½ÃÀ庸°í¼­
»óǰÄÚµå
1803602

SASE(º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§Áö) ½ÃÀå : Á¦°øº°, ¿¬°á¼ºº°, Á¶Á÷ ±Ô¸ðº°, Àü°³ ¹æ½Äº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

SASE Market by Offering, Connectivity, Organization Size, Deployment Mode, End User Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

SASE(º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§Áö) ½ÃÀåÀº 2024³â¿¡´Â 38¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 45¾ï 7,000¸¸ ´Þ·¯, CAGR 18.47%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 107¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 38¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 45¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 107¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 18.47%

º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§Áö ¼³Á¤ : ÅëÇÕ ³×Æ®¿öÅ·°ú º¸¾ÈÀÌ Çö´ë ±â¾÷¿¡ ÇʼöÀûÀÎ ÀÌÀ¯ ÀÌÇØÇϱâ

³×Æ®¿öÅ·°ú º¸¾ÈÀÇ À¶ÇÕÀº ¸ðµç ºÐ¾ßÀÇ µðÁöÅÐ Àüȯ Àü·«ÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ëµ¿·Â ºÐ»ê, Ŭ¶ó¿ìµå ¿ì¼±ÁÖÀÇ, Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ ±âÁ¸ÀÇ °æ°è ±â¹Ý º¸¾È ¾ÆÅ°ÅØÃ³·Î´Â ´õ ÀÌ»ó ÃæºÐÇÏÁö ¾Ê½À´Ï´Ù. ´ë½Å ±â¾÷µéÀº ³×Æ®¿öÅ©¿Í º¸¾È ±â´ÉÀ» ÀϰüµÈ Á¤Ã¥ Áß½ÉÀÇ ÇÁ·¹ÀÓ¿öÅ©¿¡ ÅëÇÕÇÏ´Â ¸ðµ¨À» äÅÃÇϰí ÀÖ½À´Ï´Ù. SASE(Secure Access Service Edge)´Â ±¤¿ª ³×Æ®¿öÅ· ±â´É°ú °­·ÂÇÑ º¸¾È ¼­ºñ½º¸¦ ÅëÇÕÇÏ´Â ÆÐ·¯´ÙÀÓÀ¸·Î µîÀåÇÏ¿© »ç¿ëÀÚÀÇ À§Ä¡³ª ¾ÖÇø®ÄÉÀ̼ÇÀÇ »óÁÖ ¿©ºÎ¿Í »ó°ü¾øÀÌ ÀϰüµÈ Á¤Ã¥ Àû¿ëÀ» ½ÇÇöÇÕ´Ï´Ù.

³×Æ®¿öÅ© º¸¾È Á¦°øÀÇ º¯È­ Ž»ö : ¾÷°è Àü¹Ý¿¡ °ÉÃÄ º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§Áö ¾ÆÅ°ÅØÃ³ äÅÃÀ» ÃËÁøÇÏ´Â ÁÖ¿ä º¯È­

ÃÖ±Ù ¸î ³â µ¿¾È ¿ø°Ý ±Ù¹«¿Í Ŭ¶ó¿ìµå ¼­ºñ½º°¡ ±â¾÷ÀÇ ÃÖ¿ì¼± ¼øÀ§·Î ¶°¿À¸£¸é¼­ ³×Æ®¿öÅ© º¸¾È ȯ°æÀº ±Þ°ÝÇÑ º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Çãºê ¾Ø ½ºÆ÷Å© ÅäÆú·ÎÁö¿Í Á¤Àû ¹æÈ­º® ±ÔÄ¢Àº ÁøÈ­ÇÏ´Â À§Çù º¤ÅÍ¿Í »ç¿ë ÆÐÅÏ¿¡ ÀûÀÀÇÏ´Â µ¿Àû ¾ÆÀ̵§Æ¼Æ¼ Á᫐ ¾ÆÅ°ÅØÃ³·Î ´ëüµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â °æ°è ±â¹Ý ¹æ¾î Àü·«¿¡¼­ Áß¾Ó µ¥ÀÌÅͼ¾ÅÍ¿¡¸¸ Á¤Ã¥À» Àû¿ëÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó »ç¿ëÀÚ¿Í µ¥ÀÌÅ͸¦ ÃßÀûÇÏ´Â ºÐ»êÇü º¸¾È ¸ðµ¨·ÎÀÇ º¸´Ù ±¤¹üÀ§ÇÑ ÀüȯÀ» ¹Ý¿µÇÕ´Ï´Ù.

