시장보고서
상품코드
1804397

농업용 실시간 공급망 모니터링 시장 : 구성요소, 기술, 전개 방식, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Real-Time Supply Chain Monitoring For Agriculture Market by Component, Technology, Deployment Mode, Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

농업용 실시간 공급망 모니터링 시장의 2024년 시장 규모는 4억 2,260만 달러로 평가되었으며, 2025년에는 4억 7,509만 달러, CAGR 12.67%로 성장하여 2030년에는 8억 6,492만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 4억 2,260만 달러
추정 연도 2025년 4억 7,509만 달러
예측 연도 2030년 8억 6,492만 달러
CAGR(%) 12.67%

추적성 강화, 물류 최적화, 공급망 전반의 지속가능한 성장을 촉진하는 실시간 데이터 스트림을 통해 농업 이해관계자들에게 힘을 실어줍니다.

전 세계적으로 농업 이해관계자들은 수확량 증가, 제품 품질 향상, 투명성에 대한 소비자의 요구가 높아짐에 따라 이에 대응해야 한다는 압박에 직면해 있습니다. 기후 변화, 무역 정책의 변화, 지속가능성에 대한 요구가 높아지면서 기존 공급망 프레임워크의 한계가 드러나고 있습니다. 이러한 진화하는 상황은 의사결정자가 혼란스러운 상황을 예측하고, 위험을 줄이고, 자원 배분을 최적화할 수 있도록 실시간으로 데이터를 수집하고 중계할 수 있는 시스템으로 패러다임의 전환을 요구하고 있습니다.

정밀농업, IoT 통합, 예측 분석의 융합으로 농업 공급 프로세스의 패러다임 전환을 촉진합니다.

농업 공급망은 연결성, 컴퓨팅 능력, 데이터 과학의 발전으로 인해 큰 변화의 시기를 맞이하고 있습니다. 저전력 광역 네트워크 센서, 위성 지원 추적기 등 사물인터넷 기기의 보급은 가치사슬의 불투명했던 부분까지 실시간 가시성을 확대했습니다. 그 결과, 머신러닝과 빅데이터 분석을 기반으로 구축된 예측 모델은 수율 변동을 예측하고, 보관 환경의 편차 패턴을 감지하고, 운송 시간을 단축하기 위해 경로 순서를 최적화할 수 있게 되었습니다.

2025년 미국 관세 조정이 농업 물류, 가격 구조, 세계 무역 역학에 미치는 파급효과 평가

미국의 관세 구조에 대한 2025년 조정으로 농산물 공급 환경은 더욱 복잡해지고 있습니다. 가공에 필수적인 장비와 포장재에 대한 과세로 인해 양륙 비용이 상승함에 따라 신선식품 수출업체들은 현재 비용 원리의 변화에 직면해 있습니다. 이러한 변화는 물류 채널에도 영향을 미치고 있으며, 화주들은 마진을 유지하기 위해 운송업체와의 계약을 재협상하고 통합 전략을 재검토해야 하는 상황에 처해 있습니다.

실시간 농산물 공급망 모니터링 시장을 형성하는 중요한 구성요소, 기술, 배포, 용도, 최종사용자 측면을 밝힙니다.

솔루션 구성요소를 종합적으로 살펴보면, 하드웨어는 여전히 실시간 모니터링 인프라의 기초적인 지탱대임을 알 수 있습니다. 드론이나 무인항공기와 같은 첨단 항공 시스템은 고해상도 현장 모니터링을 수행하고, GPS 장치는 여행의 각 단계마다 자산의 움직임을 추적합니다. IoT 게이트웨이는 환경 데이터 집계 지점 역할을 하며, 토양 수분 프로브, 온도 및 습도 센서, 자재 취급 이벤트를 기록하는 RFID 태그를 원활하게 연결합니다. 이 물리적 계층은 전문 컨설팅 팀이 시스템 구성을 조정하고 센서 네트워크와 기업 자원 계획 플랫폼 간의 복잡한 통합을 관리하는 전문 서비스와 함께 작동합니다.

