½ÃÀ庸°í¼­
»óǰÄÚµå
1803595

½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå : ¿¬±¸ Á¾·ùº°, °Ç°­ »óź°, ¼ºº°, ÃÖÁ¾»ç¿ëÀÚº°, Áúȯ ¿µ¿ªº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Experimental Cynomolgus Monkey Market by Research Type, Health Status, Gender, End-User, Disease Area - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 181 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 3¾ï 1,601¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 3¾ï 3,611¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© CAGRÀº 6.59%, 2030³â¿¡´Â 4¾ï 6,349¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ¿¬µµ(2024³â) 3¾ï 1,601¸¸ ´Þ·¯
±âÁØ ¿¬µµ(2025³â) 3¾ï 3,611¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 4¾ï 6,349¸¸ ´Þ·¯
CAGR(%) 6.59%

½Å¾à °³¹ß ¹× ¾ÈÀü¼º Æò°¡ ÆÄÀÌÇÁ¶óÀÎÀ» ¾Õ´ç±â´Â ÀüÀÓ»ó ¿¬±¸ °³¹ß¿¡¼­ °ÔÀâÀÌ¿ø¼þÀÌÀÇ Áß¿äÇÑ ¿ªÇÒ¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.

ºñÀΰ£ ¿µÀå·ù ¸ðµ¨À» ÀÌ¿ëÇÑ ÀüÀÓ»ó Æò°¡´Â »õ·Î¿î Ä¡·áÁ¦ÀÇ ¾ÈÀü¼º°ú À¯È¿¼ºÀ» È®º¸Çϱâ À§ÇÑ Ãʼ®ÀÌ µÇ°í ÀÖ½À´Ï´Ù. °ÔÀâÀÌ¿ø¼þÀÌ´Â Àΰ£°ú À¯ÀüÀû, »ý¸®Àû À¯»ç¼ºÀ» °¡Áö°í ÀÖ¾î ¿¬±¸ÀÚµéÀº ÀÓ»óÀû ÀÇ»ç°áÁ¤À» µÞ¹ÞħÇÒ ¼ö ÀÖ´Â ¹ø¿ª µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¸é¿ªÇÐÀû ¹ÝÀÀ ÇÁ·ÎÆÄÀÏÀº Àΰ£ »ý¹°ÇÐÀÇ Áß¿äÇÑ Ãø¸éÀ» ¹Ý¿µÇϸç, »ý¹°ÇÐÀû Á¦Á¦, ¼¼Æ÷ ±â¹Ý Ä¡·áÁ¦, ÀúºÐÀÚ ÀǾàǰÀÇ Æò°¡¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ¶ÇÇÑ, È®¸³µÈ ÄÝ·Î´Ï °ü¸®¿Í Ç¥ÁØÈ­µÈ Å×½ºÆ® ÇÁ·ÎÅäÄÝÀº Àü ¼¼°è ¸ðµç ½ÇÇè½Ç¿¡¼­ ÀçÇö °¡´ÉÇÑ °á°ú¸¦ Á¦°øÇÕ´Ï´Ù.

À¯Àüü ¿¬±¸¸¦ ÀçÁ¤ÀÇÇϰí ÀüÀÓ»ó Çõ½Å°ú ±ÔÁ¦ Áؼö¸¦ °¡¼ÓÈ­ÇÏ´Â Áß¿äÇÑ ±â¼úÀû, ±ÔÁ¦Àû Àüȯ ºÐ¼®

Çõ½ÅÀûÀÎ ±â¼ú°ú ÁøÈ­ÇÏ´Â ±ÔÁ¦ Á¤Ã¥À¸·Î ÀüÀÓ»ó ¿¬±¸ÀÇ ÆÐ·¯´ÙÀÓÀÌ ÀçÆíµÇ°í ÀÖÀ¸¸ç, ±× ÃÖÀü¼±¿¡ ÀÖ´Â °ÍÀÌ ¹Ù·Î °ÔÀâÀÌ¿ø¼þÀÌÀÔ´Ï´Ù. CRISPR°ú °°Àº À¯ÀüÀÚ ÆíÁý µµ±¸ÀÇ °³¹ß°ú Á¤È®ÇÑ À¯Àüü Ư¼º ºÐ¼®À¸·Î ¸ÂÃãÇü Áúº´ ¸ðµ¨ °³¹ßÀÌ °¡´ÉÇØÁö¸é¼­ Ä¡·á¹ý °ËÁõÀ» À§ÇÑ »õ·Î¿î ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ °íÇØ»óµµ À̹Ì¡ ±â¼ú°ú in vivo ÅÚ·¹¸ÞÆ®¸®¸¦ ÅëÇØ »ý¸®Àû ¹ÝÀÀÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ ¿ëÀÌÇØÁ® ±âÁ¸ÀÇ Ä§½ÀÀû ¹æ¹ý¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº µ¥ÀÌÅÍÀÇ Ç°ÁúÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó º¸´Ù ÀεµÀûÀÎ ¿¬±¸ ¼³°è¿¡ ´ëÇÑ ¾à¼ÓÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ ÃÖ±Ù °ü¼¼ Á¶Ä¡°¡ °ø±Þ¸Á ¿ªÇп¡ ¹ÌÄ¡´Â ¸·´ëÇÑ ¿µÇâ ¿¬±¸ ¿¬±¸ ºñ¿ë°ú ±ÔÁ¦¿¡ ´ëÇÑ ÀûÀÀ·Â ¿¬±¸

