시장보고서
상품코드
1803709

반도체 IC 테스트 핸들러 시장 : 핸들러 유형, 테스트 스테이지, 온도 범위, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Semiconductor IC Test Handler Market by Handler Type, Test Stage, Temperature Range, Application, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 182 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

반도체 IC 테스트 핸들러 시장은 2024년에는 25억 6,000만 달러로 평가되었으며, 2025년에는 27억 4,000만 달러, CAGR 7.50%로 성장하여 2030년에는 39억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 25억 6,000만 달러
추정 연도 2025년 27억 4,000만 달러
예측 연도 2030년 39억 5,000만 달러
CAGR(%) 7.50%

반도체 IC 테스트 핸들러에 대한 종합적인 소개를 통해 주요 시장 역학 및 전략적 중요성이 드러납니다.

반도체 산업의 진화는 웨이퍼 제조와 최종 품질 보증의 중요한 가교 역할을 하는 테스트 핸들러의 정확성과 신뢰성에 달려 있습니다. 최근 디바이스 아키텍처의 다양화, 테스트 양의 급증, 성능 요구 사항의 엄격화로 인해 이러한 자동화 시스템은 큰 변화를 겪고 있습니다. 이러한 배경에서 IC 테스트 핸들러 개발을 형성하는 작동 원리, 기술 혁신 및 전략적 동향을 이해하는 것은 처리량 최적화, 테스트 비용 최소화 및 최고 품질 표준 유지를 목표로 하는 의사결정자에게 필수적입니다.

지속가능하고 적응력 있는 솔루션으로 반도체 IC 테스트 핸들러의 상황을 형성,전례 없는 기술 및 운영의 변화

지난 몇 년 동안 반도체 IC 테스트 핸들러 분야는 기술 혁신과 고객 요구 사항의 진화로 인해 혁신적인 변화가 일어나고 있습니다. 이종 집적도를 특징으로 하는 개발 디바이스는 웨이퍼 프로빙과 최종 시스템 레벨 평가 사이를 원활하게 전환할 수 있는 테스트 핸들러를 필요로 하고 있으며, 공급업체들은 모듈식 플랫폼 개발을 추진하고 있습니다. 동시에, 더 높은 처리량을 추구하는 움직임은 자동화의 진보를 가속화하고, 로봇 팔의 정밀도와 병렬 테스트 아키텍처가 표준 기능으로 자리 잡았습니다.

2025년 미국 관세 제도가 반도체 IC 테스트 핸들러 공급망에 미치는 종합적인 영향에 대한 심층 분석

미국이 2025년 개정 관세를 발동함에 따라 반도체 IC 테스트 핸들러 분야를 지원하는 공급망에 큰 복잡성을 가져왔습니다. 특정 지역에서 조달되는 부품에 높은 관세가 부과되면서 제조업체와 최종사용자는 조달 전략을 재검토해야 하는 상황에 처해 있습니다. 많은 공급업체들이 관세가 낮은 지역의 대체 공급업체를 찾거나 현지 생산을 늘려 비용 압박을 완화하기 위해 노력하고 있습니다.

핸들러 유형, 테스트 단계, 온도 범위, 용도, 최종사용자가 전략적 구매를 어떻게 형성하는지 밝혀주는 시장 세분화에 대한 통찰력 있는 검토

시장 세분화를 이해하는 것은 테스트 핸들러의 역량을 다양한 비즈니스 요구에 맞게 조정하는 데 매우 중요합니다. 핸들러 유형을 평가할 때, 보다 부드러운 디바이스 로딩에 특화된 그래비티 핸들러와 병렬 처리를 극대화하는 하이스루풋 핸들러가 제공하는 뚜렷한 이점을 인식하는 것이 필수적입니다. 픽 앤 플레이스 핸들러는 혼합된 디바이스 포트폴리오에 대한 유연성을 제공하고, 터렛 핸들러는 특수한 테스트 프로토콜을 위한 정확한 방향 제어를 보장합니다. 각 핸들러 카테고리마다 고유한 디자인과 성능의 트레이드오프가 있어 구매 결정의 기준이 됩니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양이 테스트 핸들러의 혁신과 수요 패턴을 주도하는 방법을 보여주는 종합적인 지역별 인사이트 제공

