½ÃÀ庸°í¼­
»óǰÄÚµå
1803556

MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : Çü»óº°, °ø±Þ ¹æ¹ýº°, ó¸® »óº°, ¿ëÁ¦ º£À̽ºº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

MEA-Triazine H2S Scavengers Market by Form, Delivery Method, Phase Treated, Solvent Base, Application, End User, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 187 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 1¾ï 9,572¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 2¾ï 434¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© CAGRÀº 4.45%, 2030³â¿¡´Â 2¾ï 5,418¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ¿¬µµ(2024³â) 1¾ï 9,572¸¸ ´Þ·¯
±âÁØ ¿¬µµ(2025³â) 2¾ï 434¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 2¾ï 5,418¸¸ ´Þ·¯
CAGR(%) 4.45%

MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ¿À¸®¿£Å×À̼ÇÀ» ÅëÇØ ±â¼ú ¹× »ó¾÷Àû ¸®´õ¸¦ À§ÇÑ È­ÇÐÀû °Åµ¿, ¿î¿µ ¿ªÇÒ ¹× Á¶´Þ ¿ì¼±¼øÀ§¸¦ ¸íÈ®È÷ ÇÕ´Ï´Ù.

MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú´Â È­ÇÐ ¹× ÇöÀå ÀÛ¾÷ÀÇ Áß¿äÇÑ ±³Â÷Á¡¿¡ À§Ä¡ÇÏ¿© ¼®À¯, °¡½º ¹× ¼ö·ù Àüü¿¡¼­ Ȳȭ¼ö¼Ò¸¦ ÁßÈ­½ÃŰ´Â È­ÇÐÀû ¹ÝÀÀ¼ºÀ» Á¦°øÇÔ°ú µ¿½Ã¿¡ ¾ÈÀü ¹× ȯ°æÀû ÃßÁø·Â¿¡ ´ëÀÀÇÕ´Ï´Ù. ÀÌ È­ÇÕ¹° Ŭ·¡½º´Â Ȳȭ¹° Á¾¿¡ ´ëÇÑ Æ¯À̼º, ¿©·¯ ¿ë¸Å ¿°±â¿¡ ´ëÇÑ ÀûÇÕ¼º, ¾÷½ºÆ®¸², ¹Ìµå½ºÆ¼¸², ´Ù¿î½ºÆ®¸²¿¡¼­ »ç¿ëµÇ´Â ´Ù¾çÇÑ °ø±Þ ¹æ½Ä¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ¸·Î Æò°¡µÇ°í ÀÖ½À´Ï´Ù. ¿î¿µÀÚ´Â ±âº»ÀûÀÎ ¼º´É»Ó¸¸ ¾Æ´Ï¶ó °øÁ¤ È帧°úÀÇ ÀûÇÕ¼º, ´Ù¿î½ºÆ®¸² Ã˸Š¹× À¯Æ¿¸®Æ¼¿¡ ¹ÌÄ¡´Â ¿µÇâ, Æó±â¹° °ü¸® ¹× ±ÔÁ¦ Áؼö¿¡ ¹ÌÄ¡´Â ¿µÇâ µîÀÇ °üÁ¡¿¡¼­ ÀÌ·¯ÇÑ È­ÇÐÁ¦Ç°À» Æò°¡ÇÕ´Ï´Ù.

MEAMEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ¼Ö·ç¼ÇÀÇ Á¶´Þ ¹× ¹èÆ÷°¡ ±â¼ú ¹ßÀü, ±ÔÁ¦ ¾Ð·Â, ¼­ºñ½º ÁöÇâÀû »ó¾÷ ¸ðµ¨¿¡ µû¶ó ¾î¶»°Ô º¯È­Çϰí Àִ°¡?

±â¼ú Çõ½Å, ȯ°æ ¸ð´ÏÅ͸µ °­È­, ¿î¿µ ÃÖÀûÈ­¿¡ ´ëÇÑ °¡¼ÓÈ­ µÈ ÁýÁßÀ¸·Î H2S ¿ÏÈ­ ȯ°æÀÌ º¯È­Çϰí ÀÖ½À´Ï´Ù. Á¦¾î ½Ã½ºÅÛ ¹× ¼¾¼­ ÅëÇÕÀÇ ¹ßÀüÀ¸·Î º¸È£ ³óµµ¸¦ ´õ ³ôÀº Á¤È®µµ·Î À¯ÁöÇÏ´Â Çǵå¹é Á¦¾î ¿¬¼Ó ÁÖÀÔ Àü·«ÀÌ °¡´ÉÇÏ¿© È­ÇÐÁ¦Ç°ÀÇ °úµµÇÑ »ç¿ëÀ» ÁÙÀÌ°í ¾ÈÀü ¸¶ÁøÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¸Þź¿Ã ȣȯ¼º°ú ¼ö¼º Á¦Á¦ Ç÷§ÆûÀ» ¸ñÇ¥·Î ÇÑ ¿ë¸Å ¿£Áö´Ï¾î¸µÀ» ÅëÇØ ÀÎÇÁ¶ó ¹× Ãß¿î ±âÈÄ ¿ä°ÇÀÌ ´Ù¸¥ ½Ã¼³¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖ´Â À¯¿¬¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ °ü¼¼ Á¶Ä¡°¡ È­ÇÐÁ¦Ç°ÀÇ À¯È¿¼ºÀ» º¯°æÇÏÁö ¾Ê°íµµ °ø±Þ¸Á, Á¶´Þ Àü·«, ¾÷¹«»ó ¼±ÅÃÀ» À籸¼ºÇÒ ¼ö ÀÖ´Â ¹æ¹ý Æò°¡