¼öÀÔ ºñÀΰ£ ¿µÀå·ù Ç¥º»¿¡ ´ëÇÑ ³ôÀº °ü¼¼ÀÇ µµÀÔÀº ÀüÀÓ»ó½ÃÇè °èȹ¿¡ º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. ¿ª»çÀûÀ¸·Î È®¸³µÈ °ø±Þ¸Á¿¡ ÀÇÁ¸ÇØ ¿Â ¿¬±¸±â°üÀº °¡°Ý º¯µ¿°ú ¸®µåŸÀÓÀÇ Àå±âÈ­¸¦ ¸ñ°ÝÇϸ鼭 ±âÁ¸ÀÇ Á¶´Þ ¹æ½Ä¿¡ µµÀüÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °ü¼¼ Á¶Ä¡´Â ¹ø½ÄÁö ¹× Ư¼ö ¿î¼Û °æ·Î¿¡µµ Àû¿ëµÇ¾î ¹°·ù ºñ¿ëÀ» Áõ°¡½ÃÄÑ º¸´Ù ¸é¹ÐÇÑ ¿¹ÃøÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±× °á°ú, ¿¬±¸ ¿¹»êÀº ¾Ð¹ÚÀ» ¹Þ°í, ÀÌÇØ°ü°èÀÚµéÀº ¾÷¹« ¿ì¼±¼øÀ§¸¦ Àç°ËÅäÇÏ°í ´Ù¸¥ Á¶´Þ Àü·«À» ¸ð»öÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù.

¿¬±¸ À¯Çü °Ç°­ »óÅ ¼ºº° ÃÖÁ¾»ç¿ëÀÚ ¹× Áúº´ ¿µ¿ªÀÌ ¿ø¼þÀÌ Á¶»ç ¿ëµµ¸¦ Çü¼ºÇÏ´Â ¹æ¹ýÀ» ¹àÈ÷´Â ½ÉÃþ ¼¼ºÐÈ­ ÆÐÅÏ ¹ß°ß

½Ã³ë³ë¸Þ»ì ÀüÀÓ»ó ½ÃÀåÀ» ¿¬±¸ À¯Çüº°·Î ¼¼ºÐÈ­ÇÏ¸é ¹Ì¹¦ÇÑ ¿ëµµ¿Í ÀÚ¿ø ¹èºÐÀÌ ¸íÈ®ÇØÁý´Ï´Ù. ÀǾàǰ À¯È¿¼º ½ÃÇè, »ý¹°ÇÐÀû Á¦Á¦¿¡ ÃÊÁ¡À» ¸ÂÃá ¿¬±¸´Â Ư¼öÇÑ ¸é¿ªÇÐÀû ºÐ¼®ÀÌ ÇÊ¿äÇϸç, ¼¼Æ÷ Ä¡·áÁ¦ ¿¬±¸¿¡´Â °íµµÀÇ Áٱ⼼Æ÷ ÃßÀû ¹× »ýÂø Æò°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ¹Ý¸é, ÀúºÐÀÚ È­ÇÕ¹°ÀÇ Æò°¡´Â ¾àµ¿ÇÐ ÇÁ·ÎÆÄÀϸµ°ú ´ë»ç »ùÇøµ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¾à¸®ÇÐ ¹× µ¶¼º ¿¬±¸´Â Áï°¢ÀûÀÎ ºÎÀÛ¿ëÀ» ¸ð´ÏÅ͸µÇÏ´Â ±Þ¼º µ¶¼º Æò°¡, Àå±âÀûÀÎ Á¾¾çÇÐÀû À§Çè Æò°¡¸¦ À§ÇØ ¼³°èµÈ ¹ß¾Ï¼º ½ÃÇè, Àå±âÀûÀÎ ³ëÃâ °á°ú¸¦ Æò°¡ÇÏ´Â ¸¸¼º µ¶¼º ¿¬±¸·Î ³ª´¹´Ï´Ù. ÀÌ·¯ÇÑ ÀüÀÓ»ó ¾ÈÀü¼º ½ÃÇèÀ» º¸¿ÏÇÏ´Â ¾ÈÀü¼º Æò°¡ ¿öÅ©Ç÷δ ´Ù±â°ü ºÐ¼®À» ÅëÇÕÇÑ Á¾ÇÕÀûÀÎ ÀüÀÓ»ó ¾ÈÀü¼º Æò°¡¿Í ÀáÀçÀû ¸é¿ª ¹ÝÀÀÀ» ÃøÁ¤ÇÏ´Â ¸é¿ª¿ø¼º ½ÃÇèÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

ÀüÀÓ»ó½ÃÇèÀÇ ¾÷¹« È¿À²¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ÀÇ Áö¿ªÀû Â÷ÀÌÀÇ Á߿伺À» ¹àÈü´Ï´Ù.

