½ÃÀ庸°í¼­
»óǰÄÚµå
1803545

¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : Àåºñ À¯Çü, ÀÚµ¿È­ ·¹º§, ¿î¿µ ȯ°æ, ¿ëµµ, ÃÖÁ¾ ¿ëµµ, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Logistics Packaging & Sorting Equipment Market by Equipment Type, Automation Level, Operational Environment, Application, End Use, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀåÀº 2024³â¿¡ 337¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 358¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 6.39%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 489¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 337¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 358¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 489¾ï 1,000¸¸ ´Þ·¯
CAGR(%) 6.39%

¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ºÎ¹®ÀÇ Àü·«Àû ¼Ò°³: ºñÁî´Ï½º ¿ì¼±¼øÀ§, ±â¼ú ÅëÇÕ, Áö¼Ó°¡´É¼º ÃßÁøµ¿·Â

¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ºÐ¾ß´Â ¾÷¹«Àû ¿ä±¸¿Í ±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀÌ ¸¸³ª´Â ¸Å¿ì Áß¿äÇÑ ±³Â÷·Î¿¡ ÀÖ½À´Ï´Ù. ¾÷°è ¸®´õµéÀº ºñ¿ë ¾Ð¹Ú, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼Ó, ¼Óµµ¿Í Á¤È®¼º¿¡ ´ëÇÑ °í°´ÀÇ ±â´ë¿Í ±ÕÇüÀ» ¸ÂÃß°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ÈûÀº ¹°·ù ¼¾ÅÍ, ½Äǰ Ãë±Þ ½Ã¼³ ¹× »ê¾÷ »ý»ê ¶óÀÎ Àüü¿¡ ´ëÇÑ ÅõÀÚ ¿ì¼± ¼øÀ§¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀü°ú ¾÷¹«Àû ¿ä±¸ÀÇ ¼ö·ÅÀÌ °ø±Þ¸Á ÀüüÀÇ ¹°·ù Æ÷Àå ¹× ºÐ·ù Àü·«À» À籸¼ºÇÏ´Â ¹æ¹ý

ÀÚµ¿È­, ·Îº¿°øÇÐ, µðÁöÅÐ ¿ÀÄɽºÆ®·¹À̼ÇÀÌ ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿¡¼­ ÁÖ·ù·Î ÀüȯµÊ¿¡ µû¶ó ¹°·ù Æ÷Àå ¹× ºÐ·ù »ýŰè Àü¹Ý¿¡ °ÉÃÄ Çõ½ÅÀûÀÎ º¯È­°¡ ÀϾ°í ÀÖ½À´Ï´Ù. Áö°¢, ¸ð¼Ç Á¦¾î, ¼ÕÀçÁÖ, ±×¸³ÀÇ ¹ßÀüÀ¸·Î ·Îº¿ ºÐ·ù±âÀÇ ´É·ÂÀÌ Çâ»óµÇ¾î ´ÜÀ§ ǰ¸ñ°ú ºÒ±ÔÄ¢ÇÑ Ç°¸ñÀÇ Ãë±ÞÀÌ È®´ëµÇ´Â ÇÑÆí, ÄÁº£ÀÌ¾î ±â¹Ý ºÐ·ù ½Ã½ºÅÛÀº ´õ ½º¸¶Æ®ÇÑ ¼¾¼­¿Í ´õ ºü¸¥ ±¸¿ª Á¦¾î¸¦ ÅëÇØ °è¼Ó ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

¹Ì±¹ °ü¼¼ Á¤Ã¥ Á¶Á¤ÀÌ Àåºñ ±¸¸ÅÀÚÀÇ Á¶´Þ Á¶´Þ Àü·« °ø±Þ ¿¬¼Ó¼º ¹× °è¾à ¸®½ºÅ© ¹èºÐ¿¡ ¹ÌÄ¡´Â ½ÇÁúÀûÀÎ ¿µÇâÀº?