아메리카, EMEA, 아시아태평양 시장에서의 실시간 공급망 모니터링 도입 및 가치사슬 창출에 있어 지역적 차이점 확인

아메리카에서는 식량 안보 강화를 위한 민간 부문의 강력한 자금 조달과 공공 부문의 인센티브에 힘입어 디지털 농업 인프라에 대한 투자가 가속화되고 있습니다. 북미의 생산자 및 물류 운영업체들은 선구적으로 센서를 배치하고 부패를 줄이고 리콜 프로세스를 개선하기 위해 통합 플랫폼을 도입하고 있으며, 남미의 수출업체들은 지역 무역 협정을 활용하여 통관을 간소화하고 운송 지연을 줄이기 위한 국경 간 가시성 이니셔티브를 시험적으로 도입하고 있습니다. 이니셔티브를 시범적으로 도입하고 있습니다. 이러한 역동적인 환경은 기술 개발자와 현지 협동조합과의 협업을 촉진하고, 다양한 기후 조건과 물류 조건에 대응하는 맞춤형 솔루션을 촉진하고 있습니다.

농업용 공급망 모니터링 솔루션의 혁신, 협업, 경쟁 차별화를 주도하는 주요 업계 참여자 프로파일링

주요 솔루션 제공업체들은 전략적 파트너십, 인수, 내부 혁신을 통해 농업 모니터링 포트폴리오를 지속적으로 확장하고 있습니다. 센서 제조 전문 기업들은 첨단 소재와 에너지 수확 기능을 통합하여 디바이스의 수명 주기를 연장하고, 소프트웨어 공급업체들은 오픈 API와 표준화된 데이터 스키마를 통해 플랫폼의 상호 운용성을 강화하고 있습니다. 클라우드 서비스 제공업체, 통신사, 하이테크 스타트업이 원격지 농장 환경에 맞는 엣지 컴퓨팅 게이트웨이를 공동 개발하는 공동 생태계가 등장하고 있습니다.

농업 전반에 걸친 실시간 모니터링의 진보를 활용하기 위한 업계 리더의 전략적 이니셔티브와 전술적 프레임워크 명확화

업계 리더들은 하드웨어, 소프트웨어, 서비스의 각 구성요소 간의 원활한 데이터 교환을 촉진하는 상호 운용 아키텍처 개발을 우선시해야 합니다. 개방형 표준을 확립하고 모듈식 설계 원칙을 채택함으로써 조직은 대규모 리엔지니어링 없이도 새로운 기술에 대응할 수 있도록 생태계를 미래에도 유지할 수 있습니다. 또한, 통신 사업자 및 클라우드 플랫폼과의 전략적 파트너십에 투자함으로써 실시간 분석에 필요한 탄력적인 연결성과 확장 가능한 컴퓨팅 리소스를 확보할 수 있습니다.

농업 공급망 모니터링 기술에 대한 실용적인 인사이트를 제공하기 위해 채택된 엄격한 조사 방법론 개요

본 요약에 게재된 조사 결과는 1차 정보와 2차 정보를 조합한 엄격한 조사 방법을 통해 도출된 결과입니다. 2차 조사에서는 업계 간행물, 규제 상황, 기술 백서 등을 종합적으로 검토하여 현재 솔루션 상황과 새로운 표준을 매핑했습니다. 이를 보완하기 위해 주요 솔루션 제공업체, 농업 관련 기업, 물류 운영업체 고위 임원, 제품 관리자, 기술 설계자 등과의 심층 인터뷰를 통해 주요 동향을 파악하고, 업무상 과제에 대한 생생한 관점을 파악했습니다. 주요 동향을 확인하고, 업무상 과제에 대한 생생한 관점을 파악하였습니다.