¾Æ¸Þ¸®Ä«¿¡¼­´Â ±âÁ¸ ÀÎÇÁ¶ó¿Í ±ÔÁ¦ Á¶È­¿¡ ÁßÁ¡À» µÎ¾î °ÔÀâÀÌ¿ø¼þÀÌ Á¶»ç¸¦ À§ÇÑ ¼º¼÷ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í Áß³²¹Ì ½Ã¼³µéÀº ÅëÇÕµÈ ¹ø½Ä ÇÁ·Î±×·¥°ú °£¼ÒÈ­µÈ ¼öÀÔ ±ÔÁ¦ÀÇ ÇýÅÃÀ» ¹Þ¾Æ ÀϰüµÈ ½Ã·á¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿î¿µ»óÀÇ ¾ÈÁ¤¼ºÀº ¾ö°ÝÇÑ ¿¬±¸ °èȹÀ» Áö¿øÇϰí, ¿¬±¸ ±â°üÀÌ °íµµÀÇ ÀÚµ¿È­ ¹× µðÁöÅÐ ÃßÀû ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© µ¥ÀÌÅÍ ¹«°á¼º ¹× ½ÃÇèÀÇ ÀçÇö¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ±× °á°ú, ¿¬±¸±â°üÀº ¸®¼Ò½º ÇÒ´çÀ» ÃÖÀûÈ­Çϰí ÇÁ·ÎÁ§Æ® ÀÏÁ¤À» º¸´Ù ¾ÈÁ¤ÀûÀ¸·Î À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

Çõ½ÅÀûÀÎ Àü·«Àû ÆÄÆ®³Ê½Ê°ú ÷´Ü ½ÇÇè½Ç ¼Ö·ç¼ÇÀ» ÅëÇØ ÀüÀÓ»ó ¿¬±¸¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä ¾÷°è Ç÷¹À̾ ¹àÈü´Ï´Ù.

¼¼°è ´ëÇü °³¹ß ¼öʱâ°üÀº °ÔÀâÀÌ¿ø¼þÀÌ ±â¹Ý ÀüÀÓ»ó ¿¬±¸ÀÇ ¸Å¿ì Áß¿äÇÑ ÃËÁøÀڷμ­ÀÇ ÀÔÁö¸¦ ±¸ÃàÇØ ¿Ô½À´Ï´Ù. ÀÓ»ó½ÃÇè ¼³°è, in vivo ½ÃÇè, ÀǾàǰ Çã°¡ ½Åû Áö¿øÀ» Æ÷ÇÔÇÑ ¿£µå Åõ ¿£µå ¼­ºñ½º¸¦ ÅëÇÕÇÔÀ¸·Î½á, ÀÌµé ±â¾÷Àº ½ºÆù¼­°¡ ±¹Á¦ Ç¥ÁØÀ» ÁؼöÇϸ鼭 ÇÁ·Î±×·¥À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À¸¶Ä¿ Áß½ÉÀÇ ¿£µåÆ÷ÀÎÆ®¿Í ÷´Ü ¿µ»ó Áø´ÜÀ» µµÀÔÇÏ´Â µî ¹æ¹ý·Ð Çõ½Å¿¡ ´ëÇÑ ³ë·ÂÀº ÀÓ»ó °³¹ßÀ» °£¼ÒÈ­ÇÏ´Â ¹ø¿ª µ¥ÀÌÅÍ Á¦°ø¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù.

°ÔÀâÀÌ¿ø¼þÀÌ ¿¬±¸ÀÇ À±¸®Àû °üÇà°ú °úÇÐÀû ¾ö°Ý¼ºÀ» °­È­Çϱâ À§ÇØ ¾÷°è ¸®´õµé¿¡°Ô ½Ç¿ëÀûÀÎ ±ÇÀå »çÇ×°ú Àü¼úÀû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õµéÀº ÀÚ¿¬ ¼­½ÄÁö¸¦ ¸ð¹æÇÑ Á¾ÇÕÀûÀΠȯ°æ °­È­ ÇÁ·Î±×·¥ºÎÅÍ ½ÃÀÛÇÏ¿© º¹Áö¸¦ ÃÖÀûÈ­Çϱâ À§ÇÑ ´Ü°èÀû Á¢±Ù ¹æ½ÄÀ» äÅÃÇÒ °ÍÀ» ±ÇÀåÇÕ´Ï´Ù. °¡´ÉÇÏ¸é »çȸÀû ÁְŸ¦ µµÀÔÇÏ°í ¸¶Ãë ÇÁ·ÎÅäÄÝÀ» °³¼±ÇÔÀ¸·Î½á ½ºÆ®·¹½º¿Í °ü·ÃµÈ ±³¶õ ¿äÀÎÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ãë±Þ ±â¼ú ¹× Çൿ Æò°¡¿¡ ´ëÇÑ ±â¼ú Á÷¿ø¿¡ ´ëÇÑ Á¤±âÀûÀÎ ±³À°¿¡ ÅõÀÚÇÏ´Â °ÍÀº º¸´Ù ÀεµÀûÀÎ ¿¬±¸ Á¶°Ç¿¡ ±â¿©ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °üÇàÀ» Ç¥ÁØ ÀÛ¾÷ ÀýÂ÷¿¡ Æ÷ÇÔ½ÃŰ´Â °ÍÀº À±¸®Àû Àǹ«¸¦ ÀÌÇàÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ¿¬±¸ °á°úÀÇ ½Å·Ú¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ ÀÌÇØ°ü°èÀÚ Âü¿© 2Â÷ ¹®Çå ºÐ¼®°ú °ß°íÇÑ µ¥ÀÌÅÍ °ËÁõÀ» °áÇÕÇÑ ¾ö°ÝÇÑ È¥ÇÕ ¿¬±¸ ¹æ¹ý·Ð¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ë