¹Ì±¹ÀÇ °ü¼¼ Á¤Ã¥ Á¶Á¤°ú ¹«¿ª Á¶Ä¡´Â °ø±Þ¾÷ü ¼±ÅÃ, Á¶´Þ Àü·«, Àåºñ Á¶´ÞÀ» À§ÇÑ ÃÑ »ó·ú ºñ¿ë °è»ê¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü¿Í ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚµéÀº °ø±Þ¾÷ü ³×Æ®¿öÅ©¸¦ ÀçÆò°¡Çϰí, Áß¿äÇÑ ¼­ºê ¾î¼Àºí¸®ÀÇ ÇöÁöÈ­¸¦ ÃßÁøÇϰí, ¼öÀÔ °ü¼¼ º¯È­¿¡ ´ëÇÑ ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ °è¾à ±¸Á¶¸¦ Àç°ËÅäÇÏ´Â µî ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÀÀÀ» ÅëÇØ Á¤Ã¥ º¯È­¿¡ ´ëÇÑ Ãë¾à¼ºÀ» ÁÙÀ̰í, ¿ì¼±¼øÀ§°¡ ³ôÀº ºÎǰÀÇ º¸Ãæ Áֱ⸦ ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àåºñ À¯Çü, ÀÚµ¿È­ ¼öÁØ, ȯ°æ, ÃÖÁ¾ ¿ëµµ, À¯Åë ä³Î, Á¶´Þ Çൿ ¹× ¼³°è ¼±Åðú ¿¬°á, ¼¼ºÐÈ­µÈ ¼¼ºÐÈ­ ºÐ¼®

ÅëÂû·Â ÀÖ´Â ¼¼ºÐÈ­¸¦ ÅëÇØ Àåºñ À¯Çü, ÀÚµ¿È­ ¼öÁØ, ¿î¿µ ȯ°æ, ¿ëµµ, ÃÖÁ¾ ¿ëµµ, À¯Åë ä³Î¿¡ µû¶ó ´Þ¶óÁö´Â ¹Ì¹¦ÇÑ ¼ö¿ä ÃËÁø¿äÀΰú ¹èÆ÷ ÆÐÅÏÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Àåºñ À¯ÇüÀº Æ÷Àå Àåºñ¿Í ¼±º° Àåºñ·Î ³ª´µ¸ç, ¼±º°Àº ÄÁº£ÀÌ¾î ±â¹Ý ¼±º° ½Ã½ºÅÛ°ú ·Îº¿ ¼±º° ½Ã½ºÅÛÀ¸·Î ±¸ºÐµË´Ï´Ù. ÀÚµ¿È­ µµÀÔÀº ÀϹÝÀûÀ¸·Î Àϰü¼º°ú ÅÍÄ¡ Æ÷ÀÎÆ®ÀÇ °¨¼Ò¸¦ ¿ä±¸ÇÏ´Â °í󸮷® ȯ°æÀ» ´ë»óÀ¸·Î ÇÏÁö¸¸, ³ëµ¿·ÂÀÇ À¯¿¬¼º, ¼Ò·®ÀÇ º¯µ¿¼º ¶Ç´Â ºñ¿ë Á¦¾àÀ¸·Î ÀÎÇØ »ç¶÷ÀÇ ¸ð´ÏÅ͸µÀ» ¼±È£ÇÏ´Â °æ¿ì ¼öµ¿ Á¢±Ù ¹æ½ÄÀÌ ¿©ÀüÈ÷ °­¼¼¸¦ º¸ÀÔ´Ï´Ù.

Á¶´Þ ¿ì¼±¼øÀ§ ¹× µµÀÔ ¼Óµµ,°ø±Þ¾÷ü ¼±Åà °áÁ¤,ºÏ¹Ì, ³²¹Ì, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áö¿ª ¿ªÇÐ ¹× µµÀÔ ÆÐÅÏ

¹ÌÁÖ, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çº°·Î ÅõÀÚ ¿ì¼±¼øÀ§, ±â¼ú µµÀÔ·ü, °ø±Þ¾÷ü »ýŰè, Áö¿ª ¿ªÇп¡ µû¶ó ÅõÀÚ ¿ì¼±¼øÀ§, ±â¼ú µµÀÔ·ü, °ø±Þ¾÷ü »ýŰ谡 °áÁ¤µË´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÀüÀÚ»ó°Å·¡ Ç®ÇÊ¸ÕÆ® È®´ë, ¶ó½ºÆ®¸¶ÀÏ Ã³¸®·® °³¼±, ÀÚµ¿È­ ±â¼úÀ» ÅëÇÑ ·¹°Å½Ã ¹°·ù¼¾ÅÍ ¸®³ëº£À̼ÇÀ» ÅëÇØ ³ëµ¿·Â¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̸鼭 ¼Óµµ¿Í Á¤È®¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀÌ ÅõÀÚÀÇ Áß½ÉÀÌ µÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ºÏ¹Ì °í°´µéÀº ±âÁ¸ â°í °ü¸® ½Ã½ºÅÛ ¹× ±â¾÷ ÀÚ¿ø °èȹ ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀ» Áß½ÃÇϸç, ÇöÁö¿¡ °­·ÂÇÑ ¼­ºñ½º °ÅÁ¡°ú ¿¹ºñ ºÎǰ °ø±Þ ´É·ÂÀ» Á¦°øÇÏ´Â ÆÄÆ®³Ê¸¦ ã´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.