2025³â ¹Ì±¹ÀÇ °ü¼¼ Á¶Á¤ÀÌ º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§ÁöÀÇ ¼¼°è °ø±Þ¸Á ¹× ºñ¿ë ±¸Á¶¿¡ ¹ÌÄ¡´Â ÆÄ±Þ È¿°ú Æò°¡

¹Ì±¹ ÇàÁ¤ºÎ°¡ 2025³â ¼öÀÔ º¸¾È Àåºñ¿Í ³×Æ®¿öÅ© ÀåºñÀÇ °ü¼¼ ÀÏÁ¤À» Á¶Á¤Çϱâ·Î °áÁ¤ÇÑ °ÍÀº Àü ¼¼°è °ø±Þ¸Á¿¡ ÆÄÀåÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ Ŭ¶ó¿ìµå °ÔÀÌÆ®¿þÀÌ, ¹æÈ­º® ¾îÇöóÀ̾𽺠¹× ±âŸ Áß¿äÇÑ SASE ±¸¼º¿ä¼Ò Á¦Á¶¾÷ü´Â ¾÷½ºÆ®¸² °øÁ¤¿¡¼­ ºñ¿ë ¾Ð¹ÚÀ» ¹Þ°í ÀÖ½À´Ï´Ù. °ø±Þ¾÷üµéÀÌ °ü¼¼ ÀλóÀ» ¿ÏÈ­Çϱâ À§ÇØ Á¶´Þ Àü·«À» Àç°ËÅäÇϸ鼭 Á¶´Þ ÁֱⰡ ±æ¾îÁö°í °è¾à Çù»óÀÌ ´õ¿í º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. µð½ºÆ®¸®ºäÅÍ¿Í ¼Ö·ç¼Ç ÅëÇÕ¾÷üµéÀº ¸¶Áø ±¸Á¶¿Í ¼­ºñ½º ¼öÁØ ¾à¼ÓÀ» À¯ÁöÇϱâ À§ÇØ ³ë·ÂÇϸ鼭 °¡°Ý Á¶Á¤À» ÁøÇàÇϰí ÀÖ½À´Ï´Ù.

Á¦Ç°, ¿¬°á¼º, Á¶Á÷ ±Ô¸ð, Àü°³ ¹æ½Ä, »ê¾÷º°·Î SASE Àü·«À» Çü¼ºÇÏ´Â ¼¼ºÐÈ­¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ ¹àÈü´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¸¦ ÀÚ¼¼È÷ ÀÌÇØÇÏ¸é ¼­ºñ½º Á¦°ø, ¿¬°á ÇüÅÂ, ±â¾÷ ±Ô¸ð, ¹èÆ÷ ¼±È£µµ, ¾÷Á¾¿¡ µû¸¥ ¹Ì¹¦ÇÑ Ã¤Åà ÆÐÅÏÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼­ºñ½º ¿µ¿ª¿¡¼­´Â ¸Å´ÏÁöµå ¼­ºñ½º¿Í ÇÁ·ÎÆä¼Å³Î ¼­ºñ½º, ¼Ö·ç¼Ç ¿µ¿ª¿¡¼­´Â Ŭ¶ó¿ìµå ¾×¼¼½º º¸¾È ºê·ÎÄ¿, µ¥ÀÌÅÍ ¼Õ½Ç ¹æÁö ÇÁ·¹ÀÓ¿öÅ©, ¼­ºñ½ºÇü ¹æÈ­º® ¼Ö·ç¼Ç, ID ¹× ¾×¼¼½º °ü¸® ÅëÇÕ, ³×Æ®¿öÅ© Æ®·¡ÇÈ ºÐ¼®, Á¤Ã¥ ½ÃÇà Ç÷§Æû, À¥ °ÔÀÌÆ®¿þÀÌ, À§Çù ŽÁö ¹× ¾Ç¼ºÄÚµå º¸È£ ¿£Áø, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©, º¸¾È À§Çù ŽÁö ¹× ¾Ç¼ºÄÚµå º¸È£ ¿£ÁøÀ¸·Î ¼¼ºÐÈ­µË´Ï´Ù. ¾ÆÀ̵§Æ¼Æ¼ ¹× ¾×¼¼½º °ü¸® ÅëÇÕ, ³×Æ®¿öÅ© Æ®·¡ÇÈ ºÐ¼®, Á¤Ã¥ °ü¸® ¹× ½ÃÇà Ç÷§Æû, º¸¾È À¥ °ÔÀÌÆ®¿þÀÌ, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©, À§Çù ŽÁö ¹× ¾Ç¼ºÄÚµå º¸È£ ¿£Áø, Á¦·Î Æ®·¯½ºÆ® ³×Æ®¿öÅ© ¾×¼¼½º ¸ÞÄ¿´ÏÁòÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ ÀÌÇ״븳Àº SASE ¼Ö·ç¼ÇÀÇ ´Ù¸éÀûÀΠƯ¼º°ú ƯÁ¤ Á¶Á÷ ¿ä±¸»çÇ׿¡ ¸Â´Â ¿ÀÆÛ¸µÀÇ Á߿伺À» °­Á¶ÇÕ´Ï´Ù.