농업 분야 실시간 공급망 모니터링의 미래 방향과 투자 필요성에 대한 주요 조사 결과를 통합하여 농업 분야 실시간 공급망 모니터링의 미래 방향성 제시

기술적 촉진요인, 정책적 변화, 지역적 역학을 종합적으로 분석한 결과, 완전히 투명한 데이터 기반 공급망으로 전환하고 있는 시장을 확인할 수 있었습니다. 센서의 소형화, 엣지 분석, 분산형 원장 프레임워크의 발전으로 엔드 투 엔드 추적성에 대한 기존의 장벽이 사라지고 있으며, 진화하는 관세 제도와 무역 재편으로 인해 적응형 조달 전략의 중요성이 부각되고 있습니다. 세분화에 대한 인사이트를 통해 종합적인 솔루션은 다양한 사용 사례와 이해관계자 그룹의 요구를 충족시키기 위해 하드웨어, 컨설팅, 소프트웨어의 각 계층을 통합하고 다양한 배포 옵션을 지원해야 한다는 것을 알 수 있었습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025년

제8장 농업용 실시간 공급망 모니터링 시장 : 구성요소별

  • 하드웨어
    • 드론과 무인항공기
    • GPS 디바이스
    • IoT 게이트웨이
    • RFID 태그
    • 센서
  • 서비스
    • 컨설팅
    • 통합
  • 소프트웨어
    • 농장 관리 시스템(FMS)
    • 공급망 관리(SCM) 플랫폼

제9장 농업용 실시간 공급망 모니터링 시장 : 기술별

  • AI와 머신러닝
  • 빅데이터 분석
  • 블록체인
  • 클라우드 컴퓨팅
  • IoT

제10장 농업용 실시간 공급망 모니터링 시장 : 전개 방식별

  • 클라우드
  • 온프레미스

제11장 농업용 실시간 공급망 모니터링 시장 : 용도별

  • 콜드체인 감시
  • 작물 모니터링
  • 재고·창고 관리
  • 가축 모니터링
  • 품질 관리와 이력추적

제12장 농업용 실시간 공급망 모니터링 시장 : 최종사용자별

  • 농업 관련 기업
  • 농가와 생산업체
  • 식품 가공 회사
  • 정부 및 규제기관
  • 물류·운송 회사

제13장 아메리카의 농업용 실시간 공급망 모니터링 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 농업용 실시간 공급망 모니터링 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 농업용 실시간 공급망 모니터링 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • International Business Machines Corporation
    • GrainChain, Inc.
    • AGRIVI Ltd.
    • Cannon Logistics Pty Ltd.
    • Cisco Systems, Inc.
    • Crop Analytica
    • Cropin Technology Solutions Private Limited
    • CSM Technologies Private Limited
    • Farmonaut Technologies Pvt. Ltd. by ZenaTech
    • Infosys Limited
    • Koltiva AG
    • Maaya Software Solutions Pvt Ltd.
    • Microsoft Corporation
    • Oracle Corporation
    • SAP SE
    • Schneider Electric SE
    • Sedex Information Exchange Limited
    • Soiltech Wireless Inc.
    • SourceTrace Systems, Inc.
    • Tecsoil, Inc.
    • Telit Cinterion
    • TraceX Technologies
    • Trimble Inc.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

KSM 25.09.10

The Real-Time Supply Chain Monitoring For Agriculture Market was valued at USD 422.60 million in 2024 and is projected to grow to USD 475.09 million in 2025, with a CAGR of 12.67%, reaching USD 864.92 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 422.60 million
Estimated Year [2025] USD 475.09 million
Forecast Year [2030] USD 864.92 million
CAGR (%) 12.67%

Empowering Agricultural Stakeholders with Live Data Streams to Enhance Traceability, Optimize Logistics, and Drive Sustainable Growth Across the Supply Chain

Across the globe, agricultural stakeholders are confronting mounting pressures to deliver higher yields, enhance product quality, and meet escalating consumer demands for transparency. Climatic volatility, shifting trade policies, and increasing sustainability requirements have underscored the limitations of legacy supply chain frameworks. This evolving landscape demands a paradigm shift toward systems that can capture and relay data in real time, empowering decision-makers to anticipate disruptions, mitigate risks, and optimize resource allocation.

Real-time visibility solutions leverage an interconnected ecosystem of sensors, communication networks, and analytics platforms to transform raw data into actionable intelligence. By integrating GPS coordinates, environmental metrics, and logistics statuses into unified dashboards, these platforms enable continuous monitoring of field conditions, asset movements, and cold chain integrity. The insights generated not only enhance traceability from farm gate to consumer but also support proactive maintenance, adaptive routing, and dynamic inventory management.