°æÀï»çÀÇ Æ÷Áö¼Å´× Çõ½Å°ú ¼­ºñ½º ¸ðµ¨ÀÌ Æ÷Àå ¹× ºÐ·ù Àåºñ °ø±Þ¸Á¿¡¼­ °ø±Þ¾÷ü ¼±Åðú Àå±âÀûÀÎ ÆÄÆ®³Ê½ÊÀ» °áÁ¤ÇÏ´Â ¹æ¹ý

Æ÷Àå ¹× ºÐ·ù Àåºñ ºÐ¾ßÀÇ °æÀï ¿ªÇÐÀº Àß ¾Ë·ÁÁø À¯¸í »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü, Àü¹® ÅëÇÕ ¾÷ü, ·Îº¿ °øÇÐ, °¨Áö ¹× ¼ÒÇÁÆ®¿þ¾î ¿ÀÄɽºÆ®·¹À̼ǿ¡ ÁßÁ¡À» µÐ ½Å±â¼ú ±â¾÷ÀÇ À¶ÇÕÀ¸·Î Ư¡Áö¾îÁý´Ï´Ù. ÁÖ¿ä Àåºñ °ø±Þ¾÷üµéÀº Çϵå¿þ¾îÀÇ ½Å·Ú¼º, ÅëÇÕÀÇ ¿ëÀ̼º, Á¾ÇÕÀûÀÎ ¾ÖÇÁÅͼ­ºñ½º, ¼ÒÇÁÆ®¿þ¾î »ýŰèÀÇ ¼º¼÷µµ µîÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ´Â ±â°è Ç÷§Æû°ú â°í ½ÇÇà ½Ã½ºÅÛÀ» ¿¬°áÇÏ°í °í°´ÀÇ ÅëÇÕ ¸®½ºÅ©¸¦ ÁÙÀÌ´Â ÅÏŰ ÇÁ·ÎÁ§Æ®¸¦ Á¦°øÇÔÀ¸·Î½á ºÎ°¡°¡Ä¡¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

ÀÚµ¿È­ ÅõÀÚ¿¡ ´ëÇÑ È¸º¹·Â°ú ¼öÀÍ·üÀ» ±Ø´ëÈ­Çϱâ À§ÇØ Á¶´Þ ±â¼ú Àη°ú Áö¼Ó°¡´É¼º Àü·«À» ÀÏÄ¡½Ã۱â À§ÇÑ ½ÇÇà °¡´ÉÇÑ ±Ç°í¾È

¾÷°è ¸®´õµéÀº ±â¼ú ÅõÀÚ¸¦ ¿î¿µÀÇ È¸º¹·Â°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼Ó°ú ÀÏÄ¡½ÃŰ´Â ÀÏ·ÃÀÇ ½ÇõÀû ÇൿÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Á¶´Þ »ç¾ç¿¡ ¸ðµâ¼º ¹× ¼ÒÇÁÆ®¿þ¾î ȣȯ¼ºÀ» ÅëÇÕÇÏ¿© Àåºñ¸¦ ´Ü°èÀûÀ¸·Î ¾÷±×·¹À̵åÇÏ°í ±âÁ¸ â°í °ü¸® ¹× ½ÇÇà °èÃþ°ú ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ³ëÈÄÈ­¿¡ µû¸¥ À§ÇèÀ» ÁÙÀ̰í, ÀÚº»ÀÇ °¡¿ë¼º°ú ¿î¿µÀÇ Áï°¢ÀûÀÎ ¹ÝÀÀ¼º¿¡ µû¶ó ´Ü°èÀûÀÎ ÀÚµ¿È­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