SASEÀÇ Áö¿ªÀû ¿ªÇÐ °ü°è ¸ÅÇÎ : ¼¼°è ÁÖ¿ä Áö¿ªÀÇ ½ÃÀå ÃËÁø¿äÀΰú µµÀÔ ÆÐÅÏ ºñ±³

º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§ÁöÀÇ µµÀÔ°ú Çõ½ÅÀÇ ±ËÀûÀ» Çü¼ºÇÏ´Â µ¥ ÀÖ¾î Áö¿ªÀû ¿ªÇÐÀº ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ¿Í ¼º¼÷ÇÑ °ü¸®Çü º¸¾È ¼­ºñ½º »ýŰ谡 ƯÈ÷ ±ÝÀ¶ ¼­ºñ½º, ÇコÄɾî, ±â¼ú ºÐ¾ßÀÇ ´ë±â¾÷¿¡¼­ SASE µµÀÔÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â HIPAA, PCI DSS µîÀÇ ÇÁ·¹ÀÓ¿öÅ©¿¡ ÀÇÇÑ ±ÔÁ¦ ȯ°æÀÌ µ¥ÀÌÅÍ º¸È£ ¹× ID °ü¸® ÅëÇÕ ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå¿¡¼­´Â Åë½Å»ç¾÷ÀÚÀÇ ½Ã¹ü µµÀÔ°ú Áö¿ªÈ­µÈ ¸Å´ÏÁöµå ¼­ºñ½º°¡ ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§ÁöÀÇ ÁÖ¿ä Çõ½Å°¡ ÇÁ·ÎÆÄÀϸµ : ±â¼ú ¼±±¸ÀÚ ºñ±³ ¹× Àü·«Àû ½ÃÀå »óȲ ºÐ¼®

º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§ÁöÀÇ °æÀï ±¸µµ´Â ±â¼ú ¸®´õ¿Í ¹ÎøÇÑ Çõ½Å°¡µé¿¡ ÀÇÇØ Á¤Àǵǰí ÀÖ½À´Ï´Ù. ±âÁ¸ ³×Æ®¿öÅ© ¹× º¸¾È º¥´õµéÀº ±¤¹üÀ§ÇÑ Æ÷Æ®Æú¸®¿À¸¦ Ȱ¿ëÇÏ¿© ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ·, Â÷¼¼´ë ¹æÈ­º® ±â´É, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê º¸¾È ±â´ÉÀ» ÅëÇÕÇÑ ¿£µåÅõ¿£µå SASE Á¦Ç°±ºÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÅëÇÕµÈ ¿£µå-Åõ-¿£µå SASE Á¦Ç°±ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌµé ±âÁ¸ ±â¾÷µéÀº ¼¼°è ä³Î ³×Æ®¿öÅ©, ¼º¼÷ÇÑ ¿£ÅÍÇÁ¶óÀÌÁî Áö¿ø ÇÁ·¹ÀÓ¿öÅ©, ±âÁ¸ ÀÎÇÁ¶ó ±¸Ãà°úÀÇ ±ä¹ÐÇÑ ÅëÇÕ µîÀÇ ÀÌÁ¡À» ´©¸®°í ÀÖ½À´Ï´Ù.

º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§Áö µµÀÔÀ» °¡¼ÓÈ­ÇÏ°í ³×Æ®¿öÅ© º¸¾È ü°è¸¦ °­È­Çϱâ À§ÇÑ ±â¾÷ ¸®´õ¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾È

º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§ÁöÀÇ Çõ½Å ÀáÀç·ÂÀ» ÃÖ´ëÇÑ È°¿ëÇϱâ À§ÇØ ±â¾÷ ¸®´õµéÀº ´Ü°èº° »ç¿ë »ç·Ê Áß½ÉÀÇ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. Ãʱ⿡´Â À¥ °ÔÀÌÆ®¿þÀÌ, ¹æÈ­º® µî Æ÷ÀÎÆ® Á¦Ç°À» ÅëÇÕ °ü¸® Ç÷¹ÀÎÀ¸·Î ÅëÇÕÇÏ¿© º¹À⼺À» ÁÙÀÌ°í ¿î¿µ È¿À²¼ºÀ» Á¶±â¿¡ ´Þ¼ºÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃâ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Á¶Á÷Àº »ç¿ëÀÚ ID¿Í µð¹ÙÀ̽º À§Ä¡¿¡ ±â¹ÝÇÑ ¸íÈ®ÇÑ Á¦·Î Æ®·¯½ºÆ® ¾×¼¼½º Á¤Ã¥À» Á¤ÀÇÇϰí, ¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå, ¿ø°Ý ȯ°æ¿¡¼­ Àϰü¼º ÀÖ°Ô ½ÃÇàÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇØ¾ß ÇÕ´Ï´Ù.

