½ÃÀ庸°í¼­
»óǰÄÚµå
1803553

º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå : ±â¼ú, ÇØ»óµµ, ½ºÆåÆ®·³ ¹üÀ§, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Security Image Sensor Market by Technology, Resolution, Spectral Range, Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 194 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 50¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 54¾ï 6,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 7.54%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 78¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 50¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 54¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 78¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 7.54%

À̹ÌÁö ¼¾¼­ÀÇ Æ¯¼º, ÅëÇÕ ¼±ÅÃ, ¿î¿µ»óÀÇ Á¦¾àÀÌ Çö´ë º¸¾È ½Ã½ºÅÛÀÇ ¼º´ÉÀ» °áÁ¤ÇÏ´Â ¹æ¹ýÀ» ¼³¸íÇÏ´Â ±ÇÀ§ÀÖ´Â ¼Ò°³

º¸¾È¿ë À̹ÌÁö ¼¾¼­´Â ¹°¸®Àû ȯ°æ°ú ¾Ë°í¸®Áò¿¡ ÀÇÇÑ ÇØ¼® »çÀÌÀÇ ÁÖ¿ä ÀÎÅÍÆäÀ̽º ¿ªÇÒÀ» ÇÏ´Â Çö´ë ½Ã°¢ Á¤º¸ ½Ã½ºÅÛÀÇ ±â¹ÝÀÌ µÇ´Â ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. »ó¾÷, Á¤ºÎ ¹× »ê¾÷ ºÐ¾ßÀÇ ¸ðµç Á¶Á÷ÀÌ »óȲ ÀνĿ¡ ´ëÇÑ ÅõÀÚ¸¦ °­È­ÇÔ¿¡ µû¶ó À̹ÌÁö ¼¾¼­ÀÇ ¼±Åðú ±¸¼ºÀº ¸ð´ÏÅ͸µ, ÃâÀÔ ÅëÁ¦, ÀÇ·á ¸ð´ÏÅ͸µ, ¼Ò¸Å ºÐ¼®, Áö´ÉÇü ±³Åë ½Ã½ºÅÛÀÇ È¿°ú¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºÐ±¤ °¨µµ, ÇØ»óµµ µî±Þ, ±âº» ¹ÝµµÃ¼ ±â¼ú°ú °°Àº ¼¾¼­ Ư¼ºÀº ÀúÁ¶µµ °¨Áö, ½ºÆåÆ®·³ ½Äº°, µ¥ÀÌÅÍ Ã³¸®·®°ú °°Àº ´Ù¿î½ºÆ®¸² ´É·ÂÀ» °áÁ¤Çϰí, °á°úÀûÀ¸·Î ¾Ë°í¸®Áò Á¤È®µµ¿Í ½Ã½ºÅÛ ¼³°èÀÇ Æ®·¹À̵å¿ÀÇÁ¸¦ Çü¼ºÇÕ´Ï´Ù.

º¸¾È À̹Ì¡ ¹× ¹èÆ÷ Àü·« À籸Ãà, ±â¼ú, ÄÄÇ»ÆÃ, ¿ëµµ Áß½ÉÀÇ Çõ½Å¿¡ ´ëÇÑ °£·«ÇÑ ºÐ¼®

¹ÝµµÃ¼ ¼³°è, ÄÄÇ»ÆÃ À̹Ì¡, ¸ÖƼ¸ð´Þ ¼¾½ÌÀÇ ÅëÇÕ ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ º¸¾È À̹Ì¡ÀÇ »óȲÀº Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. CMOS °øÁ¤ ³ëµå¿Í ¹é»çÀ̵å Á¶¸íÀÇ ¹ßÀüÀº Àü·Â ¼Òºñ¸¦ ÁÙÀ̸鼭 Çȼ¿ °¨µµ¸¦ Çâ»ó½Ã۰í, ÆûÆÑÅÍÀÇ ¼ÒÇüÈ­¿Í ´Ù¾çÇÑ ¹èÄ¡ ½Ã³ª¸®¿À¸¦ °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ¶ÇÇÑ, ´ÜÆÄÀå ¹× ÀåÆÄÀå Àû¿Ü¼± ±â¼úÀÇ º´Çà °³¹ß·Î °¡½Ã±¤¼±ÀÇ ÇѰ踦 ¶Ù¾î³Ñ´Â °¨Áö ¹× ½Äº° ´É·ÂÀ» ½ÇÇöÇÏ¿© ¿ÏÀüÇÑ ¾îµÒÀ̳ª Â÷Æó¹° ¼Ó¿¡¼­µµ ÀÛµ¿ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÛµ¿ ¹üÀ§°¡ ³Ð¾îÁ³½À´Ï´Ù.