1Â÷ °ü°èÀÚ ÀÎÅÍºä º¥´õ Æò°¡¿Í »ï°¢Ãø·®º° 2Â÷ ºÐ¼®À» °áÇÕÇÑ Åõ¸í¼º ³ôÀº Á¶»ç¹æ¹ýÀ» ÅëÇØ ¾÷°è ÀλçÀÌÆ®¿Í Á¶´Þ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» °ËÁõÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ÅëÂû·ÂÀÇ ±â¹ÝÀÌ µÇ´Â Á¶»ç´Â ±â¼ú »ç¾ç, Á¦Ç° ·Îµå¸Ê, ±ÔÁ¦ Áöħ¿¡ ´ëÇÑ Ã¼°èÀûÀÎ °ËÅä¿Í ÇÔ²² ÃÖÁ¾ »ç¿ëÀÚ, Àåºñ °ø±Þ¾÷ü, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ¿ÍÀÇ 1Â÷ Á¤¼ºÀû °ü°è¸¦ °áÇÕÇÏ¿© ÀÌ·ç¾îÁý´Ï´Ù. 1Â÷ ÀԷ¿¡´Â Á¶´Þ Ã¥ÀÓÀÚ, ¿î¿µ °ü¸®ÀÚ, ¿£Áö´Ï¾î¸µ ÀÌÇØ°ü°èÀÚ¿ÍÀÇ ÁýÁßÀûÀÎ ÀÎÅͺ並 ÅëÇØ ¹èÄ¡ °úÁ¦, ±â´ë ¼º´É ¹× ¼­ºñ½º ¿ä±¸»çÇ׿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­´Â Á¦Ç° ¾ÆÅ°ÅØÃ³, ÅëÇÕ ´É·Â, ¼­ºñ½º Á¦¾ÈÀ» Á¶»çÇÏ´Â »ó¼¼ÇÑ º¥´õ Æò°¡·Î º¸¿ÏµÇ¾ú½À´Ï´Ù.

Æ÷Àå ¹× ºÐ·ù ÀåºñÀÇ ¼º°øÀûÀÎ ¹èÄ¡¸¦À§ÇÑ ±âµÕÀ¸·Î,»óÈ£ ¿î¿ë¼º °ø±Þ¸Á ź·Â¼º°ú ¼ö¸íÁÖ±â Áß½ÉÀÇ Á¶´ÞÀ» °­Á¶ÇÏ´Â °á·ÐÀû ÀÎ ÅëÇÕ

¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ¸¦ µÑ·¯½Ñ ȯ°æÀº ±â°èÀû ½Å·Ú¼º°ú µðÁöÅÐ ¿ÀÄɽºÆ®·¹ÀÌ¼Ç ¹× Áö¼Ó °¡´ÉÇÑ ¼³°è¸¦ °áÇÕÇÑ ¼Ö·ç¼ÇÀ¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐ, ¼¾½Ì ¹× ¼ÒÇÁÆ®¿þ¾îÀÇ ±â¼ú ¹ßÀüÀº ÀÚµ¿ ºÐ·ùÀÇ ½ÇÇö °¡´ÉÇÑ ¿ëµµ¸¦ È®´ëÇÏ´Â ÇÑÆí, ¼º¼÷ÇÑ ÄÁº£ÀÌ¾î ±â¹Ý ¾ÆÅ°ÅØÃ³´Â ¿©ÀüÈ÷ °í󸮷® ¿öÅ©Ç÷οìÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¶´Þ °áÁ¤Àº Ãʱâ ÅõÀÚ¿¡¸¸ ÃÊÁ¡À» ¸ÂÃ߱⺸´Ù´Â ¹Îø¼º, À¯Áöº¸¼ö¼º, Àå±âÀûÀÎ ¿î¿µ È¿À²¼ºÀÇ ±ÕÇüÀÌ Á¡Á¡ ´õ ¸¹ÀÌ ¹Ý¿µµÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : ±â±âº°

  • Æ÷Àå ±â±â
  • ¼±º° Àåºñ
    • ÄÁº£ÀÌ¾î ºÐ·ù ½Ã½ºÅÛ
    • ·Îº¿ ºÐ·ù ½Ã½ºÅÛ

Á¦9Àå ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : ÀÚµ¿È­ ·¹º§º°

  • ÀÚµ¿È­
  • ¼öµ¿

Á¦10Àå ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : ¿î¿µ ȯ°æº°

  • ½Ç³»
  • ¾ß¿Ü

Á¦11Àå ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : ¿ëµµº°

  • B. Bulk / Granular Products
  • 11.3. Unitized Products

Á¦12Àå ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ³ó¾÷ ¹× ½Å¼±½Äǰ
  • E-Commerce ¹× ¼Ò¸Å Ç®ÇÊ¸ÕÆ®
  • ½Äǰ ¹× À½·á
  • ¹°·ù ¹× ÅÃ¹è ¼­ºñ½º
  • Á¦Á¶¾÷ ¹× »ê¾÷
  • ÀǾàǰ ¹× ÇコÄɾî