°ü¼¼ Á¶Ä¡ÀÇ µµÀÔ°ú ÁøÀüÀº H2S 󸮿¡ »ç¿ëµÇ´Â Ư¼ö È­ÇÐÁ¦Ç°ÀÇ °ø±Þ¸Á¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖÀ¸¸ç, ±âº» È­ÇÐÁ¦Ç°À» º¯°æÇÏÁö ¾Ê°íµµ °ø±Þ¾÷üÀÇ °æÁ¦¼º°ú Á¶´Þ Àü·«À» ¹Ù²Ü ¼ö ÀÖ½À´Ï´Ù. °ü¼¼°¡ Àû¿ëµÇ¸é ¼öÀÔ¿¡ ÀÇÁ¸ÇÏ´Â »ç¾÷¿¡¼­´Â »ó·ú ºñ¿ëÀÌ »ó½ÂÇÒ ¼ö ÀÖÀ¸¸ç, ¹ÙÀ̾î´Â Á¶´Þ Æ÷Æ®Æú¸®¿À¸¦ Àç°ËÅäÇÏ°í ±¹³» »ý»ê´É·ÂÀ» Æò°¡Çϰí ÇöÁö ÆÇ¸ÅÀÚ¿ÍÀÇ Çù·ÂÀ» °­È­ÇÏ¿© ³ëÃâÀ» ÁÙÀÏ Çʿ䰡 ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¹ÙÀ̾îµéÀÌ ´ÜÀÏ ºñ¿ë ¿ìÀ§º¸´Ù´Â °ø±ÞÀÇ ¿¬¼Ó¼º°ú ¿¹Ãø °¡´ÉÇÑ ¹°·ù¸¦ ¿ì¼±½ÃÇϱ⠶§¹®¿¡ ´Ï¾î¼î¾î¸µ°ú ´Ù°¢È­ ÀÌ´Ï¼ÅÆ¼ºê¸¦ °¡¼ÓÈ­ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.

ÇüÅÂ, ¹è¼Û, ó¸® ´Ü°è, ¿ë¸Å ±â¹Ý, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, À¯Åë ä³ÎÀÇ ¿ªÇÐÀ» ¼¼ºÐÈ­ÇÏ´Â ºÎ¹® Áß½ÉÀÇ °üÁ¡À¸·Î ¸ÂÃãÇü Àü·«À» ½ÇÇöÇÕ´Ï´Ù.

¼¼ºÐÈ­´Â MEA - Æ®¸®¾ÆÁø ¼Ö·ç¼ÇÀÌ ±â¼úÀû ¿ä±¸¿Í ¿î¿µ»óÀÇ Á¦¾à¿¡ ¸Â°Ô ¾î¶»°Ô Á¶Á¤µÇ´ÂÁö ÀÌÇØÇÒ ¼ö ÀÖ´Â ±¸Á¶È­µÈ ·»Á Á¦°øÇÕ´Ï´Ù. Çüź°·Î ½ÃÀåÀº ¾×ü¿Í °íü, º¸°ü °í·Á »çÇ×, Åõ¿© ÀåºñÀÇ ÀûÇÕ¼º, ÇöÀå Ãë±Þ ÇÁ·ÎÅäÄÝ¿¡ µµ¿òÀÌ µÇ´Â ¾×ü¿Í °íü·Î Á¶»çµÇ¾ú½À´Ï´Ù. Àü´Þ ¹æ¹ý¿¡ µû¶ó ½ÃÀåÀº ¹èÄ¡/½½·¡±× ÁÖÀÔ, ¿¬¼Ó ÁÖÀÔ, ´Ù¿î Ȧ ½ºÄûÁî, ÆÄÀÌÇÁ¶óÀÎ ¹°¹æ¿ï, ÀúÀå ÅÊÅ© ÁÖÀÔ, Ÿ¿ö/Á¢Ã˱â ÀåÄ¡, ¿¬¼Ó ÁÖÀÔÀº Çǵå¹é Á¦¾î ÁÖÀÔ°ú °íÁ¤ ¼Óµµ ÁÖÀÔÀ¸·Î ¼¼ºÐÈ­µË´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ »ó¾÷Àû, ±ÔÁ¦Àû, ¾÷¹«Àû Çʿ伺À» °­Á¶ÇÑ Áö¿ªº° ºÐ¼®À» ÅëÇØ ÁøÃâ Àü·«¿¡ ´ëÇÑ °¡À̵å¶óÀÎÀ» Á¦½ÃÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ H2S û¼Ò ¼Ö·ç¼Ç ¼ö¿ä ÃËÁø¿äÀÎ, °ø±Þ ¿É¼Ç, ±ÔÁ¦ ¹è°æÀº Áö¿ª ¿ªÇп¡ ÀÇÇØ Çü¼ºµË´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â ´Ù¾çÇÑ »ý»ê À¯¿ª°ú ¼º¼÷ÇÑ ¹Ìµå½ºÆ¼¸² ÀÎÇÁ¶ó°¡ ¹Ìµå½ºÆ¼¸² ¹× ´Ù¿î½ºÆ®¸² ó¸® Àåºñ¿Í ÅëÇÕÇÏ´Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¹Ý¸é, ºÏ¹ÌÀÇ ±â¼ú äÅÃÀº È­ÇÐÁ¦Ç° »ç¿ë·®°ú ¾ÈÀü¼ºÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ÀÚµ¿È­¿Í Çǵå¹é Á¦¾î ÁÖÀÔÀ» ¼±È£ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. À¯·´ÀÇ ÀϺΠÁö¿ª¿¡¼­´Â ¾ö°ÝÇÑ ±ÔÁ¦¿Í ȯ°æ ±ÔÁ¤ Áؼö°¡ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀϺΠ»ç¾÷¿¡¼­ ¿ä±¸µÇ´Â ´ë·®ÀÇ º¹ÀâÇÑ »ç¿ö ¼­ºñ½º ¿ä°Ç°ú ´ëÁ¶¸¦ ÀÌ·ç¸ç ÀúÀÜ·ù Á¦Çü°ú ´ë¿ë·® ¼­ºñ½º ¸ðµ¨ ¸ðµÎ¿¡ ´ëÇÑ ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