ÀÌ Á¶»ç ¹æ¹ýÀº °ÔÀâÀÌ¿ø¼þÀÌÀÇ ÀüÀÓ»ó ÀÀ¿ë¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Áö½ÄÀ» Á¦°øÇϱâ À§ÇØ ¼³°èµÈ È¥ÇÕ ¹æ¹ýÀ» äÅÃÇß½À´Ï´Ù. 1Â÷ ÀÌÇØ°ü°èÀÚ Âü¿©¿Í öÀúÇÑ ¹®Çå ºÐ¼®À» ÅëÇÕÇÏ¿© ¿¬±¸ °á°ú°¡ ÃÖ½ÅÀÌ¸ç ¾÷°èÀÇ ½ÇÁúÀûÀÎ °úÁ¦¸¦ ¹Ý¿µÇϰí ÀÖÀ½À» È®ÀÎÇß½À´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼® ÇÁ·ÎÅäÄÝÀº ¸ðµÎ »ï°¢Ãø·®À» ¿ëÀÌÇÏ°Ô ÇÏ¿© µµÃâµÈ °á·ÐÀÇ Å¸´ç¼ºÀ» ³ôÀÏ ¼ö ÀÖµµ·Ï ±¸¼ºµÇ¾ú½À´Ï´Ù. Åõ¸í¼º°ú ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ À±¸®ÀûÀÎ °í·Á°¡ ÀüüÀûÀ¸·Î Àû¿ëµÇ¾ú½À´Ï´Ù.

ÁÖ¿ä °á·ÐÀ» ¿ä¾àÇϰí ÀüÀÓ»ó ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­Çϰí À±¸® ±âÁØÀ» °­È­ÇÒ ¼ö ÀÖ´Â ±àÁ¤ÀûÀÎ ±âȸ¸¦ °­Á¶ÇÕ´Ï´Ù.

±â¼úÀÇ ¹ßÀü, ±ÔÁ¦ »óȲÀÇ ÁøÈ­, °ø±Þ¸Á ¿ªÇÐÀÇ À¶ÇÕÀ¸·Î ÀÎÇØ °ÔÀâÀÌ¿ø¼þÀÌ ÀüÀÓ»ó ¿¬±¸ÀÇ »óȲÀº ±Ùº»ÀûÀ¸·Î º¯È­Çß½À´Ï´Ù. Ãæ½Çµµ ³ôÀº Áúº´ ¸ðµ¨, Á¤¹ÐÇÑ À¯Àüü ºÐ¼® µµ±¸, Á¤±³ÇÑ º¹Áö ÇÁ·ÎÅäÄÝÀº ¾ÈÀü¼º°ú À¯È¿¼º Æò°¡ÀÇ ¿¹Ãø Ÿ´ç¼ºÀ» ÃÑüÀûÀ¸·Î ³ôÀ̰í ÀÖ½À´Ï´Ù. ÇÑÆí, °ü¼¼¿Í °ü·ÃµÈ ¾Ð·ÂÀº ´Ù¾çÇÑ Á¶´Þó¿Í ¿î¿µ ź·Â¼ºÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ» Á¾ÇÕÇϸé, Àü·«Àû ¹Îø¼º°ú Çù·ÂÀû Çõ½ÅÀÌ ÇʼöÀûÀÎ º¯È­ÀÇ ½Ã±âÀÓÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå ºÐ¼® ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå : ¿¬±¸ Á¾·ùº°

  • ¾àÁ¦ À¯È¿¼º ½ÃÇè
    • »ý¹°ÇÐÀû Á¦Á¦
    • ¼¼Æ÷ Ä¡·á
    • ÀúºÐÀÚ ÀǾàǰ
  • ¾à¸®ÇÐ ¹× µ¶¼ºÇÐ ¿¬±¸
    • ±Þ¼º µ¶¼º
    • ¹ß¾Ï¼º ½ÃÇè
    • ¸¸¼º µ¶¼º
  • ¾ÈÀü¼º Æò°¡
    • ¸é¿ª¿ø¼º ¿¬±¸
    • ÀüÀÓ»ó ¾ÈÀü¼º Æò°¡
  • ¹é½Å °Ë»ç

