시장보고서
상품코드
1804590

지능형 로보틱스 시장 : 로봇 유형, 구성요소, 자율성 레벨, 모빌리티 유형, 최종 이용 산업별 - 세계 예측(2025-2030년)

Intelligent Robotics Market by Robot Type, Component, Autonomy Level, Mobility Type, End User Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

지능형 로보틱스 시장은 2024년에는 129억 3,000만 달러로 평가되었으며, 2025년에는 161억 5,000만 달러, CAGR 26.32%로 성장하여 2030년에는 525억 8,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 129억 3,000만 달러
추정 연도 2025년 161억 5,000만 달러
예측 연도 2030년 525억 8,000만 달러
CAGR(%) 26.32%

세계 혁신과 운영 우수성을 촉진하고, 산업을 초월한 지능형 로봇의 변혁적 잠재력을 실현하는 세계 혁신의 원동력

첨단 컴퓨팅, 인공지능, 정밀 기계 공학의 융합은 지능형 로봇의 새로운 시대를 열어 조직의 자동화 및 혁신에 대한 접근 방식을 재정의하고 있습니다. 정밀한 제조 현장부터 역동적인 서비스 환경까지 다양한 산업에서 지능형 로봇 플랫폼은 기존의 기계적인 능력의 한계를 넘어 적응력이 뛰어나고 상황 인식이 가능한 고정밀 작업을 실현하고 있습니다.

신흥 부문의 로봇 아키텍처, 통합 패러다임, 시장 역학을 재정의하는 혁명적 변화를 살펴봅니다.

지능형 로봇 생태계가 차세대 기능과 새로운 통합 패러다임을 수용하면서 근본적인 변화가 일어나고 있습니다. 엣지 컴퓨팅과 분산 제어 아키텍처의 등장으로 디바이스 수준에서 실시간 의사결정이 가능해져 대기 시간이 단축되고 네트워크 장애에 대한 복원력이 향상되고 있습니다. 동시에 디지털 트윈 프레임워크의 성숙은 물리적 자산의 가상 복제본을 제공하여 운영자가 미션 크리티컬한 환경에 배치하기 전에 로봇의 동작을 시뮬레이션, 테스트 및 최적화할 수 있도록 지원합니다.

미국의 관세 조정이 2025년 로봇 공급망, 조달 비용, 경쟁에 미치는 전략적 영향을 분석합니다.

미국의 2025년 관세 개정 조치의 시행은 세계 로봇 공급망에 복잡한 역학을 가져와 제조업체들이 조달 전략을 재구축하고 총비용 구조를 재검토하도록 촉구하고 있습니다. 이러한 변화에 따라 많은 통합업체들이 관세 조정의 영향을 덜 받는 지역으로 대체 공급업체를 찾고 있으며, 이는 부품 조달 파이프라인의 변화 및 중요한 조립품의 리드타임 연장으로 이어지고 있습니다.

로봇의 종류, 구성요소 기술, 자율성 수준, 이동성 변형, 산업용 애플리케이션을 정확하게 탐색할 수 있는 세분화 인사이트 제공

가장 매력적인 비즈니스 기회에 투자 포트폴리오를 맞추고자 하는 기업에게 세분화 프레임워크에 대한 미묘한 이해는 필수적입니다. 로봇의 종류를 살펴보면, 인간과의 원활한 상호작용을 위해 설계된 협동 로봇, 고정밀 제조 작업에 최적화된 다관절형, 직교형, 스칼라형으로 세분화된 산업용 로봇, 소비자 및 기업 서비스 환경에 맞춘 서비스 로봇으로 양극화되어 있음을 알 수 있습니다. 알 수 있습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 로봇 도입의 지역적 차이를 살펴봄으로써 독자적인 성장 촉진요인을 찾아냅니다.

지역 정세는 지역 정책 프레임워크, 투자 환경, 인재 풀에 힘입어 로봇 공학의 도입 속도를 형성하는 데 매우 중요한 역할을 합니다. 아메리카에서는 산업 현대화를 위한 강력한 노력과 탄탄한 기술 자금 조달 메커니즘이 협동 로봇과 산업용 로봇의 보급을 가속화하고 있으며, 특히 자동차, 전자제품, 식품 가공의 허브가 되고 있습니다.

세계 자동화 솔루션의 다음 물결을 형성할 주요 로봇 기업의 전략적 포지셔닝과 혁신의 길을 밝힙니다.