°æÀï ȯ°æ°ú °æÀï »óȲ °í·Á : ±â¼ú °ËÁõ, ÅëÇÕ ¼­ºñ½º ¸ðµ¨, ½ºÆ©¾îµå½Ê ÇÁ·Î±×·¥À» ÅëÇØ Áö¼ÓÀûÀÎ Â÷º°È­¸¦ ½ÇÇöÇÕ´Ï´Ù.

MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀúÀÇ °æÀï·ÂÀº ±â¼úÀû ³ëÇÏ¿ì, ¼­ºñ½º Á¦°ø ´É·Â, Áö¿ªÀû ÀÔÁö µî ´Ù¾çÇÑ ¿ä¼ÒµéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Çü¼ºµÈ °ÍÀÔ´Ï´Ù. ÀÏ·ù °ø±Þ¾÷ü´Â Á¾ÇÕÀûÀÎ ±â¼ú ¹®¼­, 󸮻ó ¹× ¿ë¸Å ±â¹Ý ȣȯ¼º Å×½ºÆ®, ´Ù¿îȦµå ½ºÄûÁî¿¡¼­ Ÿ¿ö/Á¢Ã˱â ÁÖÀÔ¿¡ À̸£±â±îÁö º¹ÀâÇÑ Àü´Þ ¹æ¹ýÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î Â÷º°È­¸¦ ²ÒÇÕ´Ï´Ù. °ø±Þ ¹× ¸ð´ÏÅ͸µ, ÁÖÀÔ ÃÖÀûÈ­, ±³À°À» °áÇÕÇÑ Á¾ÇÕÀûÀÎ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â ±â¾÷Àº ³»ºÎ ÆÀÀÇ ºÎ´ãÀ» ÁÙÀÌ°í ºÎ½Ä ¹× Ȳȭ¹° À§ÇèÀ» È¿°úÀûÀ¸·Î Á¦¾îÇÏ´Â µ¥ °É¸®´Â ½Ã°£À» ´ÜÃàÇÏ¿© °í°´°úÀÇ °ü°è¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½Å·Ú¼ºÀ» ³ôÀ̰í, ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨Çϸç, H2S û¼Ò±â ÇÁ·Î±×·¥À» ¾ÈÀü ¹× Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕ½Ã۱â À§ÇØ ¿î¿µÀÚ¿Í °ø±Þ¾÷ü°¡ ÃëÇØ¾ß ÇÒ ½Ç¿ëÀûÀÎ Àü·«Àû Á¶Ä¡