2025³â °ü¼¼ Á¶Á¤º°, ¿µ»óó¸® ºÎǰ »ýŰ迡¼­ °ø±Þ¸Á ź·Â¼º, Á¶´Þ Àü·«, »ý»ê ÇöÁöÈ­°¡ ¾î¶»°Ô º¯È­Çß´ÂÁö Àü¹®°¡°¡ Á¾ÇÕÀûÀ¸·Î ºÐ¼®

2025³â °ü¼¼ Á¦µµ¿Í ¹«¿ª Á¤Ã¥ÀÇ Á¶Á¤À¸·Î ÀÎÇØ È­»ó ó¸® ºÎǰ°ø±Þ¸Á °èȹ°ú °ø±Þ¾÷ü ¼±Á¤¿¡ »õ·Î¿î º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ °ü¼¼ Á¶Ä¡ÀÇ ´©ÀûµÈ ¿µÇâÀº ´Ü°¡¿¡ ¿µÇâÀ» ¹ÌÃÆÀ» »Ó¸¸ ¾Æ´Ï¶ó Á¦Á¶ÀÇ Áö¸®Àû ºÐ»ê, Àç°í Æ÷Áö¼Å´×, ¿À¸®Áö³Î ºÎǰ Á¦Á¶¾÷ü ¹× ÆÄ¿îµå¸®¿ÍÀÇ °è¾à Á¶°Ç°ú °ü·ÃµÈ Àü·«Àû °í·Á »çÇ׿¡µµ º¯È­¸¦ °¡Á®¿Ô½À´Ï´Ù. ÀÌ¿¡ µû¶ó Á¶´ÞÆÀÀº °ü¼¼ÀÇ ¿µÇâÀ» ÁÙÀÌ°í ¸®µåŸÀÓÀÇ À¯¿¬¼ºÀ» À¯ÁöÇϱâ À§ÇØ ÀÌÁß ¼Ò½Ì Àü·«°ú °ü¼¼ ¿ì´ë Áö¿ªÀÇ Á¶¸³ ÆÄÆ®³Ê¿ÍÀÇ ±ä¹ÐÇÑ Çù·Â¿¡ ÁßÁ¡À» µÎ¾î ¿Ô½À´Ï´Ù.

±â¼ú, ÇØ»óµµ, ½ºÆåÆ®·³ ¹üÀ§, ÀÀ¿ë ºÐ¾ß, ÃÖÁ¾ »ç¿ëÀÚ ¿ä±¸ »çÇ×À» ¿¬°áÇÏ´Â Àü·«Àû ¼¼ºÐÈ­ û»çÁøÀº ¼¾¼­ ¼±Åà ¹× ¹èÄ¡ ¼±Åÿ¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¼¼ºÐÈ­À» ÀÌÇØÇÏ´Â °ÍÀº ¼¾½Ì ±â¼úÀ» ÀÌ¿ë »ç·Ê¿Í ½Ã½ºÅÛ ¿ä±¸»çÇ׿¡ ¸ÂÃß´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±â¼úº°·Î »ìÆìº¸¸é, ½ÃÀåÀº CCD¿Í CMOS·Î ³ª´µ¸ç, °¢±â ´Ù¸¥ µ¿Àû ¹üÀ§, ³ëÀÌÁî ¼º´É ¹× Àü·Â È¿À²ÀÇ Æ®·¹ÀÌµå ¿ÀÇÁ°¡ ¼­·Î ´Ù¸£±â ¶§¹®¿¡ ´Ù¾çÇÑ ¸ð´ÏÅ͸µ ¹× ºÐ¼® ½Ã³ª¸®¿À¿¡ ´ëÇÑ ÀûÇÕ¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÇØ»óµµ¿¡ µû¶ó °íÇØ»óµµ, Ç¥ÁØ ÇØ»óµµ, ÃʰíÇØ»óµµ·Î ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, Çȼ¿ ¼ö¿Í °ø°£Àû Ãæ½Çµµ°¡ ¾î¶»°Ô ´Ù¸¥ ¼öÁØÀÇ »óȲ ¼¼ºÎ »çÇ×°ú ºÐ¼® Á¤È®µµ¸¦ °¡´ÉÇÏ°Ô ÇÏ´ÂÁö¸¦ ¹Ý¿µÇÕ´Ï´Ù. ½ºÆåÆ®·³ ¹üÀ§¿¡ µû¶ó ½ÃÀåÀº Àû¿Ü¼±°ú °¡½Ã±¤¼±, Àû¿Ü¼± Ä«Å×°í¸®´Â ÀåÆÄÀå Àû¿Ü¼±°ú ´ÜÆÄÀå Àû¿Ü¼±À¸·Î ³ª´µ¾î °¢°¢ ¿­ ´ëºñ¿Í ´Ü°Å¸® ½ºÆåÆ®·³ ½Äº°À¸·Î °¨Áö ´É·ÂÀ» È®ÀåÇÕ´Ï´Ù.