Á¾ÇÕÀûÀÎ º¸¾È ¾×¼¼½º ¼­ºñ½º ¿§Áö ºÐ¼®ÀÇ ±âÃʰ¡ µÇ´Â Á¶»ç ¹æ¹ý·Ð : Á¢±Ù ¹æ½Ä, Ãâó, °ËÁõ ÇÁ·ÎÅäÄÝÀ» ¹àÈü´Ï´Ù.

ÀÌ ºÐ¼®Àº ÀÏÂ÷ Á¤º¸¿Í ÀÌÂ÷ Á¤º¸¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀ» ÅëÇØ Á¾ÇÕÀûÀÎ Æ÷°ý¼º°ú Á¤È®¼ºÀ» º¸ÀåÇÕ´Ï´Ù. CIO, CISO, ±â¼ú ¼³°èÀÚ¿ÍÀÇ Àü¹®°¡ ÀÎÅͺ並 ÅëÇØ µµÀÔ °úÁ¦, »ç¿ë »ç·ÊÀÇ ¿ì¼±¼øÀ§ °áÁ¤, ÅëÇÕ Àü·«¿¡ ´ëÇÑ »ý»ýÇÑ °üÁ¡À» Á¦°øÇß½À´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â º¥´õ ¼³¸íȸ, Á¦Ç° ÀÚ·á, ¾÷°è ¹é¼­, ±ÔÁ¦ °ü·Ã °£Ç๰, ȸÀÇ·Ï µîÀ» ÅëÇØ ÁøÈ­ÇÏ´Â º¥´õ ȯ°æ°ú ±ÔÁ¦ »óȲÀ» ¸ÅÇÎÇß½À´Ï´Ù.

SASEÀÇ ¹Ì·¡ ±ËÀû¿¡ ´ëÇÑ °á·Ð : ÁÖ¿ä ¿äÁ¡ ¿ä¾à ¹× »õ·Î¿î Æ®·»µå ¿¹Ãø

Á¡Á¡ ´õ º¹ÀâÇØÁö´Â µðÁöÅРȯ°æ¿¡¼­ º¸¾È ¿¢¼¼½º ¼­ºñ½º ¿§Áö´Â ź·ÂÀûÀ̰í È®Àå °¡´ÉÇÑ ÅëÇÕ ³×Æ®¿öÅ© º¸¾ÈÀ» ½ÇÇöÇϱâ À§ÇÑ Çõ½ÅÀûÀΠû»çÁøÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ·°ú º¸¾È ±â´ÉÀ» ÇϳªÀÇ Å¬¶ó¿ìµå ³×ÀÌÆ¼ºê ÇÁ·¹ÀÓ¿öÅ©¿¡ ÅëÇÕÇÏ¿© ±âÁ¸ ¾ÆÅ°ÅØÃ³ÀÇ ÇѰ踦 ±Øº¹Çϰí, ÁøÈ­ÇÏ´Â »ç¿ëÀÚ ¹× ¾ÖÇø®ÄÉÀÌ¼Ç ¸ðºô¸®Æ¼ ÆÐÅÏ¿¡ ´ëÀÀÇÕ´Ï´Ù. µµÀÔ ÆÐ·¯´ÙÀÓ, ±ÔÁ¦ ¿ä°Ç, ºñ¿ë ±¸Á¶ÀÇ Áß¿äÇÑ º¯È­´Â Á¶Á÷ÀÌ SASE ·»Á ÅëÇØ º¸¾È Àü·«À» ÀçÆò°¡ÇÒ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå SASE ½ÃÀå : Á¦°øº°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • ¼Ö·ç¼Ç
    • Ŭ¶ó¿ìµå ¾×¼¼½º º¸¾È ºê·ÎÄ¿(CASB)
    • µ¥ÀÌÅÍ À¯Ãâ ¹æÁö(DLP)
    • FWaaS(Firewall-as-a-Service)
    • ID ¹× ¾×¼¼½º °ü¸®(IAM)ÀÇ ÅëÇÕ
    • ³×Æ®¿öÅ© Æ®·¡ÇÈ ºÐ¼®
    • Æú¸®½Ã °ü¸®¿Í ½ÃÇà
    • ½ÃÅ¥¾î À¥ °ÔÀÌÆ®¿þÀÌ(SWG)
    • ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©(SD-WAN)
    • À§Çù ŽÁö¿Í ¸Ö¿þ¾î ´ëÃ¥
    • Á¦·Î Æ®·¯½ºÆ® ³×Æ®¿öÅ© ¾×¼¼½º(ZTNA)