¾÷°è ¸®´õµéÀº Á¶»ç °á°ú¸¦ ÃøÁ¤ °¡´ÉÇÑ ¾÷¹«Àû ÀÌÀÍÀ¸·Î ¿¬°áÇϱâ À§ÇØ ½ÇÇà °¡´ÉÇÑ ÀÏ·ÃÀÇ Çൿ¿¡ ¿ì¼±¼øÀ§¸¦ µÎ¾î¾ß ÇÕ´Ï´Ù. ù°, ÀÎÇÁ¶ó¿Í °æÁ¦¼ºÀÌ Çã¿ëÇÏ´Â ÇÑ Çǵå¹é Á¦¾î ¿¬¼Ó ÁÖÀÔ¿¡ ÅõÀÚÇÏ´Â ÇÑÆí, Á¦¾àÀÌ ÀÖ´Â Àڻ꿡 ´ëÇØ¼­´Â ´ë»ó ¹èÄ¡ ¶Ç´Â ´Ù¿îȦ ½ºÄûÁî ¿É¼ÇÀ» À¯ÁöÇÏ¿© Åõ¿© Àü·«À» °øÁ¤ÀÇ Çö½Ç¿¡ ¸Â°Ô Á¶Á¤ÇÕ´Ï´Ù. µÑ°, ´Ù¿î½ºÆ®¸² ´ÜÀ§ ¹× Æó±â¹° È帧¿¡ ¿¹±âÄ¡ ¾ÊÀº ¿µÇâÀ» ¹ÌÄ¡Áö ¾Êµµ·Ï ´ë»ó ó¸® ´Ü°è ¹× ¿ë¸Å ±â¹Ý¿¡ ´ëÇÑ ¾ö°ÝÇÑ ÀûÇÕ¼º Å×½ºÆ®¸¦ ¼öÇàÇÏ°í ±× °á°ú¸¦ ¿î¿µÆÀÀÌ °øÀ¯ÇÏ´Â ±â¼ú µ¥ÀÌÅÍ ½ÃÆ®¿¡ ¹®¼­È­ÇØ¾ß ÇÕ´Ï´Ù.

1Â÷ Á¶»ç, ÇöÀå °ËÁõ, ±â¼ú ¹®ÇåÀÇ ÅëÇÕÀ» ÅëÇÕÇÑ ¾ö°ÝÇÑ È¥ÇÕ ¹æ¹ý·ÐÀû Á¶»ç Á¢±Ù¹ýÀ» ÅëÇØ ½Ç¿ëÀûÀÌ°í ¿ËÈ£ÇÒ ¼ö ÀÖ´Â °á·ÐÀ» µÞ¹ÞħÇÕ´Ï´Ù.

Á¶»ç ¹æ¹ýÀº ÀÏÂ÷Àû ±â¼ú Âü¿©, ÇöÀå °ËÁõ, ±¸Á¶È­µÈ ºÐ¼®À» °áÇÕÇÏ¿© È®½ÇÇÏ°í ½Ç¿ëÀûÀÎ ¹ß°ßÀ» º¸ÀåÇÕ´Ï´Ù. È­ÇÐ ±â¼úÀÚ, HSE Àü¹®°¡, ¿î¿µ °ü¸®ÀÚ¿ÍÀÇ ±â¼ú ¸é´ã ¹× ¿öÅ©¼¥À» ÅëÇØ ´Ù¾çÇÑ °øÁ¤ È帧ÀÇ Åõ¿© ¹æ¹ý, ÀûÇÕ¼º ¹®Á¦, ¿¹»ó ¼º´É¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °üÁ¡À» Á¦°øÇß½À´Ï´Ù. ÇöÀå °ËÁõ ÀÛ¾÷¿¡´Â ´ëÇ¥ÀûÀÎ ÇÁ·ÎÁ§Æ®ÀÇ Åõ¿© ±â·Ï, ó¸® °á°ú ¹× ÀûÇÕ¼º º¸°í¼­ °ËÅä°¡ Æ÷ÇԵǾúÀ¸¸ç, Á¦Çü ¹× °ø±Þ ¹æ¹ýÀÇ ¼±ÅÃÀÌ ¿îÀü ¼º´É¿¡ ¾î¶»°Ô ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ¼³¸íÇß½À´Ï´Ù.

±â¼ú, ¿î¿µ, Á¶´ÞÀÇ ÅëÇÕÀû ³ë·ÂÀÌ ¾î¶»°Ô Áö¼Ó°¡´ÉÇÑ ¼º°ú¿Í ½ºÆ©¾îµå½Ê ¼º°ú¸¦ âÃâÇÒ ¼ö ÀÖ´ÂÁö¸¦ °­Á¶ÇÏ´Â Àü·«Àû ÇÔÀÇ ÅëÇÕ

°á·ÐÀûÀ¸·Î, MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú´Â ¿î¿µ È¿À²¼º°ú ȯ°æÀû Ã¥ÀÓ¿¡ ´ëÇÑ ´õ ³ôÀº ±â´ëÄ¡¸¦ ÃæÁ·½Ã۱â À§ÇØ ÁøÈ­Çϸ鼭 Ȳȭ¹° À§Çè °ü¸®¿¡ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» °è¼Ó ¼öÇàÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¿ä¾àÇß½À´Ï´Ù. MEA - Æ®¸®¾ÆÁø H2S Æ÷ÁýÁ¦´Â °¡½º, ¼ö¼º ¹× ¾×ü źȭ¼ö¼Ò È帧¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â µµ±¸·Î ³²¾Æ ÀÖÁö¸¸, ÅëÇÕ ¼­ºñ½º ¸ðµ¨, Á¤È®ÇÑ ¿ë·® Á¦¾î ¹× Áö¿ªº°·Î Á¶Á¤µÈ °ø±Þ Àü·«À» ÅëÇØ ±× Àü·«Àû °¡Ä¡°¡ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. Á¦Çü ¼±ÅÃ, °ø±Þ ¹æ½Ä, ¼­ºñ½º ÆÄÆ®³Ê½ÊÀ» ¿î¿µ»óÀÇ Á¦¾à Á¶°Ç°ú Àû±ØÀûÀ¸·Î ÀÏÄ¡½ÃŰ´Â Á¶Á÷Àº º¸´Ù ÀϰüµÈ °á°ú¸¦ º¸ÀåÇÏ°í ´Ù¿î½ºÆ®¸²¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå ºÐ¼® ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : Çü»óº°