½ÃÀå ÁøÀÔ ¹× Á¶´Þ Àü·«¿¡ µµ¿òÀÌ µÇ´Â Áö¿ª ºÐ¼®, ºÏ¹Ì, ³²¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °³¹ß ¿ì¼±¼øÀ§, ±ÔÁ¦ ¾Ð·Â, Á¦Á¶ ¿ªÇÐÀ» ¿¬°áÇÕ´Ï´Ù.

Áö¿ª ¿ªÇÐÀº Áö¿ª °£ Á¶´Þ ¿É¼Ç, ±ÔÁ¦ »óȲ, °³¹ß ¿ì¼±¼øÀ§¸¦ ÀÌÇØÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ÌÁÖ Áö¿ª¿¡¼­´Â ·¹°Å½Ã ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕ, ´ë±Ô¸ð »ó¾÷Àû ¹èÆ÷, ±³Åë °ü¸® ¹× ¼Ò¸Å ÀÌ¿ë »ç·Ê¿¡ ´ëÇÑ °­·ÂÇÑ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ±ÔÁ¦ ȯ°æÀº ÇÁ¶óÀ̹ö½Ã º¸È£ ¹× µ¥ÀÌÅÍ Ã³¸® °üÇà¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, ±× °á°ú ±â±â ³» À͸íÈ­ Àü·« ¹× º¸Á¸ Á¤Ã¥¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

¼¾¼­ Á¦Á¶¾÷ü ¹× ÅëÇÕ¾÷ü°¡ Â÷º°È­µÈ Ç÷§Æû ¼öÁØÀÇ °¡Ä¡¸¦ Á¦°øÇϱâ À§ÇØ ±â¼ú ·Îµå¸Ê, ÆÄÆ®³Ê½Ê, ¼­ºñ½º Á¦°øÀ» ¾î¶»°Ô ±¸¼ºÇϰí ÀÖ´ÂÁö ¿¹¸®ÇÏ°Ô ºÐ¼®

ÁÖ¿ä ±â¾÷ ÀλçÀÌÆ®´Â ÁÖ¿ä °ø±Þ¾÷üµéÀÌ ±â¼ú Àü¹®¼º, ½Ã½ºÅÛ ÅëÇÕ ´É·Â, »ýÅÂ°è ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ¾î¶»°Ô Â÷º°È­¸¦ ²ÒÇϰí ÀÖ´ÂÁö¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀϺΠ¾÷üµéÀº ¼¾¼­ ¹°¸®Çаú Çȼ¿ÀÇ ±â¼ú Çõ½Å¿¡ ÁýÁßÇÏ¿© ÀúÁ¶µµ ¼º´É, ¿­ °¨µµ, ³ôÀº ´ÙÀ̳ª¹Í ·¹ÀÎÁöÀÇ Çâ»óÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ´Ù¸¥ ±â¾÷µéÀº ¼¾¼­¸¦ ¿§Áö ÇÁ·Î¼¼½Ì, º¸¾È ¿¬°á¼º, ºÐ¼® ÅøÃ¼Àΰú ÅëÇÕÇÏ´Â ½Ã½ºÅÛ ·¹º§À» Á¦°øÇÏ¿© ÃÖÁ¾ »ç¿ëÀÚÀÇ ÅëÇÕ ½Ã°£°ú ¿î¿µÀÇ º¹À⼺À» ÁÙ¿© Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù.

¼¾¼­ ±â¼ú °³¹ß, °ø±Þ¸Á º¹¿ø·Â, ¸ðµâ½Ä ¾ÆÅ°ÅØÃ³, °Å¹ö³Í½º ¿¬°è, ¾ÈÀüÇϰí ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â ¹èÆ÷¸¦ °¡¼ÓÈ­Çϱâ À§ÇÑ °íÀ§ °æ¿µÁøÀ» À§ÇÑ ½Ç¿ëÀûÀÎ ±ÇÀå »çÇ× Á¦½Ã