지역적 역학은 반도체 IC 테스트 핸들러의 채택과 기술 혁신에 강력한 영향을 미칩니다. 아메리카에서는 차세대 차량용 센서와 엣지 컴퓨팅 디바이스에 대한 관심이 높아지면서 엄격한 신뢰성 검증과 신속한 배포가 가능한 핸들러에 대한 수요가 증가하고 있습니다. 북미 연구 클러스터도 실시간 이상 감지를 위한 기계 학습을 통합한 새로운 핸들러 아키텍처를 탐구하고 있으며, 이 지역을 지능형 테스트 솔루션의 최전선에 배치하고 있습니다.

혁신, 서비스 네트워크, 전략적 제휴가 어떻게 시장 리더십을 정의하는지를 보여주는 업계 선도기업에 대한 상세 분석

주요 장비 공급업체들은 끊임없는 혁신, 전략적 파트너십, 세계 서비스 네트워크를 통해 IC 테스트 핸들러 시장의 궤도를 형성하고 있습니다. 이들 기업은 연구개발에 많은 투자를 하고 있으며, 정밀 로봇공학, 열 균일성, 통합 진단 등의 기능 강화에 집중하고 있습니다. 또한, 업그레이드를 간소화하고 최종사용자의 총소유비용을 절감하는 모듈식 아키텍처를 제공함으로써 차별화를 꾀하고 있습니다.

기술 및 파트너십을 통해 테스트 핸들러의 복원력, 효율성 및 지속가능성을 강화하기 위한 업계 리더를 위한 실행 가능한 전략적 제안

복잡한 반도체 IC 테스트 핸들러 환경을 극복하기 위해 업계 리더는 다각도의 전략적 접근 방식을 채택해야 합니다. 먼저, 예측 분석을 핸들러 플랫폼에 통합하여 성능 저하를 미리 예측하고 유지보수 일정을 최적화할 수 있습니다. 로봇 시스템과 열 모듈 전체에 AI 기반 모니터링을 도입함으로써 기업은 다운타임을 최소화하고 자산 수명을 연장할 수 있습니다.

신뢰할 수 있는 시장 인사이트를 위한 1차 인터뷰, 2차 데이터 분석, 주제별 통합을 개괄하는 강력한 멀티모달 조사 기법

본 조사 방법은 반도체 IC 테스트 핸들러 시장의 전체상을 파악하기 위해 1차 조사와 2차 조사를 조합한 엄격한 조사 방법을 채택하였습니다. 장비 제조업체, 테스트 엔지니어링 리더, 조달 전문가와의 인터뷰를 통해 1차적인 인사이트를 수집했습니다. 이러한 대화를 통해 현재의 과제, 기술 채택 패턴, 미래 투자 우선순위 등을 탐색하여 분석에 질적 깊이를 더하고 있습니다.

진화하는 테스트 핸들러 업계에서 성공하기 위한 핵심 요소로 민첩성, 지역성, 통합 생태계를 강조한 전략적 결론

반도체 IC 테스트 핸들러 분야는 급속한 기술 발전, 진화하는 규제 상황, 무역 정책 변화의 영향을 받아 매우 중요한 기로에 서 있습니다. 시장 진입 기업들은 점점 더 복잡해지는 디바이스 아키텍처의 요구에 대응하기 위해 모듈식 설계와 AI 기반 분석을 활용하여 민첩성을 유지해야 합니다. 동시에, 전략적 공급망 다변화와 현지 생산은 관세 리스크를 줄이고 적시 납품을 보장하기 위해 필수적입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 반도체 IC 테스트 핸들러 시장 : 핸들러 유형별

  • 중력 핸들러
  • 고처리량 핸들러
  • Pick & Place 핸들러
  • 터렛 핸들러

제9장 반도체 IC 테스트 핸들러 시장 : 테스트 스테이지별

  • 최종 테스트(FT)
  • 시스템 레벨 테스트(SLT)
  • 웨이퍼 테스트(프로빙)

