시장보고서
상품코드
1804391

스마트 농업 공급망 시장 : 구성요소, 기술, 전개 방식, 작물 유형, 용도별 - 세계 예측(2025-2030년)

Smart Agricultural Supply Chains Market by Component, Technology, Deployment Mode, Crop Type, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

스마트 농업 공급망 시장의 2024년 시장 규모는 26억 9,000만 달러로 평가되었으며, 2025년에는 CAGR 12.67%로 30억 3,000만 달러로 성장하여 2030년에는 55억 1,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 26억 9,000만 달러
추정 연도 2025년 30억 3,000만 달러
예측 연도 2030년 55억 1,000만 달러
CAGR(%) 12.67%

디지털 통합, 지속가능한 관행, 실시간 분석, 공급 안정성 향상으로 스마트 농업 공급망으로 농업의 미래를 열어가다

진화하는 소비자 니즈와 환경 문제로 정의되는 시대에 농업 부문은 첨단 디지털 도구와 지속가능한 관행의 통합을 통해 큰 변화의 시기를 맞이하고 있습니다. 스마트 공급망은 이제 전통적인 물류를 넘어 센서 네트워크, 데이터 분석, 커넥티비티를 결합하여 자원 활용을 최적화하고 낭비를 줄이고 있습니다. 이러한 변화는 기후 변화, 규제 압력, 고품질 농산물로 증가하는 세계 인구를 먹여 살릴 필요성 등 다양한 요인이 복합적으로 작용하고 있습니다. 또한, 생산자에서 유통업체에 이르는 가치사슬 전반의 이해관계자들은 소비자의 신뢰를 구축하고 새로운 식품안전기준을 준수하는 데 있어 투명성과 추적가능성의 가치를 인식하고 있습니다.

AI, IoT, 빅데이터, 블록체인이 공급망 생태계의 각 단계를 혁신하고 농업의 패러다임 전환을 받아들입니다.

새로운 기술이 공급망 생태계의 모든 단계를 재정의하는 가운데, 농업 분야는 패러다임의 전환을 경험하고 있습니다. 인공지능 알고리즘은 현재 수 테라바이트의 밭 데이터를 분석하여 눈에 보이는 증상이 나타나기 훨씬 전에 해충을 감지하고 병 발생을 예측할 수 있습니다. 한편, 기계 학습 모델은 실시간 센서 입력과 과거 실적 지표를 비교하여 시비 및 관개 루틴을 지속적으로 개선하고 있습니다. 이와 함께 드론과 자율주행 차량에 탑재된 컴퓨터 비전 시스템은 첨단 이미지 처리를 통해 광활한 농경지에 걸쳐 세밀하게 작물의 건강 상태를 평가할 수 있습니다.

2025년 미국 관세 정책이 비용 구조, 무역 흐름, 스마트 농업 공급망 전략 계획에 미치는 누적 효과 평가

2025년 미국의 새로운 관세 체계 도입은 스마트 농업 공급망에 복잡한 계층을 도입하고, 비용 구조를 재구성하고, 조달 전략에 영향을 미치고 있습니다. 주요 제조 기지에서 수입되는 하드웨어 부품은 관세 인상에 직면하게 될 것이며, 생산자들은 공급업체와의 관계를 재평가하고 니어쇼어링(near-shoring) 옵션을 모색해야 할 것입니다. 이에 따라 기업들은 관세 인상에 따른 당장의 지출과 공급망 다변화를 통한 장기적인 이익을 비교 검토하는 세밀한 비용편익 분석을 실시하게 되었습니다.

스마트 농업의 구성요소, 기술, 전개 방식, 작물 분류, 응용 분야에 걸쳐 스마트 농업의 중요한 세분화 관점을 밝힙니다.