¾÷°è ¸®´õ¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¦¾ÈÀº ź·Â¼º, ¼º´É, Ã¥ÀÓ°¨ ÀÖ´Â ¹èÄ¡¸¦ ÃËÁøÇÏ´Â Àü¼úÀû º¯È­¸¦ °­Á¶ÇÕ´Ï´Ù. ù°, ¸®´õ´Â ¼¾¼­ ¼öÁØÀÇ ¹ßÀü°ú ¿§Áö ÄÄÇ»ÆÃ ´É·ÂÀ» ÅëÇÕÇÏ´Â ±â¼ú ·Îµå¸ÊÀ» ¿ì¼±½ÃÇϰí, ½ºÆåÆ®·³ ´Ù¾ç¼º°ú ÄÄÇ»ÆÃ À̹Ì¡¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®º¸ÇÏ¿© Á¦Ç° ¶óÀÎÀÇ ¹Ì·¡¸¦ º¸ÀåÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿¬°è¸¦ ÅëÇØ Àü·Â ¹× ´ë¿ªÆø ºñ¿ëÀ» Àý°¨Çϸ鼭 ºÐ¼® °á°ú¸¦ ÀÇ¹Ì ÀÖ°Ô Çâ»ó½Ãų ¼ö ÀÖ´Â Çϵå¿þ¾î¸¦ ¼±ÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü¹®°¡ ÀÎÅͺä, ±â¼ú Æò°¡, °ø±Þ¸Á ¸ÅÇÎ, ¹®¼­ ºÐ¼®À» ¾î¶»°Ô ÅëÇÕÇϰí, Á¶»ç °á°ú¸¦ °ËÁõÇϰí, ºÐ¼®ÀÇ ¾ö¹Ð¼ºÀ» À¯ÁöÇß´ÂÁö¸¦ ¼³¸íÇÏ´Â Åõ¸íÇÑ Á¶»ç ¹æ¹ýÀÇ °³¿ä

Á¶»ç ¹æ¹ýÀº Á¤¼ºÀû Á¢±Ù°ú Á¤·®Àû Á¢±ÙÀ» °áÇÕÇÏ¿© »ê¾÷ ¹ßÀüÀÇ ¾ö°ÝÇÏ°í ¿ËÈ£ °¡´ÉÇÑ ÅëÇÕÀ» º¸ÀåÇÕ´Ï´Ù. 1Â÷ µ¥ÀÌÅÍ ¼öÁý¿¡´Â »ó¾÷, °ø°ø ºÎ¹®, ¿î¼Û ºÐ¾ßÀÇ µð¹ÙÀ̽º ¿£Áö´Ï¾î, Á¶´Þ Ã¥ÀÓÀÚ, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ, ÃÖÁ¾ »ç¿ëÀÚ¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ ½ÇÁúÀûÀÎ ¹èÆ÷ Á¦¾à°ú ±â´É ¿ì¼±¼øÀ§¸¦ ÆÄ¾ÇÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ´ëÈ­´Â ¼¾¼­ »ùÇÿ¡ ´ëÇÑ ±â¼ú Æò°¡·Î º¸¿ÏµÇ¾úÀ¸¸ç, ÀúÁ¶µµ °¨µµ, ½ºÆåÆ®·³ ÀÀ´ä, ÀÎÅÍÆäÀ̽º ȣȯ¼º°ú °°Àº ¼º´É ÁöÇ¥¸¦ ÀϹÝÀûÀÎ ½Ã½ºÅÛ ÅëÇÕ ¿ä±¸»çÇ×°ú ºñ±³ÇÏ¿© Æò°¡ÇÏ¿´½À´Ï´Ù.

±â¼úÀû, ¿î¿µÀû, ±ÔÁ¦Àû, °ø±Þ¸ÁÀû ¿ä±¸¸¦ ¿¬°áÇϰí, ÀÇ»ç°áÁ¤ÀÚ¸¦ À§ÇÑ ½Ç¿ëÀûÀÎ ·Îµå¸ÊÀ» Çü¼ºÇϰí, °£°áÇÑ °á·ÐÀ» ÅëÇÕÇÕ´Ï´Ù.

°á·ÐÀûÀ¸·Î, º¸¾È ¿µ»ó ¼¾¼­ÀÇ ÁøÈ­´Â ¹°¸® Áß½ÉÀÇ ±â¼ú Çõ½Å, ÄÄÇ»ÅÍÀÇ È®ÀåµÈ Áö´É, ½Ã½ºÅÛ ÅëÇÕÀÇ ¼ö·ÅÀ» ÀǹÌÇϸç, ÀÌ ¼¼ °¡Áö°¡ °áÇÕÇÏ¿© Çö´ë ½Ã°¢ Á¤º¸ ½Ã½ºÅÛÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¼¾¼­ÀÇ ¼±ÅÃÀº ´õ ÀÌ»ó °í¸³µÈ Çϵå¿þ¾îÀÇ °áÁ¤ÀÌ ¾Æ´Ï¶ó ºÐ¼®ÀÇ Ãæ½Çµµ, ³×Æ®¿öÅ© ¾ÆÅ°ÅØÃ³, ¿î¿µ Á¤Ã¥¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Àü·«Àû ¼ö´ÜÀÔ´Ï´Ù. ±ÔÁ¦ ±â´ë, °ü¼¼·Î ÀÎÇÑ °ø±Þ¸Á Á¶Á¤, ´Ù¾çÇÑ ¿ëµµ ¿ä±¸ »çÇ×ÀÇ º¹ÇÕÀûÀÎ ¾Ð·ÂÀº ÀÌÇØ °ü°èÀÚ°¡ ±â¼ú ¼º´É, Á¶´Þ À¯¿¬¼º, °Å¹ö³Í½º¸¦ µ¿½Ã¿¡ ÇØ°áÇÏ´Â ±â´É °£ Àü·«À» äÅÃÇØ¾ß ÇÔÀ» ÀǹÌÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå : ±â¼úº°