Á¦9Àå ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå : °Ç°­ »óź°

  • Áúȯ ¸ðµ¨
  • À¯ÀüÀû º¯ÀÌ
  • °Ç°­ÇÑ °ÔÀâÀÌ¿ø¼þÀÌ

Á¦10Àå ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå : ¼ºº°

  • ¾ÏÄÆ
  • ¼öÄÆ

Á¦11Àå ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
  • °è¾à¿¬±¸±â°ü
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷

Á¦12Àå ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå : Áúȯ ¿µ¿ªº°

  • ½ÉÇ÷°ü ¿¬±¸
  • À¯ÀüÇÐ/À¯Àüü ¿¬±¸
  • ¸é¿ª ¿¬±¸
  • °¨¿°Áõ
  • ½Å°æÇÐÀû ¿¬±¸
  • Á¾¾ç ¿¬±¸
  • È£Èí±âÁúȯ

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÇÇè¿ë °ÔÀâÀÌ¿ø¼þÀÌ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024³â)
  • °æÀï ºÐ¼®
    • Alpha Genesis, Inc.
    • AMSBIO by Europa Biosite
    • Athens Research & Technology, Inc.
    • BioChain Institute Inc.
    • BioChemed Services
    • BioIVT LLC
    • Cell Biologics, Inc.
    • Creative Biolabs, Inc.
    • Hainan Jingang Biotech.,Co.LTD.
    • Hubei Topgene Biotechnology Co., Ltd.
    • Innovative Research Inc.
    • iQ Biosciences
    • Lab Bioreagents
    • ODIN Bioscience
    • Primate Product Inc.

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM 25.09.16

The Experimental Cynomolgus Monkey Market was valued at USD 316.01 million in 2024 and is projected to grow to USD 336.11 million in 2025, with a CAGR of 6.59%, reaching USD 463.49 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 316.01 million
Estimated Year [2025] USD 336.11 million
Forecast Year [2030] USD 463.49 million
CAGR (%) 6.59%

Exploring the Critical Role of Cynomolgus Monkeys in Preclinical Research and Development to Advance Drug Discovery and Safety Assessment Pipelines

Preclinical evaluation using nonhuman primate models remains a cornerstone in ensuring the safety and efficacy of novel therapeutics. Among available species, Cynomolgus monkeys provide an unparalleled genetic and physiological resemblance to humans, enabling researchers to generate translational data that underpin clinical decision making. Their immunological response profiles mirror key aspects of human biology, making them indispensable in assessing biologics, cell based therapies, and small molecule drugs. Moreover, well established colony management practices and standardized testing protocols contribute to reproducible outcomes across laboratories globally.

As drug development paradigms shift towards targeted therapies and personalized medicine, the role of these primate models has expanded beyond traditional toxicology. Investigations into chronic toxicity, carcinogenicity assessments, and immunogenicity studies rely heavily on insights drawn from Cynomolgus subjects. Vaccine efficacy and safety testing further benefit from these models' susceptibility to human relevant pathogens, ensuring that candidate immunogens elicit appropriate protective responses. This broad spectrum of applications supports a comprehensive preclinical strategy, bridging in vitro findings with human clinical trials.

The growing complexity of therapeutic modalities and the rising stringency of regulatory frameworks have amplified demand for advanced animal models. Concurrently, evolving ethical standards emphasize refinement, reduction, and replacement strategies, challenging stakeholders to balance scientific rigor with humane practices. Against this backdrop, understanding the current landscape and emerging trends becomes essential for organizations to navigate operational and strategic decisions effectively.

Analyzing the Pivotal Technological and Regulatory Shifts That Are Redefining Cynomolgus Monkey Research and Accelerating Preclinical Innovation and Compliance

Innovative technologies and evolving regulatory policies are reshaping preclinical research paradigms, with Cynomolgus monkeys at the forefront of this transformation. Advances in gene editing tools such as CRISPR and precise genomic characterization are enabling the development of bespoke disease models, unlocking new avenues for therapeutic validation. Simultaneously, high resolution imaging techniques and in vivo telemetry facilitate real time monitoring of physiological responses, reducing reliance on traditional invasive methods. These breakthroughs not only enhance data quality but also underscore a commitment to more humane study designs.

Regulatory bodies are increasingly mandating rigorous welfare standards, mandating adoption of noninvasive endpoints, and promoting the three Rs principles-refinement, reduction, and replacement. In response, researchers are integrating digital twins and predictive modeling to anticipate outcomes, thereby optimizing study parameters and minimizing animal usage. Industry collaborations with contract research organizations and academic centers are accelerating standardization of protocols, ensuring consistency across geographies and strengthening data comparability for global regulatory submissions.

Furthermore, the integration of artificial intelligence and machine learning into data analytics pipelines is streamlining toxicity prediction, safety assessment, and decision making. As a result, study timelines are becoming more efficient, and resource allocation can be redirected toward innovative trial designs. Together, these technological and regulatory shifts are charting a new trajectory for Cynomolgus monkey research, fostering a landscape that is more ethical, precise, and aligned with the evolving demands of the biopharmaceutical industry.