Á¦9Àå SASE ½ÃÀå : ¿¬°á¼ºº°

  • À¯¼±
  • ¹«¼±

Á¦10Àå SASE ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦11Àå SASE ½ÃÀå : Àü°³ ¹æ½Äº°

  • Ŭ¶ó¿ìµå ±â¹Ý Àü°³
  • ÇÏÀ̺긮µå Àü°³

Á¦12Àå SASE ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë ¾÷°èº°

  • BFSI
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ÇコÄɾî¿Í »ý¸í°úÇÐ
  • IT¡¤Åë½Å
  • Á¦Á¶¾÷
  • ¼Ò¸Å¡¤E-Commerce

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ SASE ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ SASE ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ SASE ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Broadcom Inc
    • Cisco Systems, Inc.
    • Akamai Technologies, Inc.
    • Aryaka Networks, Inc.
    • AT&T Inc.
    • Barracuda Networks, Inc.
    • BT Group plc
    • Cato Networks Ltd.
    • Check Point Software Technologies Ltd.
    • Cloudflare, Inc.
    • Forcepoint, Inc.
    • Fortinet, Inc.
    • Hewlett Packard Enterprise
    • Huawei Technologies Co., Ltd.
    • Iboss, Inc.
    • Lookout, Inc.
    • McAfee, LLC
    • Microsoft Corporation
    • Netskope, Inc.
    • NTT Ltd.
    • Open Systems, Inc by Emerson Electric Company.
    • Oracle Corporation
    • Palo Alto Networks, Inc.
    • Proofpoint, Inc.
    • Verizon Communications Inc.
    • Versa Networks, Inc.
    • Zscaler, Inc.

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM 25.09.16

The SASE Market was valued at USD 3.88 billion in 2024 and is projected to grow to USD 4.57 billion in 2025, with a CAGR of 18.47%, reaching USD 10.73 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.88 billion
Estimated Year [2025] USD 4.57 billion
Forecast Year [2030] USD 10.73 billion
CAGR (%) 18.47%

Setting the Scene for Secure Access Service Edge: Understanding Why Integrated Networking and Security Are Imperative for Modern Enterprises

The convergence of networking and security has become a cornerstone of digital transformation strategies across all sectors. With an increasingly distributed workforce, cloud-first initiatives, and the proliferation of connected devices, traditional perimeter-based security architectures no longer suffice. Instead, organizations are embracing a model that unifies network and security functions into a coherent, policy-driven framework. Secure Access Service Edge (SASE) emerges as a paradigm that integrates wide-area networking capabilities with robust security services, delivering consistent policy enforcement regardless of user location or application residency.

Enterprises of all sizes are grappling with the complexity of managing disparate point solutions that introduce latency, operational overhead, and fragmented visibility. SASE addresses these challenges by consolidating network traffic optimization and security control points into a single, cloud-native offering. This integrated design ensures lower total cost of ownership, streamlined management, and enhanced threat protection. As digital business models evolve, the SASE framework underpins the agility required to onboard new applications, enforce zero-trust principles, and support hybrid and multi-cloud environments. In this context, understanding the drivers, benefits, and adoption barriers of SASE becomes essential for technology leaders and decision-makers seeking to future-proof their infrastructure.

Navigating the Transformation in Network Security Delivery: Key Shifts Driving Adoption of Secure Access Service Edge Architectures Across Industries

The network security landscape has undergone dramatic upheaval in recent years as remote work and cloud services surged to the forefront of enterprise priorities. Traditional hub-and-spoke topologies and static firewall rules have given way to dynamic, identity-centric architectures that adapt to evolving threat vectors and usage patterns. This shift reflects a broader transformation from perimeter-based defense strategies to distributed security models, where policy enforcement follows users and data rather than residing solely at central data centers.