구성요소별로 자세히 살펴보면, 액추에이터와 엣지 디바이스부터 게이트웨이와 센서에 이르기까지 하드웨어 요소들이 현장에서 정확한 데이터 수집에 필요한 구체적인 인프라를 구성하고 있음을 알 수 있습니다. 이러한 자산을 보완하기 위해 컨설팅과 지원 및 유지보수 서비스 제공이 원활한 구축과 지속적인 운영 안정성을 실현하는 중요한 수단으로 부상하고 있습니다. 소프트웨어 측면에서는 분석 엔진, 농장 관리 시스템, 모니터링 플랫폼이 원시 센서 출력을 능동적인 의사결정을 촉진하는 실용적인 인텔리전스로 변환합니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양 시장의 스마트 농업 공급망을 형성하는 주요 지역 역학에 대한 자료입니다.

아메리카에서는 북미 선진국들이 탄탄한 인프라 투자와 정밀농업의 중요성을 통해 도입을 주도하고 있습니다. 유리한 규제 프레임워크와 민간 부문의 대규모 자금 조달로 인해 센서 네트워크, 드론, 자율 기계 도입이 가속화되고 있습니다. 남미 시장은 아직 신흥 시장이지만, 엄격한 세계 품질 기준을 충족하기 위해 디지털 추적성을 활용하고자 하는 대규모 농산물 수출 부문에 의해 유망한 성장세를 보이고 있습니다.

스마트 농업 공급망 생태계에서 혁신, 전략적 파트너십, 경쟁적 지위를 촉진하는 영향력 있는 업계 플레이어 분석

이 유명 세계 기술 제공업체는 전략적 파트너십과 파트너 생태계와 원활하게 통합되는 개방형 아키텍처 플랫폼을 통해 그 입지를 확고히 하고 있습니다. 이러한 솔루션은 모듈식 하드웨어 설계와 API 기반 소프트웨어에 중점을 두어 배포 일정을 단축하고 지속적인 혁신을 지원합니다. 동시에 농업 전문 기업들은 현장에서 검증된 분석 모델과 작물 과학 전문 지식으로 차별화를 꾀하고, 주요 농업 협동조합 및 연구 기관과 제휴 계약을 체결하고 있습니다.

업계 리더들이 연결성을 강화하고, 운영을 최적화하며, 지속가능한 농업 공급 우수성을 육성할 수 있도록 실용적인 인사이트와 전략적 프레임워크를 제공합니다.

업계 리더들은 이종 플랫폼 간의 원활한 통합을 위해 공급망 전반의 상호운용성과 데이터 표준화를 우선순위에 두어야 합니다. 오픈 데이터 프로토콜을 확립하고 공동 컨소시엄에 참여함으로써 구현 마찰을 줄이고 상호 운용 가능한 솔루션 개발을 가속화할 수 있습니다. 또한, 지역 농학 전문가, 물류 제공업체, 금융기관과의 전략적 제휴를 통해 시장 진입 전략을 강화하고 리스크 관리 공유를 촉진할 수 있습니다.

종합적인 스마트 농업 공급망 인사이트를 위한 1차 조사, 2차 조사 및 상호 검증을 통합한 견고한 조사 방법론에 대한 자세한 내용

본 조사 방법은 1차 인터뷰, 2차 분석, 상호 검증을 결합한 하이브리드 방식을 활용하여 스마트 농업 공급망 상황을 포괄적으로 다루고 있습니다. 1차 데이터는 기술 공급업체, 농업협동조합, 물류 제공업체, 정책 자문위원과의 구조화된 인터뷰를 통해 확보한 것으로, 도입 과제, 투자 우선순위, 규제 영향에 대한 생생한 관점을 확인할 수 있었습니다.