  • ¾×ü
  • °íü

Á¦9Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : °ø±Þ ¹æ¹ýº°

  • ¹èÄ¡/½½·¡±× ÁÖÀÔ
  • ¿¬¼Ó ÁÖÀÔ
    • Çǵå¹é Á¦¾î ºÐ»ç
    • °íÁ¤ ·¹ÀÌÆ® ÁÖÀÔ
  • ´Ù¿îȦ ½ºÄûÁî
  • ÆÄÀÌÇÁ¶óÀÎ µå¸³
  • ÀúÀå ÅÊÅ© ÁÖÀÔ
  • Ÿ¿ö/ÄÁÅÃÅÍ À¯´Ö

Á¦10Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : ó¸® »óº°

  • ¼ö¼º À¯µ¿Ã¼
  • °¡½º À¯µ¿Ã¼
    • ¿¬·á °¡½º¡¤Ç÷¹¾î °¡½º
    • õ¿¬°¡½º
  • ¾×ü źȭ¼ö¼Ò

Á¦11Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : ¿ëÁ¦ º£À̽ºº°

  • ¸Þź¿Ã ÇÔÀ¯
  • ¼ö¼º

Á¦12Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : ¿ëµµº°

  • õ¿¬°¡½º ó¸®
  • ¼®À¯ ¹× °¡½º ó¸®
    • ´Ù¿î½ºÆ®¸²
    • ¹Ìµå½ºÆ®¸²
    • ¾÷½ºÆ®¸²
  • »ê¼º ¼öó¸®

Á¦13Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¹ÙÀÌ¿À°¡½º °³¹ß¾÷ü¡¤À¯Æ¿¸®Æ¼
  • Ž»ç¡¤»ý»ê ¿ÀÆÛ·¹ÀÌÅÍ
  • »ê¾÷ ½Ã¼³¡¤ÀÚġü
  • ¹Ìµå½ºÆ®¸² ¿ÀÆÛ·¹ÀÌÅÍ
  • À¯Àü ¼­ºñ½º ȸ»ç
  • Á¤À¯¼Ò¡¤¼®À¯È­ÇÐ Ç÷£Æ®

Á¦14Àå MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå : À¯Åë ä³Îº°

  • Á÷Á¢ ÆÇ¸Å
  • µµ¸Å¾÷ü

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ MEA-Æ®¸®¾ÆÁø H2S ½ºÄ³ºóÀú ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024³â)
  • °æÀï ºÐ¼®
    • Schlumberger Limited
    • Hexion Inc.
    • Ecolab Inc
    • Innospec Inc
    • Geocon Group
    • VENUS ETHOXYETHERS PVT.LTD.
    • Foremark Performance Chemicals
    • Chemtex Speciality Limited
    • Lubrizol Corporation
    • Ataman Kimya A.S.
    • JAY DINESH CHEMICALS
    • Q2Technologies
    • International Chemical Service Ltd.
    • BERRYMAN CHEMICAL Inc.
    • RX MARINE INTERNATIONAL
    • SINOTRUST INTERNATIONAL TRADE CO. LTD
    • IRO GROUP INC.
    • The Dow Chemical Company
    • Dorf Ketal Chemicals

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

KSM 25.09.16

The MEA-Triazine H2S Scavengers Market was valued at USD 195.72 million in 2024 and is projected to grow to USD 204.34 million in 2025, with a CAGR of 4.45%, reaching USD 254.18 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 195.72 million
Estimated Year [2025] USD 204.34 million
Forecast Year [2030] USD 254.18 million
CAGR (%) 4.45%

Comprehensive orientation to MEA-triazine H2S scavengers that clarifies chemical behavior, operational roles, and procurement priorities for technical and commercial leaders

MEA-triazine H2S scavengers occupy a critical intersection of chemistry and field operations, delivering chemical reactivity that neutralizes hydrogen sulfide across oil, gas and aqueous streams while addressing safety and environmental drivers. The compound class is valued for its specificity toward sulfide species, its amenability to multiple solvent bases, and its adaptability to diverse delivery methods used across upstream, midstream and downstream operations. Beyond fundamental performance, operators evaluate these chemistries through the lenses of compatibility with process streams, impacts on downstream catalysts and utilities, and implications for waste management and regulatory compliance.