Concurrently, organizations are prioritizing seamless user experience and application performance, driving the integration of software-defined wide-area networking with secure web gateways and zero-trust access controls. These architectural changes are not merely incremental improvements; they represent a fundamental rethinking of how security and connectivity coexist. As vendors expand their portfolios to include cloud access security brokers, data loss prevention tools, and next-generation firewalls delivered as a service, the SASE framework crystallizes as the optimal blueprint for modern network security deployments. Embracing these transformative shifts enables organizations to reduce complexity, enhance operational agility, and maintain a unified security posture in an era defined by pervasive connectivity and sophisticated cyber threats.

Assessing the Ripple Effects of United States Tariff Adjustments in 2025 on Global Supply Chains and Cost Structures for Secure Access Service Edge

The U.S. administration's decision to adjust tariff schedules for imported security and networking equipment in 2025 has reverberated across global supply chains. These changes have introduced upstream cost pressures for manufacturers of cloud gateways, firewall appliances, and other critical SASE components. As vendors recalibrate sourcing strategies to mitigate increased duties, procurement cycles have extended and contract negotiations have become more complex. Distributors and solution integrators, in turn, are navigating price adjustments while striving to preserve margin structures and service level commitments.

End users have felt the impact in the form of revised subscription rates and modified licensing models. To offset cost inflation, some service providers are enhancing bundled offerings, integrating additional security modules such as threat detection and anomaly analytics. Others are exploring localized manufacturing partnerships and alternative supply arrangements to maintain competitive pricing. Despite these headwinds, the underlying demand for unified network security solutions remains robust, driven by ongoing digital transformation imperatives. Organizations that proactively engage with vendors to forecast price changes and optimize deployment architectures will be best positioned to sustain their SASE initiatives under the revised tariff regime.

Unveiling Critical Segmentation Insights: How Offerings, Connectivity, Organization Size, Deployment Mode, and Industry Verticals Shape SASE Strategies

A granular understanding of market segmentation reveals nuanced adoption patterns across service offerings, connectivity modes, enterprise scales, deployment preferences, and industry verticals. Offering segmentation distinguishes between managed services and professional services within the services domain, while the solutions domain encompasses cloud access security brokers, data loss prevention frameworks, firewall-as-a-service solutions, identity and access management integration, network traffic analytics, policy management and enforcement platforms, secure web gateways, software-defined wide-area networks, threat detection and malware protection engines, and zero trust network access mechanisms. This dichotomy underscores the multifaceted nature of SASE solutions and the importance of aligning offerings with specific organizational requirements.

Connectivity segmentation highlights the divergent trajectories of wired deployments, favored by enterprises seeking high throughput and predictable performance, versus wireless solutions that enable mobility and support for remote or temporary work locations. Large enterprises versus small and medium enterprises exhibit contrasting priorities; the former emphasize scalability, global consistency, and integration with existing enterprise stacks, while the latter prioritize cost-efficiency, ease of deployment, and managed service support. Similarly, cloud-based deployments cater to businesses with cloud-native strategies and distributed workforces, whereas hybrid deployments appeal to organizations balancing on-premises investments with gradual cloud migration.

Industry vertical segmentation further refines this landscape, with financial services and telecommunications firms demanding stringent compliance and real-time threat detection, energy and utilities companies focusing on operational technology integration and resilience, healthcare organizations requiring data loss prevention and patient privacy safeguards, manufacturing enterprises emphasizing supply chain security and production continuity, government bodies pursuing secure access for distributed offices, and retail and e-commerce platforms prioritizing seamless customer experiences alongside fraud prevention. These segmentation insights illuminate the diverse pathways through which organizations are embracing Secure Access Service Edge solutions.

Mapping Regional Dynamics in Secure Access Service Edge Deployments: Contrasting Market Drivers and Adoption Patterns Across Key Global Territories

Regional dynamics play a pivotal role in shaping the adoption and innovation trajectory of Secure Access Service Edge. In the Americas, strong investment in cloud infrastructure and a mature managed security services ecosystem have accelerated SASE deployments among large enterprises, particularly within financial services, healthcare, and technology sectors. The regulatory environment in North America, with frameworks such as HIPAA and PCI DSS, has spurred demand for integrated data protection and identity management services, whereas Latin American markets are emerging with pilot implementations driven by telecommunications providers and localized managed services offerings.

Across Europe, the Middle East & Africa, stringent data sovereignty regulations and varied compliance requirements have compelled organizations to seek SASE architectures that ensure localized data processing with global policy consistency. Financial institutions and public sector entities in Western Europe are early adopters, leveraging cloud-based security gateways and zero trust network access to meet evolving compliance mandates. In the Middle East & Africa, partnerships between global vendors and regional system integrators are catalyzing deployments, particularly within government, energy, and manufacturing verticals, as digital transformation initiatives gain momentum.