This executive summary synthesizes key trends, drivers, segmentation perspectives, and regional differentiators shaping the adoption of real-time supply chain monitoring in agriculture. It highlights critical impacts arising from United States tariff adjustments, details major competitive dynamics, and offers pragmatic recommendations for senior leaders. Furthermore, the methodology underpinning these findings is outlined, ensuring transparency and credibility. Ultimately, this summary serves as a strategic guide for stakeholders committed to elevating resilience, efficiency, and sustainability in modern agricultural supply chains.

Navigating the Convergence of Precision Farming, IoT Integration, and Predictive Analytics Driving a Paradigm Shift in Agricultural Supply Processes

Agricultural supply chains are undergoing a profound transformation driven by advances in connectivity, computing power, and data science. The proliferation of Internet of Things devices, including low-power wide-area network sensors and satellite-enabled trackers, has extended real-time visibility into previously opaque segments of the value chain. As a result, predictive models built on machine learning and big data analytics are now capable of forecasting yield variations, detecting deviation patterns in storage environments, and optimizing route sequences to reduce transit times.

In parallel, the integration of blockchain frameworks is fostering unparalleled levels of trust and provenance. Immutable ledgers that record transactions at every stage-from seed sourcing through final distribution-are redefining quality assurance protocols and facilitating rapid recalls when necessary. Drones and unmanned aerial systems have evolved from data collection prototypes into fully integrated assets capable of aerial surveillance, crop health assessment, and targeted input application, further augmenting ground-level monitoring.

Moreover, growing regulatory emphasis on reducing food waste and ensuring ethical sourcing is accelerating investments in end-to-end transparency platforms. Stakeholders are increasingly collaborating across traditional boundaries, sharing data across enterprise resource planning systems to streamline compliance reporting and environmental certifications. This shift toward holistic, data-driven ecosystems represents a critical juncture in delivering resilient, responsive, and sustainable agricultural operations.

Assessing the Ripple Effects of 2025 United States Tariff Adjustments on Agricultural Logistics, Pricing Structures, and Global Trade Dynamics

The 2025 adjustments to United States tariff structures have introduced layered complexities into the agricultural supply landscape. Exporters of perishable commodities now face altered cost dynamics as levies on essential processing equipment and packaging materials have increased landed costs. These shifts have rippled through logistics channels, compelling shippers to renegotiate carrier contracts and reevaluate consolidation strategies to preserve margin integrity.

Concurrently, equipment providers supplying drones, advanced sensors, and RFID tagging solutions have encountered higher import duties, prompting many to explore alternative manufacturing bases or to absorb incremental expenses. In response, service integrators have recalibrated their pricing models and sought to bundle installation with extended support contracts, ensuring end users maintain uninterrupted data flows and system reliability. Producers who rely on specialized farm management and supply chain software platforms have also grappled with renewed licensing cost pressures, leading some to accelerate digital transformation roadmaps that prioritize modular, cloud-native architectures.

As a consequence of these tariff realignments, strategic sourcing decisions are in flux. Several stakeholders have shifted procurement toward regional partners within trade zones offering preferential duty treatments, while others are intensifying engagement with domestic suppliers to enhance supply continuity. Meanwhile, collaborative consortiums are emerging to pool resources for cross-border logistics optimization, aiming to offset increased overheads through shared warehousing and joint transportation networks. These adaptive strategies underscore the importance of agility and local market intelligence in navigating evolving trade regimes.

Unveiling Critical Component, Technology, Deployment, Application, and End User Dimensions Shaping the Real-Time Agricultural Supply Monitoring Market

A holistic view of solution components reveals that hardware remains a foundational pillar in real-time monitoring infrastructures. Advanced aerial systems such as drones and unmanned aerial vehicles conduct high-resolution field surveillance, while GPS devices track the movement of assets throughout each stage of the journey. IoT gateways serve as aggregation points for environmental data, seamlessly connecting soil moisture probes, temperature and humidity sensors, and RFID tags that record material handling events. This physical layer works in concert with professional services, where specialized consulting teams calibrate system configurations and manage complex integrations between sensor networks and enterprise resource planning platforms.