Examining the Far Reaching Consequences of Recent United States Tariff Measures on Supply Chain Dynamics Research Costs and Regulatory Adaptations

The introduction of higher tariffs on imported nonhuman primate specimens has introduced a layer of complexity into preclinical study planning. Research organizations that historically relied on established supply chains have witnessed price volatility and prolonged lead times, challenging traditional procurement practices. These tariff measures have been applied to breeding colonies and specialized transportation channels, driving up logistical costs and necessitating more meticulous forecasting. As a result, research budgets are experiencing pressure, prompting stakeholders to reassess operational priorities and explore alternative sourcing strategies.

Supply chain disruptions have cascaded into breeding facility operations, where increased import costs are influencing colony management decisions. Some organizations are investing in local breeding capacities to mitigate dependency on international vendors, while others are forging strategic partnerships with regional suppliers to buffer against trade fluctuations. In parallel, contract research entities are adjusting service offerings to accommodate extended timelines and cost adjustments, ensuring continuity of studies without compromising scientific integrity. Moreover, interdisciplinary collaborations with regulatory affairs teams are facilitating compliance with complex tariff classifications, streamlining customs clearance, and reducing avoidable delays.

Looking ahead, the ongoing tariff environment is likely to stimulate innovation in supply chain resilience and cost optimization. Organizations that proactively diversify their vendor portfolios and implement digital tracking of specimen shipments are better positioned to absorb economic shocks. Equally important is the emphasis on regulatory intelligence, whereby continuous monitoring of policy changes enables timely adaptations and preserves critical research timelines. By navigating these evolving dynamics strategically, stakeholders can maintain momentum in preclinical development and safeguard the robustness of safety and efficacy assessments.

Uncovering Deep Segmentation Patterns That Reveal How Research Type Health Status Gender End User and Disease Area Shape Cynomolgus Monkey Study Applications

Segmenting the Cynomolgus monkey preclinical market by research type uncovers nuanced applications and resource allocations. Within drug efficacy testing, studies focusing on biologics demand specialized immunological assays, while cell therapy investigations necessitate advanced stem cell tracking and engraftment assessments. Small molecule evaluations, in contrast, lean heavily on pharmacokinetic profiling and metabolic sampling. Pharmacology and toxicology studies are further categorized into acute toxicity evaluations that monitor immediate adverse events, carcinogenicity tests designed for long term oncological risk assessment, and chronic toxicity investigations that assess extended exposure outcomes. Complementing these preclinical safety studies, safety assessment workflows incorporate immunogenicity studies to gauge potential immune responses, alongside comprehensive preclinical safety evaluations that integrate multi organ system analyses.

Health status segmentation further differentiates study design, as disease models replicate pathophysiological conditions to validate therapeutic interventions, and genetic variant cohorts enable exploration of gene therapy safety and efficacy. Parallel investigations involving healthy Cynomolgus subjects provide baseline comparative data. Gender considerations address biological variability, with female and male subjects offering critical insights into sex specific pharmacodynamics and toxicity profiles. These distinct segmentation lenses inform the design of robust experimental protocols that capture diverse biological responses.

End user segmentation reveals a spectrum of institutional needs. Academic and research institutes emphasize methodological transparency and hypothesis driven studies, while contract research organizations prioritize scalable workflows and regulatory compliance services. Pharmaceutical and biotechnology companies seek integrated end to end solutions and deep domain expertise. Overlaying these user focused perspectives is disease area segmentation, where cardiovascular studies leverage hemodynamic monitoring platforms, genetic and genomic research employs targeted sequencing approaches, immunology investigations rely on flow cytometry panels, infectious disease protocols simulate pathogen exposure, neurological research demands sophisticated behavioral and cognitive assessments, oncology research integrates tumor xenograft models, and respiratory disease studies utilize inhalation challenge systems to evaluate pulmonary function.

Distilling Critical Regional Variations Across the Americas Europe Middle East Africa and Asia Pacific That Influence Preclinical Trial Operational Efficiency

In the Americas, established infrastructure and a strong emphasis on regulatory harmonization have cultivated a mature environment for Cynomolgus monkey research. North American and Latin American facilities benefit from consolidated breeding programs and streamlined import regulations, fostering consistent specimen availability. This operational stability supports rigorous study planning and allows institutions to implement advanced automation and digital tracking systems, which enhance data integrity and trial reproducibility. Consequently, organizations can optimize resource allocation and maintain project timelines with greater confidence.

Europe, Middle East, and Africa present a diverse landscape characterized by varying degrees of regulatory complexity and breeding capacity. Western European markets are renowned for their strict ethical oversight and adherence to the three Rs principles, promoting the adoption of refined methodologies and noninvasive endpoints. In contrast, regions within the Middle East and parts of Africa are experiencing burgeoning investments in preclinical infrastructure, often through public private partnerships. These emerging hubs offer opportunities for cost effective sourcing and collaborative research initiatives, although stakeholders must navigate heterogeneous regulatory frameworks to ensure compliance.