The Asia-Pacific region represents a dynamic frontier, characterized by rapid cloud adoption, a burgeoning digital economy, and diverse market maturity levels. In advanced markets such as Japan and Australia, enterprises prioritize next-generation firewall-as-a-service and CASB integrations to support hybrid workloads. Emerging economies in Southeast Asia and South Asia are witnessing growing interest in managed SASE solutions that address resource constraints and accelerate time to value. Together, these regional insights underscore the importance of localized strategies, partner ecosystems, and regulatory alignment in driving SASE effectiveness and adoption worldwide.

Profiling Leading Innovators in Secure Access Service Edge: Comparative Analysis of Technology Trailblazers and Their Strategic Market Positioning

The competitive landscape of Secure Access Service Edge is defined by a cadre of technology leaders and agile innovators. Established network and security vendors have leveraged their extensive portfolios to deliver end-to-end SASE suites, integrating software-defined wide-area networking, next-generation firewall capabilities, and cloud-native security functions. These incumbents benefit from global channel networks, mature enterprise support frameworks, and deep integration with existing infrastructure deployments.

Conversely, the rise of cloud-native pure-play providers has disrupted traditional models by delivering security services exclusively from the cloud. These specialists emphasize rapid feature rollouts, elastic scalability, and consumption-based pricing, appealing to digital-first organizations. Strategic alliances between these pure-play vendors and global system integrators further enhance service delivery capabilities, enabling end-to-end managed offerings. Meanwhile, emerging startups are differentiating through advanced threat intelligence, AI-driven network analytics, and modular architectures that allow enterprises to adopt best-of-breed components on a phased basis.

Competitive positioning is increasingly shaped by the ability to offer unified policy orchestration across diverse environments, comprehensive reporting and analytics, and seamless integration with identity providers and endpoint security platforms. As the market matures, partnerships, mergers, and acquisitions are driving consolidation, while continuous innovation in zero trust, machine learning, and automation remains key to maintaining a leadership edge.

Actionable Strategic Recommendations for Enterprise Leaders to Accelerate Secure Access Service Edge Adoption and Strengthen Network Security Posture

To capitalize on the transformative potential of Secure Access Service Edge, enterprise leaders should adopt a phased, use-case-driven approach. Initial efforts may focus on consolidating point products such as web gateways and firewalls into a unified management plane to reduce complexity and achieve early operational efficiencies. Simultaneously, organizations should define clear zero-trust access policies anchored in user identity and device posture, ensuring consistent enforcement across on-premises, cloud, and remote environments.

Robust vendor evaluation frameworks that weigh integration capabilities, platform extensibility, and service delivery models are essential. Enterprises must engage in proof-of-concept trials to validate performance under real-world traffic patterns and to assess the maturity of threat detection and response features. Collaboration between networking, security, and application teams is critical to align architecture roadmaps with broader digital transformation objectives. Additionally, enterprises should invest in upskilling internal teams through targeted training and certification programs to maximize platform utilization and drive continuous improvement.

Finally, adopting a metrics-driven governance model will enable organizations to track key performance indicators such as latency reduction, threat detection rates, and operational cost savings. By iterating on deployment configurations and leveraging advanced analytics, industry leaders can refine their SASE strategies to deliver superior security outcomes and enhanced user experiences.

Illuminating the Research Methodology Underpinning Comprehensive Secure Access Service Edge Analysis: Approaches, Sources, and Validation Protocols

This analysis leverages a rigorous research methodology combining primary and secondary data sources to ensure comprehensive coverage and accuracy. Expert interviews with CIOs, CISOs, and technology architects provided firsthand perspectives on deployment challenges, use-case prioritization, and integration strategies. Secondary research encompassed vendor briefings, product documentation, industry white papers, regulatory publications, and conference proceedings to map the evolving vendor landscape and regulatory context.

Data triangulation techniques were employed to reconcile disparate inputs, ensuring consistency across reported trends and segmentation insights. Quantitative data points were validated against publicly available financial disclosures, investment activity, and patent filings, while qualitative assessments were informed by workshops and interactive sessions with end users and solution providers. Analytical frameworks such as SWOT and Porter's Five Forces were adapted to the SASE context, illuminating competitive dynamics and market drivers.

Finally, iterative reviews by independent subject matter experts and cross-functional peer feedback rounds ensured the robustness and practical relevance of the findings. This multilayered research approach provides stakeholders with a reliable foundation for strategic planning and investment decisions in the Secure Access Service Edge domain.