제10장 반도체 IC 테스트 핸들러 시장 : 온도 범위별

  • 상온 핸들러
  • 콜드 테스트 핸들러
  • 확장 범위 핸들러
  • 핫 테스트 핸들러
  • 트라이 템프 핸들러

제11장 반도체 IC 테스트 핸들러 시장 : 용도별

  • 아날로그 디바이스
  • 로직 및 메모리 디바이스
  • 믹스드 시그널 IC
  • 파워 디바이스와 MEMS
  • RF 디바이스

제12장 반도체 IC 테스트 핸들러 시장 : 최종사용자별

  • IDM(통합 디바이스 제조업체)
  • OSAT(아웃소싱 패키징 및 테스트 프로바이더)
  • 연구개발 기관 및 패키징 프로바이더

제13장 아메리카의 반도체 IC 테스트 핸들러 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 반도체 IC 테스트 핸들러 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 반도체 IC 테스트 핸들러 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Advantest Corporation
    • Cohu, Inc.
    • 4 JMSolutions(Malta) Ltd.
    • Amfax Limited
    • Boston Semi Equipment
    • Chroma ATE Inc.
    • esmo AG
    • Hangzhou Changchuan Technology Co., Ltd.
    • Hon Precision, Inc.
    • Innogrity Pte Ltd
    • Kanematsu Corporation
    • Komachine Inc.
    • MICRONICS JAPAN CO.,LTD.
    • SMTmax
    • SPEA S.p.A.
    • SYNAX Co., Ltd.
    • Teradyne, Inc.
    • TESEC Corporation
    • Tianjin JHT Design Co., Ltd.
    • UENO SEIKI CO.,LTD.
    • YAC Systems Singapore Pte.
    • Yamaichi Electronics Co., Ltd.
    • YoungTek Electronics Corp.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

KSM 25.09.10

The Semiconductor IC Test Handler Market was valued at USD 2.56 billion in 2024 and is projected to grow to USD 2.74 billion in 2025, with a CAGR of 7.50%, reaching USD 3.95 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.56 billion
Estimated Year [2025] USD 2.74 billion
Forecast Year [2030] USD 3.95 billion
CAGR (%) 7.50%

Comprehensive Introduction to Semiconductor IC Test Handlers Illuminating Key Market Dynamics and Strategic Imperatives

The semiconductor industry's evolution hinges on the precision and reliability of test handlers, which serve as the critical bridge between wafer fabrication and final quality assurance. In recent years, these automated systems have undergone a significant transformation as device architectures diversify, test volumes surge, and performance requirements tighten. Against this backdrop, understanding the operational principles, technological innovations, and strategic trends shaping IC test handler development is essential for decision-makers seeking to optimize throughput, minimize test costs, and maintain the highest quality standards.

This executive summary lays the groundwork for a comprehensive exploration of the semiconductor IC test handler landscape. It begins by outlining the core functions of these systems, detailing their role in accelerating test cycles and ensuring device integrity. Subsequently, the summary highlights emerging challenges, including the need for multi-temperature handling capabilities, integration with advanced probing systems, and adaptation to shrinking form factors. Throughout this section, we underscore the importance of aligning handler strategies with broader manufacturing objectives, ensuring that investments in handler technology translate into measurable gains in yield, cost efficiency, and time to market.

Unprecedented Technological and Operational Shifts Reshaping the Semiconductor IC Test Handler Landscape with Sustainable and Adaptive Solutions

In recent years, the semiconductor IC test handler arena has witnessed transformative shifts driven by both technological innovation and evolving customer demands. Devices featuring heterogeneous integration now require test handlers that can seamlessly transition between wafer probing and final system-level evaluations, prompting suppliers to develop modular platforms. Concurrently, the push for higher throughput has accelerated automation advancements, with robotic arm precision and parallel testing architectures becoming standard features.

Moreover, environmental sustainability has emerged as a core consideration, leading to the adoption of energy-efficient components and closed-loop temperature management systems. This integration of green engineering principles reduces operational costs while aligning with corporate responsibility goals. At the same time, the rise of artificial intelligence-enhanced diagnostics is empowering predictive maintenance protocols, minimizing downtime and extending equipment lifecycles. As a result, test handler providers are forging strategic partnerships with software firms, creating cohesive ecosystems that deliver intelligent analytics and real-time performance optimization.