The software layer is equally critical, encompassing modular farm management systems designed to harmonize agronomic planning with labor scheduling, and supply chain management platforms that leverage data pipelines to orchestrate inbound and outbound logistics. Within the technology stack, artificial intelligence and machine learning algorithms power anomaly detection models that identify deviations in cold chain conditions, while big data analytics platforms correlate historical performance metrics to generate predictive maintenance schedules. Blockchain configurations provide a tamper-resistant audit trail, supporting end-to-end provenance verification, and cloud computing environments deliver scalable storage and processing capacity. Simultaneously, edge computing nodes ensure real-time responsiveness by performing localized data processing when connectivity is constrained.

Flexibility in deployment modes allows stakeholders to align system architectures with their operational preferences. Cloud-hosted offerings facilitate rapid onboarding and continuous updates, whereas on-premises solutions appeal to organizations prioritizing data sovereignty and latency control. These deployment options enable diverse applications, ranging from cold chain condition monitoring and dynamic inventory and warehouse management to precision crop health analytics, comprehensive livestock tracking, and quality control mechanisms that ensure traceability. Across these use cases, the end user spectrum extends from large agribusiness corporations and independent farmers and growers to food processing enterprises, government and regulatory bodies overseeing compliance, and logistics and transportation providers orchestrating multimodal delivery networks.

Examining Regional Divergence in Real-Time Supply Chain Monitoring Adoption and Value Creation Across Americas, EMEA, and Asia-Pacific Markets

In the Americas, investment in digital agriculture infrastructure has accelerated, supported by robust private-sector financing and public-sector incentives aimed at enhancing food security. North American growers and logistics operators are pioneering sensor deployments and adopting integrated platforms to reduce spoilage and improve recall processes, while South American exporters are leveraging regional trade agreements to pilot cross-border visibility initiatives that streamline customs clearance and reduce transit delays. This dynamic environment fosters collaboration between technology developers and local cooperatives, driving tailored solutions that address diverse climatic and logistical conditions.

Across Europe, the Middle East, and Africa, regulatory frameworks mandating sustainability reporting and food safety compliance are propelling a transition to real-time monitoring. European Union directives focused on reducing waste and lowering carbon footprints have catalyzed investments in intelligent cold chain monitoring, whereas governments in the Middle East are integrating digital traceability into strategic agricultural modernization programs. In Africa, where smallholder farms dominate, pilot projects are demonstrating how low-cost sensor networks and mobile-first applications can extend visibility to remote regions, paving the way for scalable rollouts as connectivity infrastructure expands.

Asia-Pacific markets exhibit a mosaic of adoption patterns driven by rapid urbanization, evolving consumer preferences, and government agendas prioritizing digital transformation. High-density farming operations in East Asia are leveraging machine learning insights to fine-tune resource utilization, while Southeast Asian exporters are utilizing blockchain-backed traceability to differentiate high-value commodities in competitive global markets. Australia and New Zealand continue to invest in next-generation telemetry systems to support high-value perishable exports, underscoring the critical role of regional collaboration and knowledge transfer in accelerating technology diffusion.

Profiling Major Industry Participants Driving Innovation, Collaboration, and Competitive Differentiation in Agricultural Supply Chain Monitoring Solutions

Leading solution providers continue to expand their agricultural monitoring portfolios through strategic partnerships, acquisitions, and in-house innovation. Firms specializing in sensor fabrication are integrating advanced materials and energy harvesting capabilities to extend device lifecycles, while software vendors are enhancing platform interoperability through open APIs and standardized data schemas. Collaborative ecosystems have emerged, bringing together cloud service providers, telecommunications carriers, and ag-tech startups to co-develop edge computing gateways tailored for remote farm environments.

Collaborative research initiatives between academic institutions and industry players are accelerating the maturity of artificial intelligence models focused on crop disease prediction and climate resilience optimization. Similarly, global logistics enterprises are partnering with technology integrators to design bespoke cold chain solutions that incorporate real-time temperature and humidity monitoring alongside dynamic route planning. These competitive dynamics underline an ongoing shift from point solutions toward integrated suites capable of delivering comprehensive visibility and decision support.