Asia Pacific exhibits dynamic growth driven by substantial investment in biotechnology and contract research sectors. Countries such as China, Japan, and Singapore are expanding breeding capacities and establishing world class facilities that emphasize both animal welfare and scientific rigor. Regulatory agencies are progressively aligning with international standards, facilitating cross border collaborations and sample exchange. Moreover, regional expertise in specialized disease models and high throughput screening has attracted global sponsors seeking efficient and scalable preclinical solutions. Adaptation to local logistical challenges, including transport and quarantine protocols, underscores the importance of strategic partnerships to realize operational efficiency and study continuity.

Illuminating Major Industry Players Shaping Cynomolgus Monkey Preclinical Research Through Innovation Strategic Partnerships and Advanced Laboratory Solutions

Leading global contract research organizations have established themselves as pivotal drivers of Cynomolgus monkey based preclinical work. By integrating end to end services that encompass study design, in vivo testing, and regulatory submission support, these firms enable sponsors to accelerate programs while maintaining compliance with international standards. Their commitment to methodological innovation, such as implementing biomarker driven endpoints and advanced imaging modalities, underscores a focus on delivering translational data that can streamline clinical development.

Key breeding and supply entities have complemented CRO operations by scaling proprietary colony management systems and ensuring traceable pedigrees. These organizations emphasize biosecurity protocols, genetic monitoring, and health surveillance to guarantee specimen quality. Their investments in geographically dispersed facilities also mitigate supply chain disruptions, offering researchers alternative sourcing options that align with ethical and welfare guidelines. Collaboration between breeders and research providers has enhanced transparency across the supply continuum.

Specialized technology providers and academic consortia contribute to the ecosystem by developing novel disease models, analytical platforms, and data management solutions. Partnerships between research institutes, pharmaceutical sponsors, and service providers have resulted in shared resources and harmonized best practices. Moreover, strategic alliances aimed at refining noninvasive techniques and digital data integration are fostering a new generation of preclinical protocols. Together, these industry players drive continuous improvement in study quality, operational efficiency, and ethical compliance.

Delivering Pragmatic Recommendations and Tactical Roadmaps for Industry Leaders to Enhance Ethical Practices and Scientific Rigor in Cynomolgus Monkey Studies

Industry leaders are encouraged to adopt a tiered approach to welfare optimization, beginning with comprehensive environmental enrichment programs that mimic natural habitats. Incorporating social housing where feasible and refining anesthesia protocols can significantly reduce stress related confounders. Additionally, investing in regular training for technical staff on handling techniques and behavioral assessment contributes to more humane study conditions. Embedding these practices into standard operating procedures not only fulfills ethical obligations but can enhance the reliability of research outcomes.

To improve operational efficiency, organizations should prioritize the integration of real time data capture and laboratory information management systems. Automated workflows that streamline sample tracking, inventory management, and protocol execution reduce manual errors and accelerate study timelines. Furthermore, establishing robust vendor diversification strategies and leveraging regional breeding capacities can mitigate supply chain risks and control costs. Proactive regulatory intelligence efforts ensure swift adaptation to policy changes and customs requirements, maintaining study continuity.

Enhancing scientific rigor requires the adoption of advanced analytical methodologies and statistical frameworks that address biological variability. Cross sector collaborations can foster the development of harmonized endpoints and reference databases, enabling comparative analyses across studies. Embracing digital modeling and machine learning to augment in vivo findings can refine dose selection and safety thresholds. By aligning organizational objectives with these recommendations, leaders can drive transformative improvements in both the quality and ethical integrity of preclinical research.

Detailing a Rigorous Mixed Methodology Combining Primary Stakeholder Engagement Secondary Literature Analysis and Robust Data Validation

This research initiative employed a mixed methodology designed to deliver comprehensive insights into Cynomolgus monkey preclinical applications. By integrating primary stakeholder engagement with exhaustive literature analysis, the approach ensured that findings were both current and reflective of practical industry challenges. All data collection and analysis protocols were structured to facilitate triangulation, thereby enhancing the validity of conclusions drawn. Ethical considerations were applied throughout to maintain transparency and integrity.

Primary research involved structured interviews and consultations with domain experts across contract research organizations, pharmaceutical developers, academic institutions, and regulatory agencies. Each discussion was guided by a predefined framework to explore technological trends, operational challenges, and policy implications. Responses were systematically recorded, coded, and thematically analyzed to identify recurring patterns and divergent perspectives. This iterative process allowed for continuous refinement of inquiry areas and validated emerging insights through stakeholder feedback loops.

Secondary research encompassed an extensive review of peer reviewed studies, industry white papers, regulatory guidelines, and proprietary reports. Data points related to animal welfare standards, assay validation techniques, and preclinical pipeline strategies were extracted and consolidated into a dynamic knowledge base. Rigorous data validation procedures were applied, including cross referencing multiple information sources and conducting consistency checks. Throughout the methodology, quality control measures were implemented to ensure methodological rigor and to support actionable recommendations grounded in a robust evidence base.