These converging forces are reshaping procurement criteria, driving end users to seek versatile, data-driven solutions capable of supporting an expanding array of device types. In navigating this dynamic environment, stakeholders must anticipate continued advancements in handler design, ensuring that infrastructure investments remain future-proof and scalable.

Deep Analysis of the 2025 United States Tariff Regime's Comprehensive Impact on Semiconductor IC Test Handler Supply Chains

The United States' imposition of revised tariffs in 2025 has introduced significant complexity to the supply chains underpinning the semiconductor IC test handler sector. Components sourced from certain regions now incur elevated duties, compelling manufacturers and end users to reassess their procurement strategies. The immediate effect has been a realignment of component sourcing, with many suppliers seeking alternative vendors in lower-tariff jurisdictions or increasing local production to mitigate cost pressures.

These adjustments, however, have created ripple effects throughout the industry. Lead times for critical subsystems such as robotic actuators and thermal control units have lengthened as erstwhile suppliers relocate or expand capacity under new trade constraints. Concurrently, end users have begun consolidating their test handler orders around established vendors capable of offering tariff-inclusive pricing and just-in-time delivery models. This transition has accelerated partnerships and joint ventures aimed at localizing key manufacturing steps, thereby reducing exposure to cross-border trade uncertainties.

On a strategic level, the tariff environment has prompted a reevaluation of total cost of ownership calculations, compelling organizations to factor in duty escalations, inventory carrying costs, and logistics complexities. As the industry adapts, those entities that proactively invest in diversified supply networks and transparent cost modeling will maintain their competitive edge in an increasingly protectionist trade landscape.

Insightful Examination of Market Segmentation Revealing How Handler Type, Test Stage, Temperature Range, Application and End-User Shape Strategic Purchasing

Understanding market segmentation is pivotal for aligning test handler capabilities with diverse operational needs. When evaluating handler type, it is essential to recognize the distinct advantages offered by gravity handlers, which excel at gentler device loading, as well as high-throughput handlers that maximize parallel processing. Pick-and-place handlers contribute flexibility for mixed-device portfolios, while turret handlers ensure precise orientation control for specialized test protocols. Each handler category presents unique design and performance trade-offs that inform purchase decisions.

Equally important are the variations in test stage requirements. Final test solutions must deliver exhaustive electrical characterization under full operational stress, whereas system-level test configurations simulate real-world device interactions to validate endpoint functionality. Wafer test probing systems demand sub-micron alignment accuracy and minimal contact resistance to avoid perturbing delicate circuits. Stakeholders must therefore match the handler architecture to the intended test stage to optimize throughput and data fidelity.

Temperature range segmentation introduces additional complexity: ambient temperature handlers facilitate routine testing without specialized thermal controls, while cold test configurations support devices requiring extreme low-temperature cycling. Extended range and hot test handlers expand operational envelopes for power devices and automotive-grade semiconductors, and tri-temp models integrate multiple thermal zones into a single platform. In parallel, application-based distinctions highlight the need for tailored solutions for analog devices, logic and memory ICs, mixed-signal components, power electronics, MEMS, and RF devices. Lastly, end-user categories differentiate the priorities of integrated device manufacturers, outsourced packaging and test providers, and research institutions, each emphasizing unique criteria such as customization, throughput, or experimental flexibility.

Comprehensive Regional Insights Demonstrating How Americas, Europe Middle East and Africa, and Asia-Pacific Drive Distinct Test Handler Innovations and Demand Patterns

Regional dynamics exert a powerful influence on semiconductor IC test handler adoption and innovation. In the Americas, the emphasis on next-generation automotive sensors and edge computing devices has driven demand for handlers capable of stringent reliability screening and rapid deployment. North American research clusters are also exploring novel handler architectures that integrate machine learning for real-time anomaly detection, positioning the region at the forefront of intelligent test solutions.

Moving eastward, Europe, the Middle East and Africa workspace is characterized by rigorous regulatory standards and a growing focus on sustainable semiconductor manufacturing. Test handler suppliers in the region are responding with energy-optimized designs and enhanced traceability features that support compliance with environmental directives. Additionally, the region's burgeoning microelectronics hubs are fostering collaborative development efforts to reduce time to market and bolster supply chain resilience.