스마트 농업 공급망의 향후 발전 방향을 제시할 수 있는 전략적 중요 사항 요약 및 핵심 조사 결과 인사이트

첨단 디지털 기술과 지속가능한 관행의 결합으로 농업 공급망은 보다 투명하고 탄력적이며 효율적인 네트워크로 재구성되고 있습니다. AI, IoT, 블록체인, 클라우드 플랫폼을 활용하여 이해관계자들은 현장 운영을 세밀하게 가시화하고, 자원 활용을 최적화하며, 고부가가치 작물의 엔드투엔드 추적성을 확보할 수 있습니다. 구성요소, 기술, 전개 방식, 작물 유형, 용도별로 전략적으로 세분화함으로써 조직은 가장 영향력 있는 투자 분야를 식별하고 특정 운영 상황에 맞는 솔루션을 제공할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 스마트 농업 공급망 시장 : 구성요소별

  • 하드웨어
    • 액추에이터
    • 엣지 디바이스
    • 게이트웨이
    • 센서
  • 서비스
    • 컨설팅
    • 지원과 유지관리
  • 소프트웨어
    • 분석
    • 농장 경영
    • 감시

제9장 스마트 농업 공급망 시장 : 기술별

  • 인공지능
  • 빅데이터 분석
  • 컴퓨터 비전
  • 사물인터넷
  • 머신러닝

제10장 스마트 농업 공급망 시장 : 전개 방식별

  • 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • 온프레미스

제11장 스마트 농업 공급망 시장 : 작물 유형별

  • 시리얼
    • 옥수수
  • 과일과 채소
    • 베리
    • 포도
    • 토마토
  • 지방종자와 두류
    • 렌틸콩
    • 대두
    • 해바라기

제12장 스마트 농업 공급망 시장 : 용도별

  • 가축 모니터링
    • 동물 추적
    • 행동 분석
    • 건강 모니터링
  • 정밀농업
    • 작물 건강 상태 모니터링
    • 토양 분석
    • 수확량 예측
  • 스마트 관개
    • 자동 관개 시스템
    • 토양 수분 모니터링
  • 공급망 이력추적
    • 콜드체인 감시
    • 농장에서 고객으로의 공급

제13장 아메리카의 스마트 농업 공급망 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 스마트 농업 공급망 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 스마트 농업 공급망 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • AGCO Corporation
    • AgriDigital
    • AgriProve Pty Ltd.
    • Bunge Limited
    • Cargill, Incorporated
    • CNH Industrial NV
    • CropZilla Inc.
    • DroneDeploy
    • Eka Software Solutions
    • GrainChain, Inc.
    • Indigo Ag, Inc.
    • International Business Machines Corporation
    • LexisNexis Risk Solutions
    • Microsoft Corporation
    • Oracle Corporation
    • SAP SE
    • Syngenta Crop Protection AG

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

KSM 25.09.10

The Smart Agricultural Supply Chains Market was valued at USD 2.69 billion in 2024 and is projected to grow to USD 3.03 billion in 2025, with a CAGR of 12.67%, reaching USD 5.51 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.69 billion
Estimated Year [2025] USD 3.03 billion
Forecast Year [2030] USD 5.51 billion
CAGR (%) 12.67%

Unlocking the Future of Farming with Smart Agricultural Supply Chains Fueled by Digital Integration, Sustainable Practices, Real-Time Analytics and Enhanced Supply Reliability

In an era defined by evolving consumer demands and environmental challenges, the agricultural sector is undergoing a profound transformation through the integration of advanced digital tools and sustainable practices. Smart supply chains now extend beyond traditional logistics, weaving together sensor networks, data analytics and connectivity to optimize resource utilization and reduce waste. This shift is driven by a confluence of factors including climate volatility, regulatory pressures and the imperative to feed a growing global population with higher-quality produce. Moreover, stakeholders across the value chain-from growers to distributors-are recognizing the value of transparency and traceability in building consumer trust and maintaining compliance with emerging food safety standards.

Furthermore, the proliferation of low-power wide-area networks, edge computing devices and cloud-based platforms has enabled real-time monitoring of soil conditions, crop health and post-harvest logistics. This confluence of technologies supports decision-making at every tier, fostering proactive risk mitigation and cost containment. Additionally, collaborative ecosystems of technology providers, agronomy specialists and financial partners are coalescing to address capital constraints and technical adoption barriers. In this context, the intersection of precision agriculture and supply chain management heralds a new frontier for value creation, where predictive analytics anticipate weather patterns, optimize input deployment and align harvest schedules with market demand. Simultaneously, blockchain-enabled provenance tracking ensures the integrity and condition of perishable goods during transit, elevating operational efficiency and fostering agile responses to disruptions such as extreme weather or labor constraints.