Synthesizing Key Conclusions and Highlighting Forward Looking Opportunities to Optimize Preclinical Workflows and Enhance Ethical Standards

The convergence of technological advancements, regulatory evolution, and supply chain dynamics has fundamentally reshaped the landscape of Cynomolgus monkey preclinical research. High fidelity disease models, precision genomic tools, and refined welfare protocols are collectively elevating the predictive validity of safety and efficacy assessments. Meanwhile, tariff related pressures have underscored the importance of diversified sourcing and operational resilience. Taken together, these factors highlight a transformative period in which strategic agility and collaborative innovation are essential.

Looking forward, opportunities exist to expand the role of digital twins and in silico modeling as complementary approaches that reduce reliance on live subjects. Investment in noninvasive monitoring tools, such as wearable biosensors and advanced imaging, promises to augment traditional endpoints while adhering to the three Rs principles. Additionally, deeper integration of data analytics and artificial intelligence can optimize study design, automate anomaly detection, and accelerate decision making. Cross sector consortia are poised to harmonize data standards, facilitating seamless multistudy comparisons and benchmarking.

By embracing these forward looking strategies, organizations can not only advance their preclinical programs but also contribute to a more ethical and efficient research paradigm. The trajectory of Cynomolgus monkey studies will be defined by the collective commitment to scientific excellence, animal welfare, and regulatory compliance. As the industry continues to evolve, stakeholders that proactively adopt these insights will be best positioned to lead the next generation of translational research initiatives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Expanding use of Cynomolgus monkeys in neuroscience and behavioral research
  • 5.2. Rising adoption of Cynomolgus monkeys in pharmaceutical drug toxicity testing
  • 5.3. Increasing collaboration between academic institutions and industry in Cynomolgus monkey research
  • 5.4. Developments in non-invasive imaging techniques for experimental Cynomolgus monkeys
  • 5.5. Influence of artificial intelligence on data analysis in Cynomolgus monkey experiments
  • 5.6. Emerging trends in housing and care standards for experimental Cynomolgus monkeys
  • 5.7. Growth of contract research organizations providing Cynomolgus monkey services
  • 5.8. Impact of ethical regulations on the use of experimental Cynomolgus monkeys
  • 5.9. Advancements in genetic engineering techniques for Cynomolgus monkey studies
  • 5.10. Increasing demand for experimental Cynomolgus monkey models in biomedical research

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Experimental Cynomolgus Monkey Market, by Research Type

  • 8.1. Introduction
  • 8.2. Drug Efficacy Testing
    • 8.2.1. Biologics
    • 8.2.2. Cell Therapies
    • 8.2.3. Small Molecule Drugs
  • 8.3. Pharmacology & Toxicology Studies
    • 8.3.1. Acute Toxicity
    • 8.3.2. Carcinogenicity Tests
    • 8.3.3. Chronic Toxicity
  • 8.4. Safety Assessment
    • 8.4.1. Immunogenicity Studies
    • 8.4.2. Preclinical Safety Evaluation
  • 8.5. Vaccine Testing

9. Experimental Cynomolgus Monkey Market, by Health Status

  • 9.1. Introduction
  • 9.2. Disease Models
  • 9.3. Genetic Variants
  • 9.4. Healthy Cynomolgus Monkeys

10. Experimental Cynomolgus Monkey Market, by Gender

  • 10.1. Introduction
  • 10.2. Female
  • 10.3. Male

11. Experimental Cynomolgus Monkey Market, by End-User

  • 11.1. Introduction
  • 11.2. Academic & Research Institutes
  • 11.3. Contract Research Organizations
  • 11.4. Pharmaceutical & Biotechnology Companies

12. Experimental Cynomolgus Monkey Market, by Disease Area

  • 12.1. Introduction
  • 12.2. Cardiovascular Studies
  • 12.3. Genetic / Genomic Research
  • 12.4. Immunology Research
  • 12.5. Infectious Diseases
  • 12.6. Neurological Research
  • 12.7. Oncology Research
  • 12.8. Respiratory Diseases

13. Americas Experimental Cynomolgus Monkey Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Experimental Cynomolgus Monkey Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Experimental Cynomolgus Monkey Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Alpha Genesis, Inc.
    • 16.3.2. AMSBIO by Europa Biosite
    • 16.3.3. Athens Research & Technology, Inc.
    • 16.3.4. BioChain Institute Inc.
    • 16.3.5. BioChemed Services
    • 16.3.6. BioIVT LLC
    • 16.3.7. Cell Biologics, Inc.
    • 16.3.8. Creative Biolabs, Inc.
    • 16.3.9. Hainan Jingang Biotech.,Co.LTD.
    • 16.3.10. Hubei Topgene Biotechnology Co., Ltd.
    • 16.3.11. Innovative Research Inc.
    • 16.3.12. iQ Biosciences
    • 16.3.13. Lab Bioreagents
    • 16.3.14. ODIN Bioscience
    • 16.3.15. Primate Product Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