 2025년 1,353억 8,000만 달러
예측 연도 : 2030년 3,526억 3,000만 달러
CAGR(%) 20.98%

혁신, 지정학적 역학, 경쟁 회복력에 의해 주도되는 세계 AI 칩 기술의 급속한 발전을 위한 무대 설정

최근 몇 년 동안 AI 칩 기술은 디지털 혁신의 핵심으로 부상하여 시스템이 전례 없는 속도와 효율성으로 방대한 데이터 세트를 처리할 수 있게 해주고 있습니다. 각 산업 분야의 조직들이 머신 인텔리전스의 힘을 활용하고자 하는 가운데, 특수 반도체는 혁신의 최전선에 뛰어들어 초대형 데이터센터부터 전력 제약이 있는 엣지 디바이스까지 다양한 요구에 대응하고 있습니다.

AI 칩 개발경쟁 구도를 재정의하는 매우 중요한 기술적, 전략적 전환점 확인

아키텍처 설계의 혁신과 투자 우선순위의 변화는 AI 칩 분야의 경쟁 환경을 재정의하고 있습니다. 엣지 컴퓨팅이 급부상하면서 모놀리식 클라우드 기반 추론에서 AI 워크로드를 디바이스와 On-Premise 서버에 분산시키는 하이브리드 모델로의 전환이 가속화되고 있습니다. 이러한 진화를 통해 비전, 음성, 데이터 분석에 특화된 코어를 단일 다이에 공존시켜 지연 시간을 줄이고 전력 효율을 높이는 이기종 컴퓨팅의 추진력을 강화했습니다.

2025년 미국 관세 조치가 AI 칩공급망과 혁신 궤도에 미치는 영향에 대해 알아봅니다.

2025년 새로운 관세 조치의 도입은 세계 반도체 공급망에 연쇄적인 영향을 미쳐 조달 결정, 가격 구조 및 자본 배분에 영향을 미치고 있습니다. 전통적으로 통합 벤더 관계에 의존해 온 기업들은 다각화 전략을 가속화하고 특정 수입 부품의 관세 인상을 상쇄하기 위해 동아시아 및 유럽에서 대체 파운드리 파트너십을 모색하고 있습니다.

AI 칩 시장 역학에 대한 다면적인 세분화 접근 방식별 주요 인사이트 파악하기

세밀한 세분화 접근 방식을 통해 칩 유형, 기능, 기술, 용도에 따른 미묘한 성능 및 채택 패턴을 파악할 수 있습니다. 용도별 집적회로는 추론 작업을 위해 와트당 성능을 엄격하게 조정해야 하는 시나리오를 계속 지배하고 있으며, 그래픽 프로세서는 트레이닝 워크로드를 위한 병렬 프로세싱에서 선두를 유지하고 있습니다. 필드 프로그래머블 게이트 어레이는 프로토타입 개발 및 특수 제어 시스템에서 틈새 시장을 개척하고 있으며, 신경 처리 장치는 실시간 의사결정을 위해 엣지 노드에 통합되는 경우가 많아지고 있습니다.

미주, 중동아프리카, 아시아태평양 시장의 지역별 차이와 성장 촉진요인 검증

각 지역의 원동력은 AI 칩의 개발 및 배포를 독자적인 방식으로 계속 형성하고 있습니다. 북미와 남미에서는 데이터센터 확장, 첨단 운전 지원 플랫폼, 국방 용도에 대한 강력한 수요가 고성능 추론 및 훈련 가속기에 대한 지속적인 투자를 촉진하고 있습니다. 또한, 북미의 설계 회사들은 이종 코어를 혼합하여 혼합된 워크로드를 대규모로 처리할 수 있는 새로운 패키징 솔루션을 개발하고 있습니다.

AI 칩 개발 및 채택의 미래 궤도를 형성할 주요 혁신가 및 전략적 기업 프로파일링

주요 반도체 기업과 신생 스타트업은 전략적 파트너십, 제품 로드맵, 집중적인 투자를 통해 AI 칩 혁신의 다음 물결을 형성하고 있습니다. 세계 디자인 하우스는 와트당 테라플롭스(TFLOPS)의 한계를 뛰어넘는 딥러닝 가속기를 지속적으로 개선하고 있으며, 파운드리 제휴를 통해 첨단 공정 노드 및 패키징 기술에 대한 접근성을 보장하고 있습니다. 동시에 클라우드 및 하이퍼스케일 제공업체들은 칩 설계자와 협력하여 자체 소프트웨어 스택을 최적화하는 맞춤형 실리콘을 공동 개발하고 있습니다.