Across the value chain, decision-makers balance technical efficacy with logistical considerations such as storage, dosing infrastructure and personnel training. Continuous injection regimes typically demand more sophisticated control systems but offer steady-state protection, while batch or downhole squeeze approaches can provide targeted remediation where infrastructure is constrained. The growing emphasis on decarbonization, worker safety and product stewardship is reshaping procurement criteria, elevating attributes like reduced byproduct load, lower volatility, and simplified handling. Consequently, suppliers and end users are increasingly aligning on formulations and service models that integrate technical assessment with operational support, ensuring chemical interventions deliver both immediate mitigation and long-term process resilience.

How technological advances, regulatory pressure, and service-oriented commercial models are reshaping procurement and deployment of MEA-triazine H2S scavenging solutions

The landscape for H2S mitigation is undergoing transformative shifts driven by technological innovation, stronger environmental oversight, and an accelerating focus on operational optimization. Advances in control systems and sensor integration are enabling feedback-controlled continuous injection strategies that maintain protective concentrations with greater precision, reducing chemical overuse and improving safety margins. At the same time, solvent engineering toward methanol-compatible and water-based formulation platforms has expanded deployment flexibility across facilities with varying infrastructure and cold-climate requirements.

Regulatory trends and corporate sustainability commitments are nudging operators toward chemistries and service offerings that minimize environmental footprints and simplify waste handling. This has prompted suppliers to invest in low-residue formulations and to develop comprehensive compatibility data packages for natural gas, fuel gas, flare streams, and liquid hydrocarbons. Moreover, the bundling of chemical supply with technical services-such as real-time monitoring, dosing optimization, and targeted training-has shifted commercial models from transactional supply to performance-oriented partnerships, reshaping supplier differentiation and customer expectations. These converging shifts create opportunities for differentiated value propositions that emphasize measurable operational improvements, lifecycle risk reduction, and accelerated regulatory compliance.

Assessment of how United States tariff measures can reshape supply chains, sourcing strategies, and operational choices without altering chemical efficacy

The introduction and evolution of tariff measures can materially affect supply chains for specialty chemicals used in H2S treatment, altering supplier economics and procurement strategies without changing the fundamental chemistry. When tariffs are applied, import-dependent operations may experience elevated landed costs, prompting buyers to reassess sourcing portfolios, evaluate domestic capacity, and increase collaboration with regional distributors to mitigate exposure. Such changes often accelerate nearshoring and diversification initiatives as buyers prioritize supply continuity and predictable logistics over singular cost advantages.

Tariff-driven cost pressures also influence capital allocation decisions for dosing equipment and inventory management. Operators might shift toward dosing methods that reduce overall chemical consumption per unit of production, favoring continuous injection systems with feedback control to optimize usage and minimize waste. Conversely, some projects may delay capital-intensive upgrades, relying instead on operational best practices and targeted batch treatments. Over time, sustained tariff regimes tend to catalyze supplier strategies that emphasize local blending, strategic distributor partnerships, and contractual hedges to preserve competitiveness while maintaining service levels. These adaptations highlight an industry tendency to translate trade friction into structural changes in procurement, inventory strategy, and service design that prioritize resilience and predictable performance.

Segment-driven perspective that delineates form, delivery, phase treated, solvent base, application, end-user and distribution channel dynamics to inform tailored strategies

Segmentation provides a structured lens to understand how MEA-triazine solutions are tailored to technical needs and operational constraints. Based on Form, the market is studied across Liquid and Solid, which informs storage considerations, dosing equipment compatibility and on-site handling protocols. Based on Delivery Method, the market is studied across Batch/Slug Dosing, Continuous Injection, Downhole Squeeze, Pipeline Drip, Storage Tank Dosing, and Tower/Contactor Unit, with Continuous Injection further delineated into Feedback-Controlled Injection and Fixed-Rate Injection; this segmentation clarifies trade-offs between capital investment, dosing precision and responsiveness to process variability.

Based on Phase Treated, the market is studied across Aqueous Streams, Gas Streams, and Liquid Hydrocarbons, and the Gas Streams category is further studied across Fuel Gas & Flare Gas and Natural Gas, each presenting distinct compatibility and downstream processing considerations. Based on Solvent Base, the market is studied across Methanol-Containing and Water-Based systems, which determine freeze protection, solvent interactions and regulatory handling regimes. Based on Application, the market is studied across Natural Gas Sweetening, Oil & Gas Treatment, and Sour Water Treatment, with Oil & Gas Treatment further studied across Downstream, Midstream, and Upstream operations, highlighting where process conditions and access constraints differ. Based on End User, the market is studied across Biogas Developers & Utilities, Exploration & Production Operators, Industrial Facilities & Municipalities, Midstream Operators, Oilfield Service Companies, and Refineries & Petrochemical Plants, which shows how procurement cycles and technical expectations vary by operator type. Based on Distribution Channel, the market is studied across Direct Sales and Distributor pathways, capturing distinctions in service levels, technical support and contractual structures.

These segmentation dimensions collectively guide where formulation innovation, dosing strategy and service models can yield the greatest value. For example, the intersection of feed phase and delivery method often determines whether continuous, feedback-controlled injection or periodic batch dosing will deliver superior outcomes, while solvent base choices influence logistics in cold climates and compatibility with downstream treatment units. Understanding these segmentation relationships enables suppliers and end users to prioritize technical validation, performance guarantees and service bundling that match the operational realities of each use case.