Embracing a Paradigm Shift in Agriculture with AI, IoT, Big Data and Blockchain Transforming Every Stage of the Supply Chain Ecosystem

The agricultural landscape is experiencing a paradigm shift as emerging technologies redefine every stage of the supply chain ecosystem. Artificial intelligence algorithms now analyze terabytes of field data to detect pests and predict disease outbreaks long before visible symptoms appear. Meanwhile, machine learning models continuously refine fertilization and irrigation routines by comparing real-time sensor inputs against historical performance metrics. In parallel, computer vision systems mounted on drones and autonomous vehicles leverage advanced image processing to deliver granular crop health assessments across expansive fields.

Moreover, the Internet of Things serves as the connective tissue uniting disparate devices, enabling seamless data flow from remote sensors to centralized analytics platforms. Blockchain technology further fortifies supply chain integrity by establishing immutable records that track each batch of produce from seed to store shelf. This level of end-to-end transparency not only mitigates fraud but also opens new avenues for premium pricing tied to verified sustainability claims. As these technologies converge, traditional agricultural practices are giving way to adaptive networks that dynamically self-optimize, reduce operational downtime and unlock previously inaccessible insights.

Significantly, this transformation extends beyond the farm gate into warehousing, transportation and retail environments, creating an interconnected ecosystem that adapts to shifting consumer preferences, regulatory requirements and environmental pressures. The result is a more resilient, agile model of food production and distribution that sets a new standard for global agricultural supply chains.

Assessing the Cumulative Effects of 2025 United States Tariff Policies on Cost Structures, Trade Flows and Strategic Planning of Smart Agricultural Supply Networks

The introduction of new tariff frameworks by the United States in 2025 has introduced a layer of complexity to the smart agricultural supply chain, reshaping cost structures and influencing sourcing strategies. Hardware components imported from key manufacturing hubs now face incremental duties, prompting producers to reevaluate supplier relationships and explore nearshoring options. As a consequence, organizations are conducting granular cost-benefit analyses that weigh the immediate expense of higher tariffs against long-term benefits of supply chain diversification.

Furthermore, software and consulting services that were previously outsourced may become subject to revised digital service levies, encouraging stakeholders to develop in-house expertise or engage regional partners to mitigate cross-border fee escalations. These strategic shifts are not limited to procurement; logistics operators are negotiating revised freight contracts and transit routes to circumvent tariff chokepoints at major ports. Additionally, emerging trade dialogues and bilateral agreements are being monitored closely to identify opportunities for tariff exemptions or preferential treatment under reciprocal arrangements.

As a result of these policy adjustments, a ripple effect is observable across capital investment decisions. Technology providers are accelerating the localization of production facilities while alliances between agritech innovators and local enterprises are becoming more commonplace. In an environment characterized by evolving trade barriers, agility in regulatory interpretation and partnership development has become essential for maintaining competitive advantage in smart agricultural supply chains.

Revealing Critical Segmentation Perspectives Spanning Components, Technologies, Deployment Modes, Crop Classifications and Application Landscapes in Smart Agriculture

An in-depth examination by component reveals that hardware elements-ranging from actuators and edge devices to gateways and sensors-constitute the tangible infrastructure necessary for precise data collection in the field. Complementing these assets, service offerings in consulting and support & maintenance have emerged as critical enablers of seamless deployment and sustained operational reliability. On the software front, analytics engines, farm management systems and monitoring platforms translate raw sensor outputs into actionable intelligence that drives proactive decision making.