Concluding Insights on the Future Trajectory of Secure Access Service Edge: Summarizing Key Takeaways and Anticipating Emerging Trends

As organizations navigate an increasingly complex digital landscape, Secure Access Service Edge stands out as a transformative blueprint for delivering resilient, scalable, and unified network security. The convergence of networking and security functions into a single, cloud-native framework addresses the limitations of legacy architectures and aligns with evolving user and application mobility patterns. Key shifts in deployment paradigms, regulatory requirements, and cost structures underscore the imperative for organizations to reevaluate their security strategies through the SASE lens.

Critical segmentation insights reveal differentiated adoption trajectories across service types, connectivity preferences, enterprise scales, deployment models, and industry verticals. Regional analyses highlight the interplay between compliance mandates, infrastructure maturity, and partner ecosystems in shaping SASE implementations. Competitive benchmarking underscores the value of integrated platforms, cloud-native agility, and advanced analytics in maintaining a leadership position. Collectively, these insights form a cohesive narrative that equips decision-makers to chart informed SASE roadmaps.

Looking ahead, innovation in areas such as zero trust access, AI-driven threat detection, and network automation will continue to redefine the perimeter. Organizations that embrace a strategic, metrics-driven, and phased deployment approach will be best positioned to harness the full potential of Secure Access Service Edge, ensuring robust security, enhanced user experience, and sustained operational efficiency.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI/ML for proactive threat hunting and real-time anomaly detection
  • 5.2. Increasing demand for Simplified IT Operations globally
  • 5.3. Adoption of edge based enforcement nodes to support low latency SASE connectivity for remote users
  • 5.4. Convergence of cloud native security features with zero trust network access for multi cloud environments
  • 5.5. Growth of unified policy orchestration across SD WAN and security modules for simplified management
  • 5.6. Rising demand for identity driven micro segmentation in network security frameworks to reduce lateral threats

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. SASE Market, by Offering

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Solutions
    • 8.3.1. Cloud Access Security Broker (CASB)
    • 8.3.2. Data Loss Prevention (DLP)
    • 8.3.3. Firewall-as-a-Service (FWaaS)
    • 8.3.4. Identity & Access Management (IAM) Integration
    • 8.3.5. Network Traffic Analytics
    • 8.3.6. Policy Management & Enforcement
    • 8.3.7. Secure Web Gateway (SWG)
    • 8.3.8. Software-Defined Wide Area Network (SD-WAN)
    • 8.3.9. Threat Detection & Malware Protection
    • 8.3.10. Zero Trust Network Access (ZTNA)

9. SASE Market, by Connectivity

  • 9.1. Introduction
  • 9.2. Wired
  • 9.3. Wireless

10. SASE Market, by Organization Size

  • 10.1. Introduction
  • 10.2. Large Enterprises
  • 10.3. Small & Medium Enterprises (SMEs)

11. SASE Market, by Deployment Mode

  • 11.1. Introduction
  • 11.2. Cloud-Based Deployment
  • 11.3. Hybrid Deployment

12. SASE Market, by End User Industry

  • 12.1. Introduction
  • 12.2. BFSI
  • 12.3. Energy & Utilities
  • 12.4. Government & Public Sector
  • 12.5. Healthcare & Life Sciences
  • 12.6. IT & Telecom
  • 12.7. Manufacturing
  • 12.8. Retail & E-commerce

13. Americas SASE Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa SASE Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific SASE Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Broadcom Inc
    • 16.3.2. Cisco Systems, Inc.
    • 16.3.3. Akamai Technologies, Inc.
    • 16.3.4. Aryaka Networks, Inc.
    • 16.3.5. AT&T Inc.
    • 16.3.6. Barracuda Networks, Inc.
    • 16.3.7. BT Group plc
    • 16.3.8. Cato Networks Ltd.
    • 16.3.9. Check Point Software Technologies Ltd.
    • 16.3.10. Cloudflare, Inc.
    • 16.3.11. Forcepoint, Inc.
    • 16.3.12. Fortinet, Inc.
    • 16.3.13. Hewlett Packard Enterprise
    • 16.3.14. Huawei Technologies Co., Ltd.
    • 16.3.15. Iboss, Inc.
    • 16.3.16. Lookout, Inc.
    • 16.3.17. McAfee, LLC
    • 16.3.18. Microsoft Corporation
    • 16.3.19. Netskope, Inc.
    • 16.3.20. NTT Ltd.
    • 16.3.21. Open Systems, Inc by Emerson Electric Company.
    • 16.3.22. Oracle Corporation
    • 16.3.23. Palo Alto Networks, Inc.
    • 16.3.24. Proofpoint, Inc.
    • 16.3.25. Verizon Communications Inc.
    • 16.3.26. Versa Networks, Inc.
    • 16.3.27. Zscaler, Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