  • CCD
  • CMOS

Á¦9Àå º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå : ÇØ»óµµº°

  • °íÇØ»óµµ
  • Ç¥ÁØ ÇØ»óµµ
  • ÃʰíÇØ»óµµ

Á¦10Àå º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå ½ºÆåÆ®·³ ¹üÀ§º°

  • Àû¿Ü¼±
    • ÀåÆÄ Àû¿Ü¼±
    • ´ÜÆÄ Àû¿Ü¼±
  • °¡½Ã±¤¼±

Á¦11Àå º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ¾×¼¼½º Á¦¾î
  • ÇコÄÉ¾î ¸ð´ÏÅ͸µ
  • ¼Ò¸Å ºÐ¼®
  • °¨½Ã
    • ½Ç³»
    • ¾ß¿Ü
  • ±³Åë ¸ð´ÏÅ͸µ
    • ¹øÈ£ÆÇ ÀνÄ
    • ¼Óµµ °¨Áö
    • ÅëÇà·á ¡¼ö

Á¦12Àå º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • »ó¾÷¿ë
  • Á¤ºÎ ¹× ¹æÀ§
  • »ê¾÷
  • ÁÖÅÿë
  • ¿î¼Û

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ º¸¾È À̹ÌÁö ¼¾¼­ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Sony Corporation
    • On Semiconductor Corporation
    • ams AG
    • BECOM Systems GmbH
    • BRILLNICS
    • Canon Inc.
    • Epson Corporation
    • Hamamatsu Photonics K.K
    • Hasselblad by DJI
    • Himax Technologies, Inc.
    • Keyence Corporation
    • MultiDimension Technology Co., Ltd.
    • OmniVision Technologies, Inc.
    • Panasonic Corporation
    • PixArt Imaging Inc.
    • PIXELPLUS
    • Renesas Electronics Corporation
    • Samsung Electronics Co., Ltd.
    • SK HYNIX INC.
    • STMicroelectronics N.V.
    • Teledyne Technologies Incorporated
    • Toshiba Corporation

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

LSH 25.09.11

The Security Image Sensor Market was valued at USD 5.09 billion in 2024 and is projected to grow to USD 5.46 billion in 2025, with a CAGR of 7.54%, reaching USD 7.88 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.09 billion
Estimated Year [2025] USD 5.46 billion
Forecast Year [2030] USD 7.88 billion
CAGR (%) 7.54%

An authoritative introduction that frames how imaging sensor characteristics, integration choices, and operational constraints jointly determine modern security system performance

Security image sensors are foundational components in modern visual intelligence systems, serving as the primary interface between physical environments and algorithmic interpretation. As organizations across commercial, governmental, and industrial sectors intensify investments in situational awareness, the choice and configuration of imaging sensors directly influence the effectiveness of surveillance, access control, healthcare monitoring, retail analytics, and intelligent transportation systems. Sensor characteristics such as spectral sensitivity, resolution class, and underlying semiconductor technology determine downstream capabilities in low-light detection, spectral discrimination, and data throughput, which in turn shape algorithmic accuracy and system design trade-offs.

Contemporary deployments demand a higher degree of integration between sensor hardware and processing stacks, with edge computing and embedded inference becoming central design considerations. Consequently, procurement strategies now emphasize compatibility with compression standards, power envelopes for always-on operation, and robustness to environmental stressors. From the operational perspective, sensor selection must balance performance with lifecycle cost, including calibration, maintenance, and cybersecurity hardening. Moreover, regulatory requirements around privacy and data sovereignty are influencing placement, retention policies, and anonymization strategies tied to imaging platforms.

Taken together, these dynamics mean that technical decisions at the sensor level cascade into network architecture, analytics accuracy, and operational procedures. Stakeholders therefore require synthesized guidance that connects sensor capabilities with practical deployment constraints and strategic objectives for safer, more resilient visual monitoring infrastructures.

A concise analysis of the transformative technological, computational, and application-driven shifts reshaping security imaging and deployment strategies across industries

The landscape of security imaging is undergoing transformative shifts driven by innovations in semiconductor design, computational imaging, and integration of multimodal sensing. Advances in CMOS process nodes and back-side illumination have increased pixel sensitivity while reducing power consumption, enabling smaller form factors and a wider range of placement scenarios. Parallel developments in short-wave and long-wave infrared technologies have broadened operational envelopes, allowing detection and identification capabilities to extend beyond visible-light limitations and to perform in complete darkness or through obscurants.