AI 칩 혁신을 가속화하고 경쟁 우위를 확보하기 위한 업계 리더들의 전략적 과제와 실행 가능한 조치들

업계 리더들은 경쟁이 치열해지는 AI 칩 분야에서 입지를 확보하기 위해 다각적인 전략을 채택해야 합니다. 첫째, 모듈식 이기종 아키텍처를 우선시함으로써 엣지에서의 비전 추론부터 데이터센터에서의 대규모 모델 훈련까지 진화하는 워크로드에 빠르게 적응할 수 있습니다. 개방형 표준을 채택하고 상호운용성 이니셔티브에 적극적으로 기여함으로써 조직은 통합 마찰을 줄이고 생태계 연계를 가속화할 수 있습니다.

급변하는 환경 속에서 AI 칩 산업 발전를 위한 주요 지식과 전략적 전망 정리

이번 조사 결과는 기술 혁신, 지정학적 고려, 전략적 협력이 교차하는 역동적인 생태계가 AI 칩 개발의 궤적을 정의하고 있음을 보여줍니다. 이종 컴퓨팅과 뉴로모픽 컴퓨팅의 획기적인 아키텍처는 딥러닝의 최적화와 결합하여 성능과 효율성의 새로운 경계를 열어가고 있습니다. 한편, 무역 정책의 전환과 관세 제도는 공급망 전략을 재구축하고, 다각화와 현지 투자에 박차를 가하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 AI 칩 시장 칩 유형별

  • 주문형 집적회로
  • 필드 프로그래머블 게이트 어레이
  • 그래픽 처리 장치
  • 뉴럴 프로세싱 유닛

제9장 AI 칩 시장 : 기능성별

  • 추론 칩
  • 트레이닝 칩

제10장 AI 칩 시장 : 기술별

  • 컴퓨터 비전
  • 데이터 분석
  • 딥러닝
    • Convolutional Neural Networks
    • Recurrent Neural Networks
  • 머신러닝
    • 강화 학습
    • 지도 학습
    • 비지도 학습
  • 자연언어처리
  • 뉴로모픽 컴퓨팅
  • 양자 컴퓨팅

제11장 AI 칩 시장 : 용도별

  • 항공우주 및 방위
    • 드론
    • 감시 시스템
  • 농업
    • 작물 모니터링
    • 정밀농업
  • 자동차
    • 첨단 운전자 보조 시스템
    • 인포테인먼트 시스템
  • 은행/금융서비스/보험(BFSI)
  • 가전
    • 노트북
    • 스마트폰
    • 태블릿
  • 헬스케어
    • 의료 영상
    • 원격 모니터링
    • 웨어러블 디바이스
  • IT 및 통신
    • 데이터 관리
    • 네트워크 최적화
  • 제조업
    • 예지보전
    • 공급망 최적화

제12장 아메리카의 AI 칩 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 AI 칩 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 AI 칩 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Advanced Micro Devices, Inc.
    • Alphabet Inc.
    • Amazon Web Services, Inc.
    • Apple Inc.
    • Baidu, Inc.
    • Broadcom Inc.
    • Cerebras Systems Inc.
    • Flex Logix Technologies, Inc.
    • Graphcore Limited
    • Groq Inc.
    • Horizon Robotics Inc.
    • Huawei Technologies Co., Ltd.
    • Intel Corporation
    • International Business Machines Corporation
    • Marvell Technology Group
    • MediaTek Inc.
    • Mythic, Inc.
    • Nvidia Corporation
    • Qualcomm Incorporated
    • Recogni Inc.
    • SambaNova Systems, Inc.
    • Samsung Electronics Co., Ltd.
    • Tenstorrent Inc.
    • Wave Computing, Inc.
    • Xperi Inc.