Regional analysis highlighting distinct commercial, regulatory and operational imperatives across the Americas, Europe, Middle East & Africa, and Asia-Pacific to guide deployment strategies

Regional dynamics shape demand drivers, supply options and regulatory contexts for H2S scavenging solutions across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, diverse production basins and a mature midstream infrastructure create demand for solutions that integrate with midstream and downstream processing units, while North American technological adoption often favors automation and feedback-controlled injection to optimize chemical usage and safety. Moving to Europe, Middle East & Africa, market drivers are heterogeneous: regulatory stringency and environmental compliance in parts of Europe contrast with the high-volume, complex sour service requirements of some Middle Eastern and African operations, creating opportunities for both low-residue formulations and high-capacity service models.

In the Asia-Pacific region, a combination of rapid infrastructure development, expanding natural gas utilization, and diverse climatic conditions drives demand for formulations adaptable to both methanol-containing and water-based systems. Each region also presents distinct logistics and distribution considerations: proximity to blending and manufacturing sites influences cost and lead times, while regional standards and permitting processes affect product acceptance and time-to-market. Suppliers that align formulation compatibility, technical support and distribution strategies with these regional distinctions will be best positioned to capture value and respond rapidly to operational and regulatory shifts.

Competitive and supplier landscape insights emphasizing technical validation, integrated service models, and stewardship programs that create durable differentiation

Competitive dynamics in the MEA-triazine H2S scavenger space are shaped by a mixture of technical know-how, service delivery capability and regional footprint. Leading suppliers differentiate through comprehensive technical documentation, compatibility testing across phases treated and solvent bases, and an ability to support complex delivery methods from downhole squeezes to tower/contactor dosing. Companies with integrated service offerings that combine supply with monitoring, dosing optimization and training command stronger customer relationships because they reduce the burden on internal teams and shorten time to effective control of corrosion and sulfide hazards.

Strategic partnerships between chemical producers and oilfield service providers are increasingly common, enabling bundled proposals that address both product performance and field implementation risks. Investment in laboratory validation, tailored pilot programs and field trials serves as an effective barrier to entry, since operators prioritize suppliers who can demonstrate predictable outcomes in their specific process environment. Additionally, transparent stewardship programs-covering safe handling, waste characterization and disposal pathways-are an important differentiator for operators managing regulatory scrutiny and sustainability goals. Competitive positioning therefore rests on a blend of formulation competence, field service excellence and rigorous technical support.

Practical strategic actions for operators and suppliers to enhance reliability, reduce total cost of ownership, and align H2S scavenger programs with safety and sustainability objectives

Industry leaders should prioritize a set of actionable moves that translate research insights into measurable operational benefits. First, align dosing strategy with process realities by investing in feedback-controlled continuous injection where infrastructure and economics permit, while retaining targeted batch or downhole squeeze options for constrained assets. Second, insist on rigorous compatibility testing across targeted phases treated and solvent bases to avoid unintended impacts on downstream units or waste streams, and document these results in shared technical datasheets for operational teams.

Third, strengthen procurement resiliency through diversified sourcing and local blending partnerships to mitigate tariff and logistics volatility, while establishing contractual terms that include service-level obligations and supply continuity guarantees. Fourth, integrate chemical supply with technical services such as monitoring, training and dosing optimization to ensure that suppliers deliver measurable performance rather than solely product shipments. Finally, embed environmental and safety stewardship into supplier selection by prioritizing formulations with lower residual burdens and clear waste management pathways, and by requiring suppliers to support regulatory filings and permitting processes when needed. These measures will improve operational reliability, reduce total cost of ownership and align chemical programs with broader corporate safety and sustainability goals.

Rigorous mixed-methods research approach integrating primary engagement, field validation, and technical literature synthesis to underwrite practical and defensible conclusions

The research methodology combines primary technical engagement, field validation, and structured analysis to ensure robust and actionable findings. Technical interviews and workshops with chemical engineers, HSE specialists, and operations managers provided first-hand perspectives on dosing practices, compatibility concerns, and performance expectations across different process streams. Field validation efforts included review of dosing logs, treatment outcomes and compatibility reports from representative projects to contextualize how formulation and delivery method choices manifest in operational performance.

Secondary research encompassed a review of public regulatory frameworks, industry guidance on H2S handling, and technical literature on MEA-triazine reactivity and byproduct formation. Synthesis involved mapping segmentation dimensions against operational constraints, technology options and commercial models to identify areas where formulation innovation or service redesign could deliver disproportionate value. Throughout the process, findings were cross-validated with multiple stakeholders to reduce bias and to ensure that recommendations reflect both technical feasibility and commercial practicality.