주요 기업들은 전략적 제휴, 맞춤형 연구 개발 프로그램, 특수 산업 요구 사항을 충족하는 플랫폼 확장을 통해 로봇 공학의 새로운 경계를 형성하고 있습니다. 일부 선도 기업들은 개발자 생태계를 육성하고 통합 일정을 앞당기기 위해 오픈 소프트웨어 프레임워크에 많은 투자를 하고 있으며, 이를 통해 다양한 고객층에서 채택을 촉진하고 있습니다.

지속가능한 경쟁 우위를 위해 경쟁 정보를 활용하는 업계 리더를 강화하기 위한 실행 가능한 전략적 제안.

경쟁이 치열해지는 로봇 산업 환경에서 성공하기 위해 업계 리더들은 엔지니어링, 운영, 분석 워크플로우를 통합하는 통합 디지털 플랫폼 개발을 우선순위에 두어야 합니다. 지속적인 소프트웨어 업데이트와 원격 진단을 지원하는 확장 가능한 아키텍처에 투자함으로써 기업은 다운타임을 크게 줄이고 가치 실현 시간을 단축할 수 있습니다.

전문가별 1차 조사와 2차 데이터 분석을 통합한 엄격한 조사 방법을 통해 종합적인 로봇 시장 인사이트를 얻을 수 있습니다.

본 조사는 로봇공학 기술자, 기술 임원, 최종사용자를 대상으로 한 1차 조사와 기술 저널, 특허 데이터베이스, 규제 당국에 제출된 자료에 대한 철저한 2차 조사를 통합한 2단계 접근 방식을 채택하고 있습니다. 구조화된 인터뷰와 현장 방문을 통해 1차적인 인사이트를 도출하고, 도입 과제, 혁신 로드맵, 운영 벤치마킹에 대한 미묘한 관점을 도출했습니다.

주요 조사 결과 요약 및 지능형 로봇의 혁신, 통합, 시장 변화 역학에 대한 향후 궤적에 대한 인사이트

본 보고서는 기술, 정책, 시장 개척을 종합하여 지능형 로봇의 전략적 전환점을 강조하고 있습니다. 자율성, 센서 융합, 협업 설계의 융합적 발전으로 기존 자동화의 제약을 뛰어넘는 솔루션이 가능해지고 있으며, 진화하는 무역 정책과 지역 이니셔티브는 세계 공급망 아키텍처를 재구성하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 지능형 로보틱스 시장 : 로봇 유형별

  • 협동 로봇
  • 산업용 로봇
    • 관절식
    • 데카르트 좌표
    • 스카라
  • 서비스 로봇

제9장 지능형 로보틱스 시장 : 구성요소별

  • 액추에이터
  • 컨트롤러
  • 엔드 이펙터
  • 파워 유닛
  • 센서

제10장 지능형 로보틱스 시장 : 자율 레벨별

  • 완전 자율
  • 반자율형

제11장 지능형 로보틱스 시장 : 모빌리티 유형별

  • 모바일
  • 고정형

제12장 지능형 로보틱스 시장 : 최종 이용 업계별

  • 농업
  • 방위·보안
  • 헬스케어
  • 물류·운송
  • 제조업
  • 소매·호스피탈리티

제13장 아메리카의 지능형 로보틱스 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 지능형 로보틱스 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 지능형 로보틱스 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ABB Ltd.
    • Boston Dynamics, Inc.
    • Daifuku Co., Ltd.
    • General Dynamics Corporation
    • DENSO Corporation
    • Ecovacs Group
    • Fanuc Corporation
    • HANSON ROBOTICS LTD.
    • Honeywell International Inc.
    • Intel Corporation
    • Kuka AG
    • Intuitive Surgical, Inc.
    • iRobot Corporation
    • JAPAN UNIX CO., LTD.
    • Hanson Robotics, Limited
    • NVIDIA Corporation
    • PAL Robotics SL
    • Panasonic Holdings Corporation
    • Qualcomm Technologies, Inc.
    • Robert Bosch GmbH
    • DeLaval Group
    • SoftBank Robotics Group
    • Ubtech Robotics Corp Ltd.
    • Yaskawa Electric Corporation
    • Zebra Technologies Corporation
    • Kawasaki Heavy Industries, Ltd.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