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

LSH 25.09.11

The AI Chip Market was valued at USD 112.43 billion in 2024 and is projected to grow to USD 135.38 billion in 2025, with a CAGR of 20.98%, reaching USD 352.63 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 112.43 billion
Estimated Year [2025] USD 135.38 billion
Forecast Year [2030] USD 352.63 billion
CAGR (%) 20.98%

Setting the Stage for the Rapid Advancement of AI Chip Technology in a World Driven by Innovation, Geopolitical Dynamics, and Competitive Resilience

In recent years, AI chip technology has emerged as a cornerstone of digital transformation, enabling systems to process massive data sets with unprecedented speed and efficiency. As organizations across industries seek to harness the power of machine intelligence, specialized semiconductors have moved to the forefront of innovation, addressing needs ranging from hyper-scale data centers down to power-constrained edge devices.

To navigate this complexity, the market has been examined across different types of chips-application-specific integrated circuits that target narrowly defined workloads, field programmable gate arrays that offer on-the-fly reconfigurability, graphics processing units optimized for parallel compute tasks, and neural processing units designed for deep learning inference. A further lens distinguishes chips built for inference, delivering rapid decision-making at low power, from training devices engineered for intense parallelism and large-scale model refinement. Technological categories span computer vision accelerators, data analysis units, architectures for convolutional and recurrent neural networks, frameworks supporting reinforcement, supervised and unsupervised learning, along with emerging paradigms in natural language processing, neuromorphic design and quantum acceleration.

Application profiles in this study range from mission-critical deployments in drones and surveillance systems to precision farming and crop monitoring, from advanced driver-assistance and infotainment in automotive platforms to everyday consumer electronics such as laptops, smartphones and tablets, alongside medical imaging and wearable devices in healthcare, network optimization in IT and telecommunications, and predictive maintenance and supply chain analytics in manufacturing contexts. This segmentation framework lays the groundwork for a deeper exploration of industry shifts, regulatory impacts, regional variances and strategic imperatives that follow.

Identifying Pivotal Technological and Strategic Shifts That Are Redefining the Competitive Landscape of AI Chip Development

Breakthroughs in architectural design and shifts in investment priorities have redefined the competitive battleground within the AI chip domain. Edge computing has surged to prominence, prompting a transition from monolithic cloud-based inference to hybrid models that distribute AI workloads across devices and on-premise servers. This evolution has intensified the push for heterogeneous computing, where specialized cores for vision, speech and data analytics coexist on a single die, reducing latency and enhancing power efficiency.

Simultaneously, the convergence of neuromorphic and quantum research has challenged conventional CMOS paradigms, suggesting new pathways for energy-efficient pattern recognition and combinatorial optimization. As large hyperscale cloud providers pledge support for open interoperability standards, alliances are forming to drive innovation in open-source hardware, enabling collaborative development of next-generation neural accelerators. In parallel, supply chain resilience has become paramount, with strategic decoupling and regional diversification gaining momentum to mitigate risks associated with geopolitical tensions.

Moreover, the growing dichotomy between chips optimized for training-characterized by massive matrix multiply units and high-bandwidth memory interfaces-and those tailored for inference at the edge underscores the need for modular, scalable architectures. As strategic partnerships between semiconductor designers, foundries and end users multiply, the landscape is increasingly defined by co-design initiatives that align chip roadmaps with software frameworks, ushering in a new era of collaborative innovation.

Unpacking the Far-Reaching Implications of 2025 US Tariff Measures on AI Chip Supply Chains and Innovation Trajectories

The introduction of new tariff measures in 2025 has produced cascading effects across global semiconductor supply chains, influencing sourcing decisions, pricing structures and capital allocation. Companies that traditionally relied on integrated vendor relationships have accelerated their diversification strategies, seeking alternative foundry partnerships in East Asia and Europe to offset elevated duties on certain imported components.

As costs have become more volatile, design teams are prioritizing modular architectures that allow for rapid substitution of memory interfaces and interconnect fabrics without extensive requalification processes. This approach has minimized disruption to production pipelines for high-performance training accelerators as well as compact inference engines. Moreover, the need to maintain competitive pricing in key markets has led chip architects to intensify their focus on power-per-watt metrics by adopting advanced process nodes and 3D packaging techniques.