Layering in the technology dimension, artificial intelligence and machine learning form the analytical core by identifying patterns and anomalies within agricultural datasets, while big data analytics and computer vision enable sophisticated interpretation of visual and historical records. The Internet of Things provides the foundational connectivity that ties these disparate technologies into a cohesive network, harmonizing on-farm operations with centralized command centers.

From a deployment standpoint, public cloud environments offer elastic scalability for data-intensive workloads, whereas private cloud and on-premise solutions address stringent data sovereignty and latency requirements. Crop-specific considerations further refine this landscape: cereals such as maize, rice and wheat demand robust yield prediction and soil analysis tools, whereas fruits and vegetables like berries, grapes and tomatoes require enhanced quality monitoring and cold chain coordination. Oilseeds and pulses-including lentils, soybeans and sunflowers-present unique storage stability challenges that inform tailored traceability and moisture control applications.

Application segmentation underscores diverse use cases, spanning livestock monitoring with animal tracking, behavior analysis and health monitoring to precision farming techniques encompassing crop health monitoring, soil analysis and yield forecasting. Smart irrigation solutions integrate automated systems and soil moisture monitoring, which dovetail with supply chain traceability mechanisms such as cold chain monitoring and direct farm-to-customer distribution. This layered segmentation framework furnishes stakeholders with a clear roadmap to prioritize investment areas aligned with specific functional and regional requirements.

Exploring Key Regional Dynamics Shaping Smart Agricultural Supply Chains Across the Americas, Europe Middle East Africa and Asia Pacific Markets

Across the Americas, advanced economies in North America are leading adoption through robust infrastructure investments and a strong emphasis on precision farming. Favorable regulatory frameworks and significant private sector funding have accelerated the deployment of sensor networks, drones and autonomous machinery. South American markets, while still emerging, show promising growth driven by large agricultural export sectors that are eager to leverage digital traceability to meet stringent global quality standards.

In Europe, Middle East and Africa, the regulatory environment in the European Union has catalyzed the adoption of sustainable practices, including reduced chemical inputs and carbon footprint monitoring. Collaborative research initiatives across EU member states have fostered innovation hubs that pilot next-generation IoT architectures and data exchange protocols. In parallel, Middle Eastern and African nations are exploring water-conserving smart irrigation systems to combat arid conditions, with public-private partnerships supporting infrastructure development and knowledge transfer.

The Asia-Pacific region presents a multifaceted mosaic of advanced markets and emerging economies. In Australia and New Zealand, precision viticulture and livestock management solutions have gained traction, driven by large-scale operations seeking to optimize export quality. Conversely, countries in Southeast Asia and South Asia are undertaking digital literacy programs to equip smallholder farmers with mobile-enabled farm management tools. Government subsidies and cross-border research collaborations are playing pivotal roles in scaling affordable IoT deployments and fostering resilient regional supply chains.

Analyzing Influential Industry Players Driving Innovation, Strategic Partnerships and Competitive Positioning in the Smart Agriculture Supply Chain Ecosystem

Prominent global technology providers have solidified their positions through strategic partnerships and open-architecture platforms that integrate seamlessly with partner ecosystems. Their solutions emphasize modular hardware designs and API-driven software to accelerate deployment timelines and support continuous innovation. Concurrently, specialized agritech companies are differentiating themselves with field-tested analytics models and domain expertise in crop science, securing collaboration agreements with leading agricultural cooperatives and research institutions.

Emerging startups are carving out niche segments by focusing on hyper-local conditions and tailored service bundles. By leveraging edge computing and machine learning at the device level, these innovators are delivering low-latency analytics capable of autonomous decision making in remote environments. Their agility in iterating product features and adopting new sensor modalities has attracted venture capital funding and pilot engagements with forward-thinking farm operations.

Finally, logistics and supply chain vendors are embedding digital twins and AI-based route optimization into cold chain management offerings, ensuring produce quality from origin to consumer. These integrated solutions are complemented by financial service providers who offer outcome-based farming contracts and performance-linked financing tied to data-driven yield forecasts. Together, these diverse participants are co-creating a dynamic ecosystem that drives continuous improvement and competitive differentiation throughout the smart agricultural supply chain.