Á¦13Àå ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå : À¯Åë ä³Îº°

  • ä³Î ÆÄÆ®³Ê
  • Á÷Á¢ ÆÇ¸Å

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹°·ù Æ÷Àå ¹× ºÐ·ù Àåºñ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Beumer Group
    • Ishida Co., Ltd.
    • BOWE SYSTEC GmbH
    • Daifuku Co., Ltd.
    • Dalian Jialin Machine Manufacture Co., Ltd.
    • Dematic by KION Group
    • EMBA Machinery by Berg Group
    • FIVES Group
    • Gosunm Intelligent Industry Co., Ltd.
    • IMA Group
    • KHS Group by Salzgitter AG Corporation
    • KNAPP AG
    • Korber AG
    • Krones AG
    • Marchesini Group
    • Mitsubishi Corporation
    • MULTIVAC Group
    • Murata Machinery, Ltd.
    • Mushiny Co.,Ltd.
    • Sesotec GmbH
    • Shenzhen Empower Supply Chain Technology Co.,Ltd.
    • Sidel
    • SSI Schaefer Systems International GmbH
    • Vanderlande Industries B.V.
    • VITRONIC Machine Vision GmbH

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH 25.09.11

The Logistics Packaging & Sorting Equipment Market was valued at USD 33.72 billion in 2024 and is projected to grow to USD 35.81 billion in 2025, with a CAGR of 6.39%, reaching USD 48.91 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 33.72 billion
Estimated Year [2025] USD 35.81 billion
Forecast Year [2030] USD 48.91 billion
CAGR (%) 6.39%

A strategic introduction to the logistics packaging and sorting equipment sector highlighting operational priorities technological integration and sustainability drivers

The logistics packaging and sorting equipment sector is at a pivotal juncture where operational imperatives meet rapid technological advancement. Industry leaders are balancing cost pressures, sustainability commitments, and customer expectations for speed and accuracy, and these forces are reshaping investment priorities across distribution centers, food handling facilities, and industrial production lines.

Adoption patterns reflect an emphasis on resilient operations and flexible solutions that can handle diverse product forms and volumes. Organizations are prioritizing equipment that integrates seamlessly with warehouse management systems, supports mixed-flow order profiles, and reduces manual touchpoints without undermining throughput. At the same time, regulatory scrutiny and consumer demand for reduced packaging waste are prompting procurement teams to consider lifecycle impacts when selecting materials-handling and packaging platforms.

Stakeholders are evaluating equipment on multiple dimensions including ease of integration, maintainability, and the ability to scale functionality through software and modular hardware. As capital allocation committees reassess priorities, procurement timelines are increasingly influenced by total cost of ownership considerations that emphasize energy efficiency, downtime reduction, and compatibility with prevailing automation strategies. The industry's trajectory favors solutions that deliver measurable operational improvements while remaining adaptable to evolving fulfillment models and regulatory environments.

How converging technological advancements and operational imperatives are reshaping logistics packaging and sorting strategies across supply chains

Transformative shifts are unfolding across the logistics packaging and sorting ecosystem as automation, robotics, and digital orchestration move from pilot projects to mainstream deployments. Advances in perception, motion control, and dexterous gripping have improved the capability of robotic sorters to handle an expanding range of unitized and irregular items, while conveyor-based sorting systems continue to evolve through smarter sensors and faster zone control.

Parallel to hardware innovations, software platforms that manage material flows, orchestrate task allocation, and provide real-time visibility have become decisive enablers of operational flexibility. Cloud-enabled analytics and edge computing now combine to deliver predictive maintenance, throughput optimization, and adaptive routing that reduce downtime and improve resource utilization. Sustainability considerations have led suppliers to develop lighter packaging systems and energy-efficient drive technologies that respond to corporate environmental targets.

Supply-chain disruptions and geopolitical dynamics have accelerated interest in onshore sourcing of critical components and modular designs that minimize lead-time risk. Consequently, providers and end users are increasingly co-designing solutions that can be configured rapidly to different facility footprints and product mixes. These converging shifts are creating a landscape where interoperability, scalability, and sustainability determine competitive advantage and procurement decisions.