Simultaneously, there has been a decisive move toward computational imaging approaches that trade raw optical fidelity for algorithmically enhanced outputs tailored to analytics needs. Edge AI accelerators now colocated with sensors perform early-stage filtering, event-driven capture, and selective transmission, which reduces bandwidth usage and enhances privacy by limiting raw-frame exfiltration. These technological shifts are accompanied by evolving application requirements: traffic monitoring systems demand higher temporal resolution and specialized processing for license plate recognition and speed detection, while healthcare monitoring prioritizes low-light performance and spectral sensitivity for vital-sign extraction.

As a result, vendors and integrators are evolving value propositions from pure sensing components to platform-level solutions that combine sensor physics, embedded processing, and software-defined policies. This systemic transition requires procurement teams and technical architects to reassess selection criteria and lifecycle support models to fully capture the performance gains afforded by contemporary imaging innovations.

An expert synthesis of how 2025 tariff adjustments have reshaped supply chain resilience, sourcing strategies, and production localization for imaging component ecosystems

Tariff regimes and trade policy adjustments in 2025 have introduced new layers of complexity to supply chain planning and supplier selection for imaging components. The cumulative impact of these tariff measures has not only influenced unit costs but also altered strategic considerations related to geographic diversification of manufacturing, inventory positioning, and contractual terms with original component manufacturers and foundries. In response, procurement teams have emphasized dual-sourcing strategies and closer collaboration with assembly partners in tariff-favored jurisdictions to mitigate exposure to levies and to preserve lead-time flexibility.

Beyond direct cost effects, policy shifts have driven firms to re-evaluate localization strategies for both manufacturing and testing capabilities. Companies with vertically integrated production have seen relative advantages in insulating critical production stages from cross-border tariff friction, while firms relying on globalized supply chains have accelerated near-shoring and the establishment of regional qualification centers to maintain compliance and continuity of supply. In addition, stakeholders are more actively embedding tariff contingency clauses in supplier agreements and increasing visibility into upstream BOM (bill of materials) composition to anticipate classification risk and reclassification opportunities.

These developments reinforce the need for a disciplined approach to supply chain governance, where tariff intelligence, scenario planning, and flexible manufacturing footprints combine to maintain competitive delivery timelines and to preserve the ability to scale production in response to demand surges without incurring disproportionate cost penalties.

A strategic segmentation blueprint that links technology, resolution, spectral range, applications, and end-user demands to inform sensor selection and deployment choices

Understanding segmentation is essential to aligning sensing technology with intended use cases and system requirements. Based on Technology, the market is studied across CCD and CMOS, each offering distinct trade-offs in dynamic range, noise performance, and power efficiency that influence their suitability across different surveillance and analytics scenarios. Based on Resolution, the market is studied across High Definition, Standard Definition, and Ultra High Definition, reflecting how pixel count and spatial fidelity enable different levels of situational detail and analytics accuracy. Based on Spectral Range, the market is studied across Infrared and Visible Light, and the Infrared category is further studied across Long-Wave Infrared and Short-Wave Infrared, which expands detection capabilities to thermal contrast and short-range spectral discrimination respectively.

Based on Application, the market is studied across Access Control, Healthcare Monitoring, Retail Analytics, Surveillance, and Traffic Monitoring, with additional granularity noting that Surveillance is further studied across Indoor and Outdoor contexts while Traffic Monitoring is further examined across License Plate Recognition, Speed Detection, and Toll Enforcement. Each application bucket imposes unique environmental and regulatory constraints that drive sensor form factor, spectral needs, and processing requirements. Based on End User, the market is studied across Commercial, Government And Defense, Industrial, Residential, and Transportation, and these end-user categories define procurement cycles, certification needs, and deployment scale.

Taken together, this segmentation framework guides technology roadmaps and procurement decisions by correlating technical attributes with operational priorities and regulatory constraints across verticals and use cases.

A regional analysis that connects deployment priorities, regulatory pressures, and manufacturing dynamics across the Americas, EMEA, and Asia-Pacific to inform market entry and sourcing strategies

Regional dynamics are central to understanding procurement options, regulatory contexts, and deployment priorities across different geographies. In the Americas, demand patterns emphasize integration with legacy infrastructure, high-volume commercial deployments, and robust analytics for traffic management and retail use cases. The regulatory environment in this region also places emphasis on privacy protections and data handling practices, which in turn influence on-device anonymization strategies and retention policies.

In Europe, Middle East & Africa, deployment drivers are more varied; European initiatives stress interoperability, privacy-by-design, and standards alignment, while markets in the Middle East and Africa often prioritize ruggedized hardware and adaptability to challenging climates. Across these sub-regions, public-sector projects and critical infrastructure protection initiatives shape procurement timelines and certification requirements. Moreover, the EMEA region frequently serves as a testbed for solutions that must balance stringent regulatory oversight with high-performance expectations.