Furthermore, emerging players are tailoring offerings to underserved segments such as smallholder cooperatives by providing modular sensor kits and subscription-based analytics dashboards that lower the barrier to entry. Simultaneously, incumbent technology giants are leveraging their scale to offer end-to-end managed services, encompassing sensor deployment, data ingestion, analytics, and ongoing technical support. These diverse approaches reflect a maturing marketplace that balances innovation velocity with the pragmatic needs of varied end users.

Articulating Strategic Initiatives and Tactical Frameworks for Industry Leaders to Capitalize on Real-Time Monitoring Advancements Across Agriculture

Industry leaders should prioritize the development of interoperable architectures that facilitate seamless data exchange across hardware, software, and service components. By establishing open standards and adopting modular design principles, organizations can future-proof their ecosystems and accommodate emerging technologies without extensive reengineering. Furthermore, investing in strategic partnerships with telecommunications providers and cloud platforms will ensure resilient connectivity and scalable computing resources necessary for real-time analytics.

In parallel, companies must enhance their talent strategies by cultivating multidisciplinary teams proficient in agronomy, data science, and systems engineering. Dedicated training programs and cross-functional workshops can foster collaboration between field technicians, software developers, and supply chain analysts, driving faster time to value and more effective issue resolution. Additionally, embedding sustainability metrics into performance dashboards will enable transparent reporting and support compliance with evolving regulatory requirements focused on waste reduction and carbon footprint mitigation.

Finally, industry stakeholders should explore new business models that align incentives across the value chain, such as outcome-based service agreements where compensation is tied to throughput improvements or spoilage reductions. Piloting pay-for-performance frameworks can create shared accountability and encourage continuous optimization. By embracing these strategic initiatives and tactical frameworks, organizations can capitalize on real-time monitoring advancements to drive profitability, resilience, and competitive differentiation.

Outlining the Rigorous Research Methodology Employed to Deliver Actionable Insights on Agricultural Supply Chain Monitoring Technologies

The findings presented in this summary are underpinned by a rigorous research methodology combining primary and secondary data sources. Secondary research entailed a comprehensive review of industry publications, regulatory documents, and technology white papers to map current solution landscapes and emerging standards. Complementing this, a series of in-depth interviews was conducted with senior executives, product managers, and technical architects from leading solution providers, agricultural enterprises, and logistics operators to validate key trends and capture firsthand perspectives on operational challenges.

To ensure robust data triangulation, quantitative inputs from technology adoption surveys and utilization benchmarks were cross-referenced with qualitative insights derived from field visits and system demonstrations. Advanced analytical techniques, including thematic coding and root-cause analysis, were employed to identify recurring patterns and prioritize high-impact themes. All sources were critically evaluated for relevance, credibility, and recency, with an emphasis on reflecting developments through the first half of 2025.

This structured approach ensures that the insights within this report accurately reflect the current state of real-time supply chain monitoring in agriculture, providing decision-makers with a reliable foundation for strategy formulation, investment appraisal, and solution deployment planning.

Synthesizing Key Findings to Illuminate Future Directions and Investment Imperatives for Real-Time Supply Chain Monitoring in Agriculture

The collective analysis of technological drivers, policy shifts, and regional dynamics illustrates a market in transition toward fully transparent, data-driven supply chains. Advances in sensor miniaturization, edge analytics, and distributed ledger frameworks are dismantling traditional barriers to end-to-end traceability, while evolving tariff regimes and trade realignments underscore the centrality of adaptive sourcing strategies. Segmentation insights reveal that comprehensive solutions must integrate hardware, consulting, and software layers, supported by versatile deployment options to meet the needs of diverse use cases and stakeholder groups.

Regional variances highlight the importance of tailoring approaches to local infrastructure maturity, regulatory landscapes, and agricultural practices. Market participants that foster collaborative ecosystems and co-innovation models are gaining traction by offering scalable, cost-effective solutions for both large corporate farms and smallholder networks. Key companies continue to differentiate through portfolio expansion, strategic alliances, and service offerings that balance advanced analytics with high-touch support.