The practical consequences of US tariff policy adjustments on procurement sourcing strategies supply continuity and contractual risk allocation for equipment buyers

Tariff policy adjustments and trade measures in the United States are influencing supplier selection, sourcing strategies, and total landed cost calculations for equipment procurement. Manufacturers and systems integrators are responding by reevaluating their supplier networks, increasing localization of critical subassemblies, and revisiting contract structures to mitigate exposure to changing import duties. These adaptations reduce vulnerability to policy shifts and shorten replenishment cycles for high-priority components.

Procurement teams are incorporating scenario-based sensitivity analysis into vendor evaluations to understand the operational implications of tariff adjustments. Capital projects now include contingency plans that consider alternative sourcing, phased rollouts, and equipment re-specification where tariff impacts materially affect component availability or cost structure. In parallel, closer collaboration between OEMs and customers has produced contractual clauses that allocate risk for sudden policy-driven cost changes and that provide pathways for product redesign to avoid tariff classifications.

Logistics leaders are also recognizing the indirect effects of tariff regimes on lead times and service-level expectations. As suppliers prioritize shipments based on commercial relationships and regional manufacturing footprints, buyers are evaluating the trade-offs between single-source convenience and multi-supplier resilience. The net effect is a measured shift toward procurement frameworks that emphasize supply continuity, modular design to allow component substitution, and stronger alignment between commercial, engineering, and legal teams during the equipment acquisition lifecycle.

A granular segmentation analysis connecting equipment type automation level environment application end use and distribution channel to procurement behavior and design choices

Insightful segmentation reveals nuanced demand drivers and deployment patterns that vary by equipment type, automation level, operational environment, application, end use, and distribution channel. Equipment types divide into packaging equipment and sorting equipment, with sorting further differentiated by conveyor-based sorting systems and robotic sorting systems; each category carries distinct capital, integration, and maintenance profiles that influence buyer preference and lifecycle planning. Automated deployments typically target high-throughput environments that demand consistency and reduced touchpoints, while manual approaches persist where labor flexibility, low-volume variability, or cost constraints favor human oversight.

Operational environments play a determinative role: indoor installations allow tighter environmental controls and denser automation, whereas outdoor settings require ruggedized solutions and different safety protocols. Applications also shape equipment specification, with bulk and granular product handling requiring different conveying, dosing, and containment strategies compared with unitized product workflows that emphasize orientation, singulation, and delicate handling. End-use sectors from agriculture and fresh produce to e-commerce and retail fulfillment, food and beverage, logistics and courier services, manufacturing and industrial operations, and pharmaceuticals and healthcare each impose unique hygiene, traceability, and throughput requirements that change the engineering priorities for both packaging and sorting platforms.

Distribution models further influence procurement behavior, with channel partners offering localized service, retrofit capabilities, and bundled maintenance packages while direct sales provide tighter customization and closer engineering collaboration. Taken together, these segmentation lenses illuminate why some customers favor modular conveyor-based solutions that integrate with existing systems and why others invest in robotic sorting and advanced packaging lines that prioritize flexibility and minimal human intervention.

Regional dynamics and deployment patterns across the Americas Europe Middle East & Africa and Asia-Pacific that determine procurement priorities implementation speed and supplier selection

Regional dynamics shape investment priorities, technology adoption rates, and supplier ecosystems in meaningful ways across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, investments often center on scaling e-commerce fulfillment, improving last-mile throughput, and retrofitting legacy distribution centers with automation that reduces labor dependency while enhancing speed and accuracy. North American customers frequently emphasize integration with existing warehouse management and enterprise resource planning systems and seek partners that offer strong local service footprints and spare-parts availability.

In Europe, Middle East & Africa, buyers balance regulatory requirements, sustainability targets, and diverse regional logistics models. Compliance with food-safety standards and packaging regulations prompts suppliers to offer hygienic designs and recyclable material options. Meanwhile, market fragmentation across countries increases demand for adaptable systems and regionally tailored service models. The Asia-Pacific region exhibits a mix of rapid greenfield deployments and high-volume manufacturing-driven automation, with a strong focus on scalable solutions that can be rapidly replicated across multiple facilities. Local supply chains and proximity to component manufacturing also encourage cost-effective customization and quicker time-to-deploy.

Across all regions, cross-border supply chain volatility and energy-efficiency priorities influence procurement decisions. Companies operating across multiple regions increasingly prioritize vendors that demonstrate global engineering standards, consistent service protocols, and the ability to harmonize control and software architectures across disparate sites to enable centralized operations management.