Asia-Pacific exhibits accelerated adoption driven by large-scale urbanization, investment in smart city infrastructure, and rapid iteration in edge analytics. This region often pushes performance requirements, particularly for transportation and mass transit systems where high-throughput processing and specialized functions such as license plate recognition and toll enforcement are mission-critical. Supplier ecosystems in Asia-Pacific are also notable for their manufacturing depth and rapid commercialization cycles, making this region pivotal for production scaling and component innovation.

Collectively, these regional characteristics should inform strategic decisions about localization, certification pathways, and partner selection to ensure that deployments meet technical, legal, and operational objectives in each geography.

An incisive look at how sensor makers and integrators are structuring technology roadmaps, partnerships, and service offerings to deliver differentiated platform-level value

Key company insights focus on how leading suppliers differentiate through technological specialization, system integration capabilities, and ecosystem partnerships. Some vendors concentrate on sensor physics and pixel innovation, delivering improved low-light performance, thermal sensitivity, or high dynamic range that translate directly into better detection and identification outcomes for surveillance and industrial inspection. Other firms differentiate through system-level offerings that integrate sensors with edge processing, secure connectivity, and analytics toolchains, thereby reducing integration time and operational complexity for end users.

Strategically, companies are investing in modular platforms that support multiple spectral modules and interchangeable optics to serve diverse application needs without redesigning entire systems. Partnerships between semiconductor designers, optics manufacturers, and software developers are increasingly common, as they accelerate time-to-market for specialized solutions such as license plate recognition in traffic monitoring or non-contact vital-sign monitoring in healthcare contexts. Additionally, several players are emphasizing compliance, cybersecurity features, and lifecycle support services to address procurement concerns in government and critical infrastructure projects.

From a go-to-market perspective, firms that pair channel enablement with strong technical support and local certification capabilities tend to win larger institutional contracts. Therefore, company positioning is less a function of component performance alone and more a reflection of integrated value propositions that reduce deployment risk and operational burden for buyers.

Practical recommendation set for senior leaders to align sensor technology development, supply chain resilience, modular architectures, and governance to accelerate secure and compliant deployments

Actionable recommendations for industry leaders emphasize tactical changes that drive resilience, performance, and responsible deployment. First, leaders should prioritize technology roadmaps that converge sensor-level advances with edge compute capabilities, securing investments in spectral diversity and computational imaging to future-proof product lines. This alignment will help ensure that hardware choices meaningfully improve analytics outcomes while controlling power and bandwidth costs.

Second, procurement and supply chain functions must institutionalize tariff-aware sourcing and capacity planning, including qualifying alternative suppliers and expanding regional testing and assembly capabilities. By embedding tariff intelligence and BOM transparency into supplier contracts, organizations can reduce exposure to policy shifts and maintain flexibility in production scaling. Third, vendors and integrators should expand modularity in hardware and software architectures to accelerate customization for distinct applications such as healthcare monitoring, retail analytics, and traffic enforcement, thereby shortening integration timelines for customers.

Fourth, strengthen governance around privacy and cybersecurity by designing on-device anonymization, secure boot, and encrypted telemetry into product baselines. These measures not only meet regulatory expectations but also lower barriers for public-sector adoption. Finally, invest in cross-disciplinary partnerships that bring together optics, semiconductor design, and analytics providers, enabling rapid prototyping and smoother handoffs from lab to field deployments. Taken together, these actions increase competitive agility and reduce operational risk across the product lifecycle.

A transparent methodological overview describing how expert interviews, technical evaluations, supply chain mapping, and document analysis were integrated to validate findings and preserve analytical rigor

The research methodology combines qualitative and quantitative approaches to ensure a rigorous and defensible synthesis of industry developments. Primary data collection includes structured interviews with device engineers, procurement leads, systems integrators, and end users across commercial, public sector, and transportation domains to capture practical deployment constraints and feature priorities. These conversations were complemented by technical assessments of sensor samples, where performance metrics such as low-light sensitivity, spectral response, and interface compatibility were evaluated against typical systems integration requirements.

Secondary research involved a systematic review of patent filings, standards documentation, regulatory guidance, and supplier technical literature to contextualize technological trajectories and compliance pressures. Supply chain analysis incorporated public customs data, supplier disclosures, and observable capacity trends to map manufacturing footprints and tariff exposure. Data validation then triangulated insights across these multiple sources, using cross-verification with subject-matter experts and field engineers to ensure consistency and operational relevance.

Throughout the process, emphasis was placed on reproducible methods, transparent assumptions, and traceable evidence chains so decision-makers can understand both the empirical basis for findings and the limitations inherent in rapidly evolving technology and policy environments. This approach supports confident application of the report's insights to procurement, engineering, and strategic planning activities.