KSM 25.09.11

The Intelligent Robotics Market was valued at USD 12.93 billion in 2024 and is projected to grow to USD 16.15 billion in 2025, with a CAGR of 26.32%, reaching USD 52.58 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 12.93 billion
Estimated Year [2025] USD 16.15 billion
Forecast Year [2030] USD 52.58 billion
CAGR (%) 26.32%

Unveiling the Transformative Potential of Intelligent Robotics Across Industries to Propel Innovation and Operational Excellence Globally

The convergence of advanced computing, artificial intelligence, and precision mechanics has ushered in a new era for intelligent robotics, redefining how organizations approach automation and innovation. Across diverse industries, from precision manufacturing floors to dynamic service environments, intelligent robotics platforms are transcending traditional boundaries of mechanical capability to deliver adaptable, context aware, and high-precision operations.

By leveraging sensor driven feedback loops, machine learning algorithms, and collaborative architectures, companies can now deploy robotic solutions that interact seamlessly with human operators, adapt to variations in real time, and streamline complex workflows. This evolution not only enhances productivity metrics but also fosters an environment of continuous improvement, where insights derived from operational data feed iterative design enhancements. In this context, stakeholders at every level-from R&D teams to executive decision makers-must appreciate the strategic importance of embedding intelligent robotics into broader digital transformation agendas. Through this executive summary, readers are guided through the critical dimensions shaping the current landscape and the actionable imperatives that will define competitive success in the years ahead.

Examining the Revolutionary Shifts Redefining Robotics Architectures, Integration Paradigms, and Market Dynamics Across Emerging Sectors

Fundamental shifts are underway as the intelligent robotics ecosystem embraces next-generation capabilities and novel integration paradigms. The rise of edge computing and distributed control architectures is enabling real time decision making at the device level, reducing latency and increasing resilience against network disruptions. Simultaneously, the maturation of digital twin frameworks provides virtual replicas of physical assets, empowering operators to simulate, test, and optimize robotic behaviors before deployment in mission-critical environments.

Furthermore, the growing emphasis on human-machine collaboration is redefining safety standards and ergonomic design principles. By combining vision-guided manipulation, force sensing, and adaptive motion planning, collaborative robots are moving beyond static cages to work in close proximity with human teams. Alongside this trend, service robotics is expanding its footprint into healthcare, logistics, and retail, leveraging voice interfaces and autonomous navigation to deliver personalized experiences and cost-effective operations. Altogether, these transformative shifts are not simply technological upgrades; they represent a holistic reimagining of how organizations choreograph people, processes, and machines to achieve unprecedented levels of agility and performance.

Analyzing the Strategic Consequences of United States Tariff Adjustments on Robotics Supply Chains, Procurement Costs, and Competitive Positioning in 2025

The implementation of revised tariff measures by the United States in 2025 has introduced complex dynamics within global robotics supply chains, prompting manufacturers to reengineer sourcing strategies and reassess total cost structures. In the wake of these changes, many integrators have sought alternative suppliers in regions less impacted by adjusted duties, leading to shifts in component procurement pipelines and extended lead times for critical assemblies.

As trade compliance requirements intensify, organizations are investing in enhanced risk management frameworks and digital documentation systems to maintain full visibility into customs processes. This scrutiny has driven partnerships with logistics specialists adept at navigating evolving regulations and securing preferential trade treatments. Meanwhile, engineering teams are exploring design for tariff resiliency by qualifying multiple sources for key components and modularizing architectures to facilitate flexible assembly configurations. Ultimately, the collective impact of the 2025 tariff adjustments underscores the necessity for strategic agility, robust supplier ecosystems, and an unwavering focus on compliance excellence to sustain uninterrupted automated operations.

Unraveling Segmentation Insights to Navigate Robot Types, Component Technologies, Autonomy Levels, Mobility Variants, and Industry Applications with Precision

A nuanced understanding of segmentation frameworks is vital for organizations seeking to align investment portfolios with the most compelling opportunity spaces. When examining the array of robot types, one observes the dual ascent of collaborative robots engineered for seamless human interaction, industrial robots subdivided into articulated, cartesian, and scara configurations optimized for high-precision manufacturing tasks, and service robots tailored to consumer-focused and enterprise-service environments.