Offering Actionable Insights and Strategic Frameworks for Industry Leaders to Enhance Connectivity, Optimize Operations and Foster Sustainable Agricultural Supply Excellence

Industry leaders should prioritize interoperability and data standardization across the supply chain to unlock seamless integration between disparate platforms. Establishing open data protocols and participating in collaborative consortia can reduce implementation friction and accelerate the development of interoperable solutions. Furthermore, cultivating strategic alliances with regional agronomy experts, logistics providers and financial institutions will bolster market entry strategies and facilitate shared risk management.

Investments in workforce upskilling are equally critical; cross-functional training programs that blend agronomic knowledge with data science skills will empower teams to extract maximal value from advanced analytics and automation technologies. In parallel, piloting decentralized edge computing deployments can enhance resilience by enabling autonomous decision making in connectivity-constrained regions.

Additionally, embedding sustainability metrics into performance dashboards will align corporate objectives with environmental and social governance goals, creating quantifiable impact measurements for stakeholders. Organizations should also explore outcome-based business models that tie service fees to yield improvements or resource efficiency gains, thereby demonstrating tangible value to end-users. By taking a holistic approach that integrates strategic partnerships, talent development and sustainability-driven innovation, industry leaders can establish a robust foundation for long-term competitive advantage in smart agricultural supply chains.

Detailing a Robust Research Methodology Integrating Primary Interviews, Secondary Analysis and Cross Validation for Comprehensive Smart Agriculture Supply Chain Insights

This research leverages a hybrid methodology combining primary interviews, secondary analysis and cross-validation to ensure comprehensive coverage of the smart agricultural supply chain landscape. Primary data was obtained through structured interviews with technology vendors, agricultural cooperatives, logistics providers and policy advisors, enabling firsthand perspectives on adoption challenges, investment priorities and regulatory influences.

Secondary research encompassed a systematic review of peer-reviewed journals, white papers, industry reports and public databases to validate market trends and technology roadmaps. Proprietary data sources were triangulated with publicly available information to maintain objectivity and enhance the granularity of regional and segment-level insights. Cross-validation techniques, including comparative case studies and benchmarking against historical industry performance, were employed to reinforce the credibility of qualitative findings.

Quantitative analyses prioritized index-based scoring frameworks to assess technology readiness, deployment complexity and value creation potential. Geospatial mapping tools were used to visualize adoption hotspots and supply chain bottlenecks. Finally, expert panel reviews were conducted to vet preliminary conclusions and refine strategic recommendations, ensuring alignment with real-world operational constraints and innovation trajectories.

Concluding Strategic Imperatives and Reflective Insights That Synthesize Core Findings to Guide Future Developments in Smart Agricultural Supply Chains

The convergence of advanced digital technologies and sustainable practices is reshaping the agricultural supply chain into a more transparent, resilient and efficient network. By harnessing AI, IoT, blockchain and cloud platforms, stakeholders can achieve granular visibility into field operations, optimize resource utilization and ensure end-to-end traceability of high-value crops. Strategic segmentation by component, technology, deployment mode, crop type and application helps organizations identify the most impactful investment areas and tailor solutions to specific operational contexts.

Regional variations underscore the importance of localized strategies that account for regulatory environments, infrastructure maturity and resource availability. Leading companies are leveraging partnerships, modular architectures and outcome-based business models to differentiate their offerings and expand market reach. Tariff shifts and evolving trade agreements have further highlighted the need for agile supply chain designs and diversified sourcing arrangements.