In the Asia-Pacific corridor, aggressive capacity expansions and robust contract manufacturing ecosystems have created a fertile environment for handler innovation. Providers are leveraging scale to lower capital costs while introducing modular platforms that accommodate high-volume logic, memory, and power device testing. Strategic partnerships between local fabless firms and global equipment manufacturers further accelerate technology transfer and local customization, ensuring that Asia-Pacific remains the largest demand center for advanced IC test handling solutions.

In-Depth Analysis of Leading Industry Players Demonstrating How Innovation, Service Networks, and Strategic Alliances Define Market Leadership

Leading equipment providers are shaping the trajectory of the IC test handler market through relentless innovation, strategic partnerships, and global service networks. These companies invest heavily in research and development, focusing on enhancements such as precision robotics, thermal uniformity, and integrated diagnostics. In turn, they differentiate themselves by offering modular architectures that simplify upgrades, reducing total cost of ownership for end users.

In addition to product innovation, top-tier providers expand their competitive moats through worldwide calibration facilities and predictive maintenance services, ensuring uptime for global customers. They also form ecosystem alliances with probing system manufacturers and test software developers to deliver cohesive solutions. As a result, these industry leaders capture premium segments by addressing the full spectrum of test requirements, from high-volume consumer electronics to stringent automotive and aerospace certifications.

Looking ahead, the competitive landscape will favor those companies that balance localized support with centralized technology excellence. Providers that anticipate regional regulatory shifts, leverage AI for adaptive testing, and maintain agile supply chains will continue to lead, while smaller challengers must carve out specialized niches or strategic partnerships to remain relevant.

Actionable Strategic Recommendations for Industry Leaders to Enhance Test Handler Resilience, Efficiency, and Sustainability Through Technology and Partnerships

To navigate the complex semiconductor IC test handler environment, industry leaders should adopt a multipronged strategic approach. First, integrating predictive analytics into handler platforms can preempt performance degradations and optimize maintenance schedules. By deploying AI-enabled monitoring across robotic systems and thermal modules, organizations will minimize downtime and extend asset life.

Second, fostering supply chain diversity is essential to mitigate tariff exposure and component bottlenecks. Establishing multiple sourcing arrangements across geographies and qualifying local suppliers will enhance resilience. Simultaneously, investing in scalable modular designs allows rapid reconfiguration of handler fleets to accommodate shifting device portfolios without extensive capital outlays.

Third, aligning with sustainability objectives through energy-efficient hardware and closed-loop temperature control not only reduces operational expenditure but also supports corporate environmental targets. Organizations should collaborate with service providers to benchmark power consumption and implement continuous improvement programs. Finally, cultivating strategic partnerships with software vendors will ensure seamless integration of handler automation, data analytics, and test flow management, empowering decision-makers with real-time insights and driving competitive differentiation.

Robust Multimodal Research Methodology Outlining Primary Interviews, Secondary Data Analysis, and Thematic Synthesis for Reliable Market Insights

This research employed a rigorous methodology combining primary and secondary data collection to capture a holistic view of the semiconductor IC test handler market. Primary insights were gathered through interviews with equipment manufacturers, test engineering leaders, and procurement specialists. These conversations explored current challenges, technology adoption patterns, and future investment priorities, providing qualitative depth to the analysis.

Complementing the primary research, secondary sources included trade association publications, technical white papers, and academic studies that detail the engineering principles underpinning handler design. Patent filings and conference proceedings were also reviewed to identify emerging innovations and competitive strategies. Data triangulation techniques were applied throughout, ensuring consistency between interview findings and documented industry trends.

Finally, thematic analysis was conducted to distill strategic imperatives across segments, regions, and company profiles. This structured approach guarantees that the conclusions and recommendations presented are grounded in both empirical evidence and expert judgment, offering a robust foundation for stakeholders seeking to make informed decisions.

Strategic Conclusion Emphasizing Agility, Regional Nuances, and Integrated Ecosystems as Pillars for Success in the Evolving Test Handler Industry

The semiconductor IC test handler domain stands at a pivotal juncture, influenced by rapid technological advancements, evolving regulatory landscapes, and trade policy shifts. Key market participants must remain agile, leveraging modular designs and AI-driven analytics to meet the demands of increasingly complex device architectures. Concurrently, strategic supply chain diversification and localized manufacturing will be critical to mitigating tariff risks and ensuring timely deliveries.