How competitive positioning innovation and service models determine vendor selection and long-term partnerships in packaging and sorting equipment supply chains

Competitive dynamics in the packaging and sorting equipment domain are characterized by a blend of established original equipment manufacturers, specialized integrators, and emergent technology firms focusing on robotics, sensing, and software orchestration. Leading equipment providers differentiate through a combination of hardware reliability, ease of integration, comprehensive after-sales service, and the maturity of their software ecosystems. System integrators add value by bridging mechanical platforms with warehouse execution systems and by delivering turnkey projects that reduce customer integration risk.

Technology-focused entrants emphasize modular, software-first architectures that enable faster upgrades and the ability to introduce new capabilities through over-the-air updates or modular hardware swaps. Partnerships and alliances between hardware vendors and software developers are common and often necessary to deliver fully integrated solutions that meet diverse industry standards for traceability, hygiene, and safety. Service offerings, including preventive maintenance contracts and rapid replacement parts logistics, increasingly influence vendor selection as buyers seek to minimize unplanned downtime and manage total cost of ownership through predictable service models.

Strategic differentiation also comes from specialized expertise in verticals such as pharmaceuticals, fresh produce, or heavy manufacturing, where regulatory compliance and domain-specific handling techniques are decisive. As a result, vendors that combine sector-specific engineering capabilities with scalable digital platforms hold an advantage in competitive procurement processes.

Actionable recommendations for aligning procurement technology workforce and sustainability strategies to maximize resilience and return on automation investments

Industry leaders should prioritize a suite of practical actions that align technology investment with operational resilience and sustainability commitments. First, embed modularity and software compatibility into procurement specifications so equipment can be upgraded incrementally and integrated with existing warehouse control and execution layers. This approach reduces the risk associated with obsolescence and enables phased automation that matches capital availability and operational readiness.

Second, strengthen supplier risk management by diversifying component sourcing and negotiating contractual terms that share tariff and supply-chain disruption risks. Engaging suppliers early on joint product development can accelerate localization strategies and shorten lead times for critical components. Third, invest in workforce transition programs that pair automation deployment with targeted reskilling and role redesign so that labor redeployment improves throughput and reduces operational friction. Complementing these efforts with predictive maintenance and remote diagnostics minimizes downtime and reduces the need for emergency on-site interventions.

Fourth, make sustainability metrics part of procurement decisioning by requiring energy consumption data, recyclable materials information, and end-of-life plans for major equipment. Finally, establish cross-functional governance that aligns engineering, procurement, operations, and legal teams during specification development and contract negotiation to ensure that technical, commercial, and regulatory risks are addressed coherently and rapidly during project execution.

Transparent research methodology combining primary stakeholder interviews vendor assessments and triangulated secondary analysis to validate industry insights and procurement implications

The research underpinning these insights combines primary qualitative engagement with end users, equipment suppliers, and systems integrators alongside a structured review of technical specifications, product roadmaps, and regulatory guidance. Primary inputs included targeted interviews with procurement leaders, operations managers, and engineering stakeholders to capture first-hand perspectives on deployment challenges, performance expectations, and service requirements. These conversations were complemented by detailed vendor assessments that examined product architectures, integration capabilities, and service propositions.

Secondary sources comprised public technical literature, case studies, product datasheets, and regulatory frameworks that govern hygiene, safety, and packaging standards in key industry verticals. Data synthesis followed a triangulation approach that reconciled interview findings with supplier documentation and observable deployment patterns to validate recurring themes and identify divergence. Quality control measures included cross-validation of vendor claims with third-party technical reviews and anonymized user testimonials to reduce bias and verify performance assertions.

Analytical techniques emphasized scenario analysis to explore procurement sensitivities, comparative feature mapping to highlight supplier differentiation, and thematic synthesis to surface strategic levers for buyers. The methodology prioritized transparency and reproducibility by documenting data sources, interview protocols, and assumptions used in comparative assessments.

Concluding synthesis emphasizing interoperability supply-chain resilience and lifecycle-oriented procurement as pillars for successful deployment of packaging and sorting equipment

The logistics packaging and sorting equipment landscape is evolving toward solutions that blend mechanical reliability with digital orchestration and sustainable design. Technology advances in robotics, sensing, and software have expanded the feasible applications of automated sorting while mature conveyor-based architectures remain central to high-throughput workflows. Procurement decisions increasingly reflect a balance between agility, serviceability, and long-term operational efficiency rather than a narrow focus on initial capex alone.