Looking ahead, the convergence of artificial intelligence, IoT, and blockchain technologies promises to unlock new levels of operational efficiency, product quality assurance, and sustainability. Organizations that act on the actionable recommendations herein-by prioritizing interoperability, enhancing talent, and exploring innovative business models-will be well positioned to drive the next wave of transformation in agricultural supply chain monitoring.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of IoT sensor networks for real-time crop and livestock health monitoring
  • 5.2. Blockchain-enabled traceability platforms ensuring authenticity and quality of fresh produce
  • 5.3. Deployment of AI-driven predictive analytics for dynamic demand forecasting in agriculture logistics
  • 5.4. Drone-enabled aerial monitoring solutions providing parcel-level insights into crop conditions
  • 5.5. Edge computing architectures minimizing latency for on-site agricultural data processing and analytics
  • 5.6. Cold chain IoT temperature monitoring systems ensuring compliance and freshness throughout transportation
  • 5.7. Satellite imagery integrated with ground sensor data for enhanced agricultural yield prediction accuracy
  • 5.8. Real-time compliance reporting tools automating food safety standards across multi-tier supply chains
  • 5.9. Mobile dashboard applications providing farmers with real-time transparency across the agricultural supply chain
  • 5.10. Predictive maintenance scheduling of cold storage and refrigeration units to prevent spoilage losses

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Real-Time Supply Chain Monitoring For Agriculture Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Drones & UAVs
    • 8.2.2. GPS Devices
    • 8.2.3. IoT Gateways
    • 8.2.4. RFID Tags
    • 8.2.5. Sensors
  • 8.3. Services
    • 8.3.1. Consulting
    • 8.3.2. Integration
  • 8.4. Software
    • 8.4.1. Farm Management Systems (FMS)
    • 8.4.2. Supply Chain Management (SCM) Platforms

9. Real-Time Supply Chain Monitoring For Agriculture Market, by Technology

  • 9.1. Introduction
  • 9.2. AI & Machine Learning
  • 9.3. Big Data Analytics
  • 9.4. Blockchain
  • 9.5. Cloud Computing
  • 9.6. IoT

10. Real-Time Supply Chain Monitoring For Agriculture Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. On Premises

11. Real-Time Supply Chain Monitoring For Agriculture Market, by Application

  • 11.1. Introduction
  • 11.2. Cold Chain Monitoring
  • 11.3. Crop Monitoring
  • 11.4. Inventory & Warehouse Management
  • 11.5. Livestock Monitoring
  • 11.6. Quality Control & Traceability

12. Real-Time Supply Chain Monitoring For Agriculture Market, by End User

  • 12.1. Introduction
  • 12.2. Agribusiness Companies
  • 12.3. Farmers & Growers
  • 12.4. Food Processing Companies
  • 12.5. Government & Regulatory Bodies
  • 12.6. Logistics & Transportation Companies

13. Americas Real-Time Supply Chain Monitoring For Agriculture Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Real-Time Supply Chain Monitoring For Agriculture Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Real-Time Supply Chain Monitoring For Agriculture Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. International Business Machines Corporation
    • 16.3.2. GrainChain, Inc.
    • 16.3.3. AGRIVI Ltd.
    • 16.3.4. Cannon Logistics Pty Ltd.
    • 16.3.5. Cisco Systems, Inc.
    • 16.3.6. Crop Analytica
    • 16.3.7. Cropin Technology Solutions Private Limited
    • 16.3.8. CSM Technologies Private Limited
    • 16.3.9. Farmonaut Technologies Pvt. Ltd. by ZenaTech
    • 16.3.10. Infosys Limited
    • 16.3.11. Koltiva AG
    • 16.3.12. Maaya Software Solutions Pvt Ltd.
    • 16.3.13. Microsoft Corporation
    • 16.3.14. Oracle Corporation
    • 16.3.15. SAP SE
    • 16.3.16. Schneider Electric SE
    • 16.3.17. Sedex Information Exchange Limited
    • 16.3.18. Soiltech Wireless Inc.
    • 16.3.19. SourceTrace Systems, Inc.
    • 16.3.20. Tecsoil, Inc.
    • 16.3.21. Telit Cinterion
    • 16.3.22. TraceX Technologies
    • 16.3.23. Trimble Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제