Delving deeper, component-level categorization highlights the distinct roles played by actuators that deliver motion power, controllers that orchestrate system behavior, end effectors that customize task interfaces, power units that sustain operational cycles, and sensors that enable robust environment perception. Attention to autonomy grades further reveals a spectrum ranging from fully autonomous systems capable of independent task execution to semi autonomous solutions designed to complement human oversight. Mobility typologies introduce another dimension, with mobile platforms navigating dynamic pathways and stationary units anchoring consistent production workflows. Finally, mapping segmentation against end user industries-spanning precision agriculture, defense and security, advanced healthcare procedures, logistics and transportation networks, high-speed manufacturing lines, and retail and hospitality experiences-sheds light on distinct demand patterns and tailored value propositions.

Exploring Regional Nuances in Robotics Adoption Across the Americas, Europe Middle East & Africa, and Asia-Pacific to Uncover Distinct Growth Drivers

Geographic landscapes play a pivotal role in shaping the pace of robotics adoption, driven by regional policy frameworks, investment climates, and talent pools. In the Americas, strong industrial modernization initiatives and robust technology funding mechanisms have accelerated penetration of both collaborative and industrial robots, particularly within automotive, electronics, and food processing hubs.

Moving to the Europe Middle East & Africa corridor, regulatory emphasis on workplace safety, sustainability mandates, and advanced manufacturing clusters has elevated demand for modular robotics solutions integrating advanced vision and force control. Government-led smart factory programs across Western Europe and the Gulf region are further catalyzing cross-border partnerships and localized manufacturing of critical subsystems.

Meanwhile, the Asia-Pacific arena continues to assert its leadership, propelled by semiconductor fabrication growth, precision electronics assembly, and a burgeoning service robotics market catering to healthcare and retail sectors. Large-scale investments in domestic robotics champions, combined with a dense network of testbed facilities, have created a fertile environment for rapid commercialization and iterative design excellence.

Illuminating the Strategic Positioning and Innovation Pathways of Leading Robotics Firms Shaping the Next Wave of Automated Solutions Worldwide

Leading organizations are shaping the robotics frontier through strategic alliances, bespoke R&D programs, and platform expansions that address specialized industry requirements. Several top firms have invested heavily in open software frameworks to foster developer ecosystems and accelerate integration timelines, thereby driving adoption across diverse customer segments.

At the same time, a new wave of innovators is emerging with targeted solutions for healthcare automation, precision logistics, and sustainable agricultural systems. These entrants are challenging legacy providers by offering leaner business models and agile upgrade cycles, compelling established players to augment their product roadmaps with modular, upgradable architectures. Collaboration between equipment manufacturers, academic research centers, and system integrators has also intensified, resulting in co-innovation labs focused on human-robot interaction, advanced sensor fusion, and resilient autonomous navigation.

Actionable Strategic Recommendations to Empower Industry Leaders in Harnessing Intelligent Robotics for Sustainable Competitive Advantage

To thrive in an increasingly competitive robotics landscape, industry leaders should prioritize the development of integrated digital platforms that unify engineering, operations, and analytics workflows. By investing in scalable architectures that support continuous software updates and remote diagnostics, organizations can significantly reduce downtime and accelerate time to value.

Moreover, forging strategic partnerships with specialized component suppliers and research institutions will enhance access to breakthrough technologies in advanced materials, AI-driven perception, and adaptive control systems. It is equally important to cultivate a skilled workforce through targeted training programs that bridge the gap between data science, robotic engineering, and field operations. Leadership teams must also engage proactively with regulatory bodies to shape emerging safety standards and certification pathways, ensuring that innovation is matched by rigorous compliance. Finally, embedding sustainability metrics into both design and deployment phases can unlock new efficiencies, reinforce brand reputation, and align robotics initiatives with broader corporate responsibility goals.

Detailing Rigorous Research Methodology Integrating Primary Expert Consultations and Secondary Data Analyses to Ensure Comprehensive Robotics Market Insights

This research effort employs a dual-phased approach, integrating primary consultations with robotics engineers, technology executives, and end user practitioners alongside exhaustive secondary analysis of technical journals, patent databases, and regulatory filings. Primary insights were derived through structured interviews and on-site facility visits, yielding nuanced perspectives on deployment challenges, innovation roadmaps, and operational benchmarks.

Complementing these firsthand engagements, secondary research encompassed peer-reviewed publications, case studies, and industry white papers to validate emerging trends and triangulate data points. A systematic framework was applied to categorize insights, ensuring consistency across segmentation dimensions and geographic zones. Quality assurance protocols, including cross-peer reviews and executive debrief sessions, were deployed to refine conclusions and confirm factual accuracy. This rigorous methodology underpins the robustness of the findings and situates the analysis within a credible, stakeholder-vetted context.