Ultimately, the industry's future success will depend on collaborative ecosystems that bring together technology innovators, agronomic experts and financial stakeholders. By aligning talent development, interoperability standards and sustainability metrics, organizations can unlock new pathways for growth, resilience and environmental stewardship within smart agricultural supply chains.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Implementing digital twin simulations of supply chain networks to optimize routing and minimize post-harvest losses
  • 5.2. Applying satellite imagery analytics integrated with weather models for adaptive field management scheduling
  • 5.3. Integration of IoT-enabled soil sensors and drones for precision irrigation and fertilization optimization
  • 5.4. Adoption of blockchain traceability platforms to enhance transparency in multi-tiered supply chains
  • 5.5. Deployment of AI-driven predictive analytics for crop yield forecasting and proactive resource allocation
  • 5.6. Implementation of automated cold chain logistics using temperature-controlled smart containers with real-time monitoring
  • 5.7. Development of cloud-based platforms integrating farm management systems with market demand forecasting tools
  • 5.8. Integration of renewable energy solutions in storage facilities to reduce carbon footprint and operational costs
  • 5.9. Employing swarm drone networks for large-scale seeding and targeted pesticide application to reduce chemical usage

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Smart Agricultural Supply Chains Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Actuators
    • 8.2.2. Edge Devices
    • 8.2.3. Gateways
    • 8.2.4. Sensors
  • 8.3. Service
    • 8.3.1. Consulting
    • 8.3.2. Support & Maintenance
  • 8.4. Software
    • 8.4.1. Analytics
    • 8.4.2. Farm Management
    • 8.4.3. Monitoring

9. Smart Agricultural Supply Chains Market, by Technology

  • 9.1. Introduction
  • 9.2. Artificial Intelligence
  • 9.3. Big Data Analytics
  • 9.4. Computer Vision
  • 9.5. Internet of Things
  • 9.6. Machine Learning

10. Smart Agricultural Supply Chains Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
    • 10.2.1. Private Cloud
    • 10.2.2. Public Cloud
  • 10.3. On Premise

11. Smart Agricultural Supply Chains Market, by Crop Type

  • 11.1. Introduction
  • 11.2. Cereals
    • 11.2.1. Maize
    • 11.2.2. Rice
    • 11.2.3. Wheat
  • 11.3. Fruits & Vegetables
    • 11.3.1. Berries
    • 11.3.2. Grapes
    • 11.3.3. Tomatoes
  • 11.4. Oilseeds & Pulses
    • 11.4.1. Lentils
    • 11.4.2. Soybeans
    • 11.4.3. Sunflowers

12. Smart Agricultural Supply Chains Market, by Application

  • 12.1. Introduction
  • 12.2. Livestock Monitoring
    • 12.2.1. Animal Tracking
    • 12.2.2. Behavior Analysis
    • 12.2.3. Health Monitoring
  • 12.3. Precision Farming
    • 12.3.1. Crop Health Monitoring
    • 12.3.2. Soil Analysis
    • 12.3.3. Yield Prediction
  • 12.4. Smart Irrigation
    • 12.4.1. Automated Irrigation Systems
    • 12.4.2. Soil Moisture Monitoring
  • 12.5. Supply Chain Traceability
    • 12.5.1. Cold Chain Monitoring
    • 12.5.2. Farm To Customer Supply

13. Americas Smart Agricultural Supply Chains Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Smart Agricultural Supply Chains Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Smart Agricultural Supply Chains Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. AGCO Corporation
    • 16.3.2. AgriDigital
    • 16.3.3. AgriProve Pty Ltd.
    • 16.3.4. Bunge Limited
    • 16.3.5. Cargill, Incorporated
    • 16.3.6. CNH Industrial NV
    • 16.3.7. CropZilla Inc.
    • 16.3.8. DroneDeploy
    • 16.3.9. Eka Software Solutions
    • 16.3.10. GrainChain, Inc.
    • 16.3.11. Indigo Ag, Inc.
    • 16.3.12. International Business Machines Corporation
    • 16.3.13. LexisNexis Risk Solutions
    • 16.3.14. Microsoft Corporation
    • 16.3.15. Oracle Corporation
    • 16.3.16. SAP SE
    • 16.3.17. Syngenta Crop Protection AG

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제