Regional and policy dynamics, including tariff considerations, are reshaping sourcing strategies and encouraging a move toward resilient supplier networks and modular designs that allow rapid substitution of components. Segmentation analysis shows that equipment type, automation level, operational environment, application, end use, and distribution channel each create distinct procurement requirements that vendors must address through configurable systems and strong after-sales ecosystems. Moving forward, organizations that adopt a cross-functional procurement approach, emphasize lifecycle sustainability metrics, and establish robust supplier risk management processes will be better positioned to deploy technology at scale with predictable outcomes.

In sum, the sector rewards a pragmatic blend of innovation and operational discipline: prioritize interoperable systems, plan for supply-chain contingencies, and align workforce strategies to realize the productivity and service benefits automation promises.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven robotic pick-and-place systems to optimize sorting throughput
  • 5.2. Implementation of real-time IoT-enabled tracking and predictive maintenance in sorting equipment
  • 5.3. Adoption of sustainable biodegradable and reusable packaging materials for eco-friendly logistics
  • 5.4. Deployment of automated multidrop parcel sorting systems with dynamic routing algorithms
  • 5.5. Expansion of modular scalable conveyor systems featuring advanced energy efficiency technologies
  • 5.6. Integration of blockchain technology for transparent and tamper-proof package tracking across networks
  • 5.7. Utilization of collaborative robots for flexible packaging and sorting tasks in small-batch operations
  • 5.8. Application of high-resolution vision inspection with deep learning for automated defect detection
  • 5.9. Emergence of temperature-controlled packaging solutions for end-to-end cold chain integrity monitoring

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Logistics Packaging & Sorting Equipment Market, by Equipment Type

  • 8.1. Introduction
  • 8.2. Packaging Equipment
  • 8.3. Sorting Equipment
    • 8.3.1. Conveyor-Based Sorting Systems
    • 8.3.2. Robotic Sorting Systems

9. Logistics Packaging & Sorting Equipment Market, by Automation Level

  • 9.1. Introduction
  • 9.2. Automated
  • 9.3. Manual

10. Logistics Packaging & Sorting Equipment Market, by Operational Environment

  • 10.1. Introduction
  • 10.2. Indoor
  • 10.3. Outdoor

11. Logistics Packaging & Sorting Equipment Market, by Application

  • 11.1. Introduction
  • 11.2. B. Bulk / Granular Products
  • 11.3. Unitized Products

12. Logistics Packaging & Sorting Equipment Market, by End Use

  • 12.1. Introduction
  • 12.2. Agriculture & Fresh Produce
  • 12.3. E-commerce & Retail Fulfillment
  • 12.4. Food & Beverage
  • 12.5. Logistics & Courier Services
  • 12.6. Manufacturing & Industrial
  • 12.7. Pharmaceuticals & Healthcare

13. Logistics Packaging & Sorting Equipment Market, by Distribution Channel

  • 13.1. Introduction
  • 13.2. Channel Partners
  • 13.3. Direct Sales

14. Americas Logistics Packaging & Sorting Equipment Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Logistics Packaging & Sorting Equipment Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Logistics Packaging & Sorting Equipment Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Beumer Group
    • 17.3.2. Ishida Co., Ltd.
    • 17.3.3. BOWE SYSTEC GmbH
    • 17.3.4. Daifuku Co., Ltd.
    • 17.3.5. Dalian Jialin Machine Manufacture Co., Ltd.
    • 17.3.6. Dematic by KION Group
    • 17.3.7. EMBA Machinery by Berg Group
    • 17.3.8. FIVES Group
    • 17.3.9. Gosunm Intelligent Industry Co., Ltd.
    • 17.3.10. IMA Group
    • 17.3.11. KHS Group by Salzgitter AG Corporation
    • 17.3.12. KNAPP AG
    • 17.3.13. Korber AG
    • 17.3.14. Krones AG
    • 17.3.15. Marchesini Group
    • 17.3.16. Mitsubishi Corporation
    • 17.3.17. MULTIVAC Group
    • 17.3.18. Murata Machinery, Ltd.
    • 17.3.19. Mushiny Co.,Ltd.
    • 17.3.20. Sesotec GmbH
    • 17.3.21. Shenzhen Empower Supply Chain Technology Co.,Ltd.
    • 17.3.22. Sidel
    • 17.3.23. SSI Schaefer Systems International GmbH
    • 17.3.24. Vanderlande Industries B.V.
    • 17.3.25. VITRONIC Machine Vision GmbH

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