Summarizing Key Findings and Reflecting on the Future Trajectory of Intelligent Robotics Innovation, Integration, and Market Transformation Dynamics

In synthesizing the breadth of developments across technology, policy, and market forces, the report highlights a strategic inflection point for intelligent robotics. Converging advances in autonomy, sensor fusion, and collaborative design are enabling solutions that transcend legacy automation constraints, while evolving trade policies and regional initiatives are reshaping global supply chain architectures.

Segmentation insights reveal that growth is not monolithic but rather concentrated in bespoke applications-ranging from fully autonomous material handling systems to semi autonomous service robots augmenting human workstreams. Regional comparisons underscore how local innovation ecosystems, supported by targeted funding and regulatory clarity, accelerate adoption in key territories. The competitive landscape continues to balance the agility of emerging startups with the scale and influence of established firms. Moving forward, organizations that align strategic investments with these multifaceted dynamics will be best positioned to capture value, drive operational resilience, and chart a path toward sustainable robotics-enabled transformation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of multi-sensor fusion in autonomous mobile robots for dynamic environment mapping
  • 5.2. Adoption of deep learning-based vision inspection systems enhancing quality control in manufacturing
  • 5.3. Emergence of collaborative robots with adaptive safety monitoring in human workspaces
  • 5.4. Deployment of decentralized swarm intelligence platforms for scalable inventory handling in logistics
  • 5.5. Implementation of natural language enabled robotic automation for customer support and service operations
  • 5.6. Advances in reinforcement learning powered robotic grippers achieving dexterous object manipulation
  • 5.7. Robotic process automation transforming healthcare operations through AI-driven patient monitoring and telepresence
  • 5.8. 5G connectivity accelerating remote robotic operations and predictive telemaintenance in industrial environments

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Intelligent Robotics Market, by Robot Type

  • 8.1. Introduction
  • 8.2. Collaborative Robots
  • 8.3. Industrial Robot
    • 8.3.1. Articulated
    • 8.3.2. Cartesian
    • 8.3.3. Scara
  • 8.4. Service Robot

9. Intelligent Robotics Market, by Component

  • 9.1. Introduction
  • 9.2. Actuator
  • 9.3. Controller
  • 9.4. End Effector
  • 9.5. Power Unit
  • 9.6. Sensor

10. Intelligent Robotics Market, by Autonomy Level

  • 10.1. Introduction
  • 10.2. Fully Autonomous
  • 10.3. Semi Autonomous

11. Intelligent Robotics Market, by Mobility Type

  • 11.1. Introduction
  • 11.2. Mobile
  • 11.3. Stationary

12. Intelligent Robotics Market, by End User Industry

  • 12.1. Introduction
  • 12.2. Agriculture
  • 12.3. Defense & Security
  • 12.4. Healthcare
  • 12.5. Logistics & Transportation
  • 12.6. Manufacturing
  • 12.7. Retail & Hospitality

13. Americas Intelligent Robotics Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Intelligent Robotics Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Intelligent Robotics Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ABB Ltd.
    • 16.3.2. Boston Dynamics, Inc.
    • 16.3.3. Daifuku Co., Ltd.
    • 16.3.4. General Dynamics Corporation
    • 16.3.5. DENSO Corporation
    • 16.3.6. Ecovacs Group
    • 16.3.7. Fanuc Corporation
    • 16.3.8. HANSON ROBOTICS LTD.
    • 16.3.9. Honeywell International Inc.
    • 16.3.10. Intel Corporation
    • 16.3.11. Kuka AG
    • 16.3.12. Intuitive Surgical, Inc.
    • 16.3.13. iRobot Corporation
    • 16.3.14. JAPAN UNIX CO., LTD.
    • 16.3.15. Hanson Robotics, Limited
    • 16.3.16. NVIDIA Corporation
    • 16.3.17. PAL Robotics SL
    • 16.3.18. Panasonic Holdings Corporation
    • 16.3.19. Qualcomm Technologies, Inc.
    • 16.3.20. Robert Bosch GmbH
    • 16.3.21. DeLaval Group
    • 16.3.22. SoftBank Robotics Group
    • 16.3.23. Ubtech Robotics Corp Ltd.
    • 16.3.24. Yaskawa Electric Corporation
    • 16.3.25. Zebra Technologies Corporation
    • 16.3.26. Kawasaki Heavy Industries, Ltd.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제