In parallel, regional fabrication hubs are experiencing renewed investment, as governments offer incentives to attract development of advanced nodes and to expand capacity for specialty logic processes. This dynamic has spurred a rebalancing of R&D budgets toward localized design centers capable of integrating tariff-aware sourcing strategies directly into the product roadmap. Consequently, the interplay between trade policy and technology planning has never been more pronounced, compelling chipmakers to adopt agile, multi-sourcing frameworks that preserve innovation velocity in a complex regulatory environment.

Revealing Critical Insights from a Multi-Faceted Segmentation Approach to Uncover AI Chip Market Dynamics

An in-depth segmentation approach reveals nuanced performance and adoption patterns across chip types, functionalities, technologies and applications. Application-specific integrated circuits continue to dominate scenarios demanding tightly tuned performance-per-watt for inferencing tasks, while graphics processors maintain their lead in parallel processing for training workloads. Field programmable gate arrays have carved out a niche in prototype development and specialized control systems, and neural processing units are increasingly embedded within edge nodes for real-time decision-making.

Functionality segmentation distinguishes between inference chips, prized for their low latency and energy efficiency, and training chips, engineered for throughput and memory bandwidth. Within the technology dimension, computer vision accelerators excel at convolutional neural network workloads, whereas recurrent neural network units support sequence-based tasks. Meanwhile, data analysis engines and natural language processing frameworks are converging, and nascent fields such as neuromorphic and quantum computing are beginning to demonstrate proof-of-concept accelerators.

Across applications, mission-critical drones and surveillance systems in defense share design imperatives with crop monitoring and precision agriculture, highlighting the convergence of sensing and analytics. Advanced driver-assistance systems draw on compute strategies akin to those in infotainment platforms, while medical imaging, remote monitoring and wearable devices in healthcare reflect cross-pollination with consumer electronics innovations. Data management and network optimization in IT and telecommunications, as well as predictive maintenance and supply chain optimization in manufacturing, further underline the breadth of AI chip deployment scenarios in today's digital economy.

Examining Regional Nuances and Growth Drivers Across the Americas, Europe Middle East Africa, and Asia-Pacific Markets

Regional dynamics continue to shape AI chip development and deployment in distinctive ways. In the Americas, robust demand for data center expansion, advanced driver-assistance platforms and defense applications has driven sustained investment in high-performance inference and training accelerators. North American design houses are also pioneering novel packaging solutions that blend heterogeneous cores to address mixed workloads at scale.

Meanwhile, Europe, the Middle East and Africa present a tapestry of regulatory frameworks and industrial priorities. Telecom operators across EMEA are front and center in trials for network optimization accelerators, and manufacturing firms are collaborating with chip designers to integrate predictive maintenance engines within legacy equipment. Sovereign initiatives are fueling growth in semiconductors tailored to energy-efficient applications and smart infrastructure.

Across Asia-Pacific, the integration of AI chips into consumer electronics and industrial automation underscores the region's dual role as both a manufacturing powerhouse and a hotbed of innovation. Domestic foundries are expanding capacity for advanced nodes, while design ecosystems in key markets are advancing neuromorphic and quantum prototypes. This convergence of scale and experimentation positions the Asia-Pacific region as a bellwether for emerging AI chip architectures and deployment models.

Profiling Leading Innovators and Strategic Players Shaping the Future Trajectory of AI Chip Development and Adoption

Leading semiconductor companies and emerging start-ups alike are shaping the next wave of AI chip innovation through strategic partnerships, product roadmaps and targeted investments. Global design houses continue to refine deep learning accelerators that push the envelope on teraflops-per-watt, while foundry alliances ensure access to advanced process nodes and packaging technologies. At the same time, cloud and hyperscale providers are collaborating with chip designers to co-develop custom silicon that optimizes their proprietary software stacks.

Meanwhile, specialized innovators are making inroads with neuromorphic cores and quantum-inspired processors that promise breakthroughs in pattern recognition and optimization tasks. Strategic acquisitions and joint ventures have emerged as key mechanisms for integrating intellectual property and scaling production capabilities swiftly. Collaborations between device OEMs and chip architects have accelerated the adoption of heterogeneous compute tiles, blending CPUs, GPUs and AI accelerators on a single substrate.