Synthesis of strategic implications that underscore how integrated technical, operational, and procurement actions create durable performance and stewardship outcomes

The conclusion synthesizes how MEA-triazine H2S scavengers will continue to play a pivotal role in managing sulfide risks while evolving to meet higher expectations for operational efficiency and environmental stewardship. The chemistry remains a dependable tool across gas, aqueous and liquid hydrocarbon streams, but its strategic value is increasingly realized through integrated service models, precise dosing control and regionally attuned supply strategies. Organizations that proactively align formulation selection, delivery method and service partnerships with operational constraints will secure more consistent outcomes and reduced downstream impacts.

Looking forward, durable competitive advantage will accrue to those suppliers and operators that combine rigorous technical validation with responsive service delivery and clear stewardship practices. Such an approach not only mitigates immediate sulfide-related risks but also supports broader objectives around safety, regulatory compliance, and sustainable operations. The pathway to improved outcomes is therefore multidisciplinary, requiring chemistry expertise, operational engineering, and pragmatic procurement strategies to work in concert.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Strategic partnerships between chemical suppliers and EPC contractors to streamline on-site H2S treatment solutions
  • 5.2. Growing preference for multifunctional scavengers capable of simultaneous corrosion inhibition and H2S removal in aging infrastructure
  • 5.3. Integration of automation and digital monitoring systems for H2S scavenger dosing optimization in oilfields
  • 5.4. Development of tailored H2S scavenger blends for high-temperature, high-pressure gas processing applications
  • 5.5. Implementation of real-time analytics and IoT-enabled dosing control to reduce chemical consumption in gas sweetening operations
  • 5.6. Expansion of sour gas projects globally driving short-term reliance on non-regenerative triazine scavenging to bridge amine capacity gaps
  • 5.7. Safety and compliance initiatives favoring sealed transfer systems and closed handling to lower workforce exposure to H2S and formaldehyde during chemical use
  • 5.8. Operational programs targeting dithiazine deposition control, including proactive pigging and solvent cleaning, to maintain throughput in sour gathering networks

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. MEA-Triazine H2S Scavengers Market, by Form

  • 8.1. Introduction
  • 8.2. Liquid
  • 8.3. Solid

9. MEA-Triazine H2S Scavengers Market, by Delivery Method

  • 9.1. Introduction
  • 9.2. Batch/Slug Dosing
  • 9.3. Continuous Injection
    • 9.3.1. Feedback-Controlled Injection
    • 9.3.2. Fixed-Rate Injection
  • 9.4. Downhole Squeeze
  • 9.5. Pipeline Drip
  • 9.6. Storage Tank Dosing
  • 9.7. Tower/Contactor Unit

10. MEA-Triazine H2S Scavengers Market, by Phase Treated

  • 10.1. Introduction
  • 10.2. Aqueous Streams
  • 10.3. Gas Streams
    • 10.3.1. Fuel Gas & Flare Gas
    • 10.3.2. Natural Gas
  • 10.4. Liquid Hydrocarbons

11. MEA-Triazine H2S Scavengers Market, by Solvent Base

  • 11.1. Introduction
  • 11.2. Methanol-Containing
  • 11.3. Water-Based

12. MEA-Triazine H2S Scavengers Market, by Application

  • 12.1. Introduction
  • 12.2. Natural Gas Sweetening
  • 12.3. Oil & Gas Treatment
    • 12.3.1. Downstream
    • 12.3.2. Midstream
    • 12.3.3. Upstream
  • 12.4. Sour Water Treatment

13. MEA-Triazine H2S Scavengers Market, by End User

  • 13.1. Introduction
  • 13.2. Biogas Developers & Utilities
  • 13.3. Exploration & Production Operators
  • 13.4. Industrial Facilities & Municipalities
  • 13.5. Midstream Operators
  • 13.6. Oilfield Service Companies
  • 13.7. Refineries & Petrochemical Plants

14. MEA-Triazine H2S Scavengers Market, by Distribution Channel

  • 14.1. Introduction
  • 14.2. Direct Sales
  • 14.3. Distributor

15. Americas MEA-Triazine H2S Scavengers Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa MEA-Triazine H2S Scavengers Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific MEA-Triazine H2S Scavengers Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Schlumberger Limited
    • 18.3.2. Hexion Inc.
    • 18.3.3. Ecolab Inc
    • 18.3.4. Innospec Inc
    • 18.3.5. Geocon Group
    • 18.3.6. VENUS ETHOXYETHERS PVT.LTD.
    • 18.3.7. Foremark Performance Chemicals
    • 18.3.8. Chemtex Speciality Limited
    • 18.3.9. Lubrizol Corporation
    • 18.3.10. Ataman Kimya A.S.
    • 18.3.11. JAY DINESH CHEMICALS
    • 18.3.12. Q2Technologies
    • 18.3.13. International Chemical Service Ltd.
    • 18.3.14. BERRYMAN CHEMICAL Inc.
    • 18.3.15. RX MARINE INTERNATIONAL
    • 18.3.16. SINOTRUST INTERNATIONAL TRADE CO. LTD
    • 18.3.17. IRO GROUP INC.
    • 18.3.18. The Dow Chemical Company
    • 18.3.19. Dorf Ketal Chemicals

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