A concise concluding synthesis that ties together technological, operational, regulatory, and supply chain imperatives to form a pragmatic roadmap for decision-makers

In conclusion, the evolution of security image sensors represents a convergence of physics-driven innovation, computational augmentation, and systemic integration that together elevate the capabilities of modern visual intelligence systems. Sensor choices are no longer isolated hardware decisions; they are strategic levers that affect analytics fidelity, network architecture, and operational policies. The combined pressures of regulatory expectations, tariff-induced supply chain adjustments, and diverse application requirements mean that stakeholders must adopt cross-functional strategies that address technical performance, procurement flexibility, and governance simultaneously.

Looking ahead, organizations that invest in spectral diversity, edge compute integration, and modular platform design will be better positioned to meet the heterogeneous demands of surveillance, healthcare monitoring, retail analytics, and intelligent transportation. At the same time, embedding privacy and security by design will be essential to securing public trust and meeting compliance obligations. Finally, a proactive approach to supply chain management that incorporates tariff intelligence and regional manufacturing capabilities will be critical to maintaining continuity of supply and competitive lead times.

Taken together, these imperatives form the basis of a pragmatic roadmap for practitioners and decision-makers who aim to deploy high-performing, resilient, and responsible imaging systems in increasingly complex operational environments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven edge computing modules within image sensors for real-time anomaly detection
  • 5.2. Adoption of CMOS global shutter technology in high-speed security cameras to minimize motion artifacts during surveillance
  • 5.3. Development of multi-spectral security image sensors combining visible, infrared, and ultraviolet imaging to enhance detection
  • 5.4. Collaboration between sensor manufacturers and cloud analytics providers for unified threat detection platforms
  • 5.5. Emergence of polarization-based imaging sensors offering advanced material differentiation for perimeter security applications
  • 5.6. Implementation of on-chip neural processing units in image sensors to accelerate AI inference for on-site threat recognition
  • 5.7. Standardization efforts for sensor cybersecurity protocols to protect against firmware tampering and data interception attacks
  • 5.8. Rise of low-light optimized backside-illuminated sensors improving night-time surveillance in urban security networks
  • 5.9. Shift towards ultralow-power image sensor designs for battery-operated IoT security devices in smart home applications
  • 5.10. Integration of depth-sensing lidar capabilities into image sensors for accurate 3D mapping in access control systems

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Security Image Sensor Market, by Technology

  • 8.1. Introduction
  • 8.2. CCD
  • 8.3. CMOS

9. Security Image Sensor Market, by Resolution

  • 9.1. Introduction
  • 9.2. High Definition
  • 9.3. Standard Definition
  • 9.4. Ultra High Definition

10. Security Image Sensor Market, by Spectral Range

  • 10.1. Introduction
  • 10.2. Infrared
    • 10.2.1. Long-Wave Infrared
    • 10.2.2. Short-Wave Infrared
  • 10.3. Visible Light

11. Security Image Sensor Market, by Application

  • 11.1. Introduction
  • 11.2. Access Control
  • 11.3. Healthcare Monitoring
  • 11.4. Retail Analytics
  • 11.5. Surveillance
    • 11.5.1. Indoor
    • 11.5.2. Outdoor
  • 11.6. Traffic Monitoring
    • 11.6.1. License Plate Recognition
    • 11.6.2. Speed Detection
    • 11.6.3. Toll Enforcement

12. Security Image Sensor Market, by End User

  • 12.1. Introduction
  • 12.2. Commercial
  • 12.3. Government And Defense
  • 12.4. Industrial
  • 12.5. Residential
  • 12.6. Transportation

13. Americas Security Image Sensor Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Security Image Sensor Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Security Image Sensor Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Sony Corporation
    • 16.3.2. On Semiconductor Corporation
    • 16.3.3. ams AG
    • 16.3.4. BECOM Systems GmbH
    • 16.3.5. BRILLNICS
    • 16.3.6. Canon Inc.
    • 16.3.7. Epson Corporation
    • 16.3.8. Hamamatsu Photonics K.K
    • 16.3.9. Hasselblad by DJI
    • 16.3.10. Himax Technologies, Inc.
    • 16.3.11. Keyence Corporation
    • 16.3.12. MultiDimension Technology Co., Ltd.
    • 16.3.13. OmniVision Technologies, Inc.
    • 16.3.14. Panasonic Corporation
    • 16.3.15. PixArt Imaging Inc.
    • 16.3.16. PIXELPLUS
    • 16.3.17. Renesas Electronics Corporation
    • 16.3.18. Samsung Electronics Co., Ltd.
    • 16.3.19. SK HYNIX INC.
    • 16.3.20. STMicroelectronics N.V.
    • 16.3.21. Teledyne Technologies Incorporated
    • 16.3.22. Toshiba Corporation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