Competitive differentiation increasingly hinges on end-to-end co-design, where algorithmic efficiency and silicon architecture evolve in lockstep. As leading players expand their ecosystem partnerships, they are also investing in developer tools, open frameworks and model zoos to foster community-driven optimization and rapid time-to-market. This interplay between corporate strategy, technical leadership and ecosystem engagement will continue to define the leaders in AI chip development.

Strategic Imperatives and Actionable Steps for Industry Leaders to Accelerate Innovation and Secure Competitive Advantage in AI Chips

Industry leaders must adopt a multi-pronged strategy to secure their position in an increasingly competitive AI chip arena. First, prioritizing modular, heterogeneous architectures will enable rapid adaptation to evolving workloads, from vision inference at the edge to large-scale model training in data centers. By embracing open standards and actively contributing to interoperability initiatives, organizations can reduce integration friction and accelerate ecosystem alignment.

Second, diversifying supply chains remains critical. Executives should explore partnerships with multiple foundries across different regions to hedge against trade disruptions and to ensure continuity of advanced node access. Investing in localized design centers and forging government-backed alliances will further enhance resilience while tapping into regional incentives.

Third, co-design initiatives that bring together software teams, system integrators and semiconductor engineers can unlock significant performance gains. Collaborative roadmaps should target power-efficiency milestones, memory hierarchy optimizations and advanced packaging techniques such as 3D stacking. Furthermore, establishing long-term partnerships with hyperscale cloud providers and hyperscale users can drive volume, enabling cost-effective scaling of next-generation accelerators.

Finally, fostering talent through dedicated training programs will build the expertise necessary to navigate the convergence of neuromorphic and quantum paradigms. By aligning R&D priorities with market signals and regulatory landscapes, industry leaders can chart a course toward sustained innovation and competitive differentiation.

This analysis draws on a robust research framework that blends primary and secondary methodologies to ensure comprehensive insight. Primary research consisted of in-depth interviews with semiconductor executives, systems architects and procurement leaders, providing firsthand perspectives on design priorities, supply chain strategies and end-user requirements. These qualitative inputs were complemented by a rigorous review of regulatory filings, patent databases and public disclosures to validate emerging technology trends.

On the secondary side, academic journals, industry white papers and open-source community contributions were systematically analyzed to map the evolution of neural architectures, interconnect fabrics and memory technologies. Data from specialized consortiums and standards bodies informed the assessment of interoperability initiatives and open hardware movements. Each data point was triangulated across multiple sources to enhance accuracy and reduce bias.

Analytical processes incorporated cross-segmentation comparisons, scenario-based impact assessments and sensitivity analyses to gauge the influence of trade policies, regional incentives and technological breakthroughs. Quality controls, including peer reviews and expert validation sessions, ensured that findings reflect the latest developments and market realities. This blended approach underpins a reliable foundation for strategic decision-making in the rapidly evolving AI chip ecosystem.

Concluding Synthesis of Key Findings and Strategic Outlook for AI Chip Industry Evolution in a Rapidly Changing Environment

The collective findings underscore a dynamic ecosystem where technological innovation, geopolitical considerations and strategic collaborations intersect to define the trajectory of AI chip development. Breakthrough architectures for heterogeneous and neuromorphic computing, combined with deep learning optimizations, are unlocking new performance and efficiency frontiers. Meanwhile, trade policy shifts and tariff regimes are reshaping supply chain strategies, spurring diversification and localized investment.

Segmentation insights reveal distinct value propositions across chip types and applications, from high-throughput training accelerators to precision-engineered inference engines deployed in drones, agricultural sensors and medical devices. Regional analysis further highlights differentiated growth drivers, with North America focusing on hyperscale data centers and defense systems, EMEA advancing industrial optimization and Asia-Pacific driving mass-market adoption and manufacturing scale.