Regional nuances underscore the importance of tailored approaches: the Americas will prioritize intelligent test solutions, EMEA will focus on sustainability and compliance, while Asia-Pacific's scale and innovation networks will continue to drive throughput-centric developments. Meanwhile, market leaders are distinguished by their ability to integrate hardware, software, and service ecosystems, delivering end-to-end solutions that address the full spectrum of test requirements.

Moving forward, organizations that invest in predictive maintenance, energy efficiency, and strategic partnerships will secure competitive advantages and foster resilience. By synthesizing the insights presented in this report, stakeholders can confidently navigate the complexities of the IC test handler landscape and position themselves for sustained growth in an increasingly dynamic industry.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of machine learning algorithms for real-time IC test handler yield optimization
  • 5.2. Adoption of vacuum-based wafer handling technologies to minimize particle contamination risks
  • 5.3. Development of multi-site parallel testing architectures for high-volume IC throughput requirements
  • 5.4. Implementation of in situ thermal monitoring modules for advanced semiconductor test calibration
  • 5.5. Transition to universal handler platforms supporting mixed-signal and RF IC test applications
  • 5.6. Emergence of IoT-enabled remote diagnostics and predictive maintenance in IC test equipment
  • 5.7. Customization of handler interfaces for heterogeneous packaging types including fan-out wafers
  • 5.8. Integration of robotics and automated guided vehicles for seamless IC test handler logistics

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Semiconductor IC Test Handler Market, by Handler Type

  • 8.1. Introduction
  • 8.2. Gravity Handlers
  • 8.3. High-Throughput Handlers
  • 8.4. Pick-and-Place Handlers
  • 8.5. Turret Handlers

9. Semiconductor IC Test Handler Market, by Test Stage

  • 9.1. Introduction
  • 9.2. Final Test (FT)
  • 9.3. System-Level Test (SLT)
  • 9.4. Wafer Test (Probing)

10. Semiconductor IC Test Handler Market, by Temperature Range

  • 10.1. Introduction
  • 10.2. Ambient Temperature Handlers
  • 10.3. Cold Test Handlers
  • 10.4. Extended Range Handlers
  • 10.5. Hot Test Handlers
  • 10.6. Tri-Temp Handlers

11. Semiconductor IC Test Handler Market, by Application

  • 11.1. Introduction
  • 11.2. Analog Devices
  • 11.3. Logic & Memory Devices
  • 11.4. Mixed-Signal ICs
  • 11.5. Power Devices & MEMS
  • 11.6. RF Devices

12. Semiconductor IC Test Handler Market, by End-User

  • 12.1. Introduction
  • 12.2. IDMs (Integrated Device Manufacturers)
  • 12.3. OSATs (Outsourced Packaging & Test Providers)
  • 12.4. R&D Institutions and Packaging Providers

13. Americas Semiconductor IC Test Handler Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Semiconductor IC Test Handler Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Semiconductor IC Test Handler Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Advantest Corporation
    • 16.3.2. Cohu, Inc.
    • 16.3.3. 4JMSolutions (Malta) Ltd.
    • 16.3.4. Amfax Limited
    • 16.3.5. Boston Semi Equipment
    • 16.3.6. Chroma ATE Inc.
    • 16.3.7. esmo AG
    • 16.3.8. Hangzhou Changchuan Technology Co., Ltd.
    • 16.3.9. Hon Precision, Inc.
    • 16.3.10. Innogrity Pte Ltd
    • 16.3.11. Kanematsu Corporation
    • 16.3.12. Komachine Inc.
    • 16.3.13. MICRONICS JAPAN CO.,LTD.
    • 16.3.14. SMTmax
    • 16.3.15. SPEA S.p.A.
    • 16.3.16. SYNAX Co., Ltd.
    • 16.3.17. Teradyne, Inc.
    • 16.3.18. TESEC Corporation
    • 16.3.19. Tianjin JHT Design Co., Ltd.
    • 16.3.20. UENO SEIKI CO.,LTD.
    • 16.3.21. YAC Systems Singapore Pte.
    • 16.3.22. Yamaichi Electronics Co., Ltd.
    • 16.3.23. YoungTek Electronics Corp.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제