Leading companies are leveraging co-design frameworks, ecosystem partnerships and strategic M&A to secure innovation pipelines and expand their footprint. The imperative for modular, scalable platforms is clear, as is the need for standardized interfaces and open collaboration. For industry leaders and decision-makers, the path forward lies in balancing agility with resilience, integrating emerging quantum and neuromorphic concepts while maintaining a steady roadmap toward more efficient, powerful AI acceleration.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Growing adoption of AI chips in edge computing for faster real-time data analysis and reduced latency
  • 5.2. Emergence of AI chips designed for enhanced security features to protect data privacy and prevent cyber threats
  • 5.3. Focus on sustainable AI chip production methods to reduce environmental impact and promote green technology
  • 5.4. Collaborations between semiconductor companies and AI developers accelerating innovation in AI chip technology
  • 5.5. Investments in AI chip manufacturing to overcome supply chain challenges and meet global demand
  • 5.6. Development of AI chips optimized for natural language processing to support advanced conversational AI systems
  • 5.7. Expansion of AI chip utilization in smart home devices facilitating improved automation and user experience
  • 5.8. Rising demand for AI chips in healthcare applications enabling precise diagnostics and personalized treatment
  • 5.9. Advancements in AI chip architecture driving significant improvements in processing speed and energy efficiency
  • 5.10. Increasing integration of AI chips in autonomous vehicle technologies to enhance safety and efficiency

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. AI Chip Market, by Chip Type

  • 8.1. Introduction
  • 8.2. Application-Specific Integrated Circuit
  • 8.3. Field Programmable Gate Array
  • 8.4. Graphics Processing Unit
  • 8.5. Neural Processing Units

9. AI Chip Market, by Functionality

  • 9.1. Introduction
  • 9.2. Inference Chips
  • 9.3. Training Chips

10. AI Chip Market, by Technology

  • 10.1. Introduction
  • 10.2. Computer Vision
  • 10.3. Data Analysis
  • 10.4. Deep Learning
    • 10.4.1. Convolutional Neural Networks
    • 10.4.2. Recurrent Neural Networks
  • 10.5. Machine Learning
    • 10.5.1. Reinforcement Learning
    • 10.5.2. Supervised Learning
    • 10.5.3. Unsupervised Learning
  • 10.6. Natural Language Processing
  • 10.7. Neuromorphic Computing
  • 10.8. Quantum Computing

11. AI Chip Market, by Application

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
    • 11.2.1. Drones
    • 11.2.2. Surveillance Systems
  • 11.3. Agriculture
    • 11.3.1. Crop Monitoring
    • 11.3.2. Precision Farming
  • 11.4. Automotive
    • 11.4.1. Advanced Driver-Assistance Systems
    • 11.4.2. Infotainment Systems
  • 11.5. Banking, Financial Services, & Insurance
  • 11.6. Consumer Electronics
    • 11.6.1. Laptops
    • 11.6.2. Smartphones
    • 11.6.3. Tablets
  • 11.7. Healthcare
    • 11.7.1. Medical Imaging
    • 11.7.2. Remote Monitoring
    • 11.7.3. Wearable Devices
  • 11.8. IT & Telecommunications
    • 11.8.1. Data Management
    • 11.8.2. Network Optimization
  • 11.9. Manufacturing
    • 11.9.1. Predictive Maintenance
    • 11.9.2. Supply Chain Optimization

12. Americas AI Chip Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa AI Chip Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific AI Chip Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Advanced Micro Devices, Inc.
    • 15.3.2. Alphabet Inc.
    • 15.3.3. Amazon Web Services, Inc.
    • 15.3.4. Apple Inc.
    • 15.3.5. Baidu, Inc.
    • 15.3.6. Broadcom Inc.
    • 15.3.7. Cerebras Systems Inc.
    • 15.3.8. Flex Logix Technologies, Inc.
    • 15.3.9. Graphcore Limited
    • 15.3.10. Groq Inc.
    • 15.3.11. Horizon Robotics Inc.
    • 15.3.12. Huawei Technologies Co., Ltd.
    • 15.3.13. Intel Corporation
    • 15.3.14. International Business Machines Corporation
    • 15.3.15. Marvell Technology Group
    • 15.3.16. MediaTek Inc.
    • 15.3.17. Mythic, Inc.
    • 15.3.18. Nvidia Corporation
    • 15.3.19. Qualcomm Incorporated
    • 15.3.20. Recogni Inc.
    • 15.3.21. SambaNova Systems, Inc.
    • 15.3.22. Samsung Electronics Co., Ltd.
    • 15.3.23. Tenstorrent Inc.
    • 15.3.24. Wave Computing, Inc.
    • 15.3.25. Xperi Inc.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제