시장보고서
상품코드
1804642

제진재 시장 : 제품 유형, 형상, 최종 이용 산업별 - 세계 예측(2025-2030년)

Vibration Damping Materials Market by Product, Product Type, Form, End Use Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 183 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

제진재 시장은 2024년에 111억 9,000만 달러로 평가되었습니다. 2025년에는 116억 4,000만 달러에 이르고, CAGR 4.20%로 성장하여 2030년에는 143억 3,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 111억 9,000만 달러
추정 연도 : 2025년 116억 4,000만 달러
예측 연도 : 2030년 143억 3,000만 달러
CAGR(%) 4.20%

현대 엔지니어링 생태계에서 제진 재료의 핵심 맥락과 전략적 중요성을 확립하고 혁신을 촉진합니다.

진동 감쇠 재료는 광범위한 엔지니어링 응용 분야에서 성능 향상, 소음 감소, 구조적 무결성 추구를 가능하게 하는 매우 중요한 요소로 부상하고 있습니다. 정밀 전자기기 및 가전제품부터 자동차 시스템 및 항공우주 구조물에 이르기까지, 불필요한 진동을 감쇠하고 기계적 스트레스를 완화하는 능력은 우수한 설계의 필수 조건이 되었습니다. 소음, 진동, 안전에 대한 규제가 점점 더 엄격해지는 한편, 편안함과 긴 수명에 대한 고객의 기대치가 높아지면서 방진 솔루션의 전략적 중요성이 그 어느 때보다 높아지고 있습니다. 금속 라미네이트, 첨단 고분자 복합재, 혁신적인 접착제 코팅에 이르는 최신 배합은 현재 다양한 주행 환경에 맞는 맞춤형 감쇠 특성을 제공할 것을 약속합니다.

기술적, 규제적, 지속가능성 측면에서 제진 재료의 상황을 재정의하는 중요한 전환점을 밝힙니다.

최근 몇 년 동안 기술 혁신, 지속가능성 의무화, 이해관계자의 기대치 변화 등으로 인해 진동 감쇠 재료의 상황은 크게 변화하고 있습니다. 나노 필러로 강화된 고성능 실리콘과 부틸 고무와 같은 첨단 고분자 배합은 더 넓은 주파수 스펙트럼에 걸쳐 새로운 감쇠 효율을 이끌어 냈습니다. 동시에, 적층 가공 기술은 맞춤형 댐핑 부품을 구조 어셈블리에 직접 통합하여 부품 수를 줄이고 설계의 유연성을 높일 수 있습니다. 또한, 재료 공급업체와 OEM의 공동 파트너십을 통해 목표 진동 프로파일에 맞게 정밀하게 조정된 용도에 특화된 코팅, 패드 및 흡수체를 생성하는 공동 개발 프로그램이 가속화되고 있습니다.

2025년 발효되는 미국의 관세 조치가 제진 재료의 무역 흐름과 공급망에 미치는 누적 영향 평가

2025년, 미국의 관세 일정 개정이 시행되면서 세계 제진재 무역의 흐름과 비용 구조에 큰 역풍이 불고 있습니다. 일부 금속 적층판과 수입 고분자 복합재에 부과된 관세는 제조업체들이 조달 전략을 재편하고 비용 증가를 흡수하거나 밸류체인에 전가하도록 강요했습니다. 그 결과, 국내 제조업체들은 현지 생산 능력 확대를 확대하고, 생산 공간을 최적화하고, 투입 비용 상승을 상쇄하기 위해 공정 개선을 가속화함으로써 경쟁력을 강화할 수 있는 기회를 포착했습니다.

제품 카테고리, 재료 형태, 최종 용도의 역학이 제진 재료 전략을 어떻게 형성하고 있는지를 보여주는 세분화 인사이트를 제공합니다.

제진재 시장을 자세히 살펴보면 여러 부문에 걸친 미묘한 수요 패턴이 드러나고, 각 부문은 고유한 성장 벡터와 용도 배열을 조명합니다. 제품 카테고리를 살펴보면, 방진 패드는 중장비 및 건설 분야에서 견고한 채택을 보였고, 제진 접착제 및 코팅제는 소형 폼 팩터 요구 사항을 충족하려는 전자 및 가전제품 제조업체와 강하게 공명했으며, 진동 흡수제는 무게와 성능 기준이 교차하는 항공우주 구조물 어셈블리에서 중요한 용도를 찾고 있습니다. 마찬가지로 제품 유형 분석에 따르면, 시트와 패드는 산업기계 응용 분야의 기초가 되고, 폼과 스트립은 가전제품의 맞춤형 음향 문제를 해결하고, 테이프와 스프레이는 현장의 진동 완화 및 개조 프로젝트에 합리적인 솔루션을 제공합니다.

세계 주요 시장의 성장 촉진요인, 공급망 역학, 채택 패턴에 대한 지역별 주요 인사이트을 발견할 수 있습니다.

지역별 분석 결과, 각 주요 지역이 제진 솔루션의 뚜렷한 촉진요인과 채택 곡선을 보이고 있는 것으로 나타났습니다. 북미와 남미에서는 소음 공해 및 진동 표준에 대한 규제에 중점을 두어 첨단 제진 접착제 및 시트에 대한 투자를 촉진하고 있으며, 제조업체는 기존 자동차 및 항공우주 클러스터를 활용하여 차세대 재료를 공동 개발하고 있습니다. 한편, 유럽, 중동 및 아프리카는 지속가능성을 중시하는 배합의 거점으로 부상하고 있으며, 엄격한 환경 규제로 인해 건설 기계에서 재생 에너지 터빈 시스템에 이르기까지 다양한 산업에서 저VOC 코팅제 및 바이오 폼의 채택을 촉진하고 있습니다.

업계를 선도하는 기업들이 제진 솔루션의 혁신, 전략적 제휴, 지속가능성 증진을 위해 어떻게 노력하고 있는지 알아보세요.

업계를 선도하는 기업들은 내부 역량 개발과 외부와의 협업을 통해 제진 분야의 입지를 강화하기 위해 다양한 전략적 이니셔티브를 전개하고 있습니다. 세계적인 소재 대기업 중 일부는 고분자 화합물, 코팅 제형, 기계적 테스트 서비스를 한 지붕 아래에서 통합하는 사업부를 설립했습니다. 이러한 수직적 통합 사업을 통해 새로운 제진 접착제의 신속한 프로토타이핑과 성능 예측 시뮬레이션이 가능해져 기술 혁신 주기를 단축할 수 있습니다. 또한, 항공우주 OEM과 파트너십을 맺고 차세대 상업용 및 군용 플랫폼용 경량 금속 기반 라미네이트를 공동 개발하는 기업도 있습니다.

진동 감쇠 분야의 혁신을 촉진하고 시장 회복력을 강화하는 데 있어 업계 리더들에게 실행 가능한 전략적 제안을 제공합니다.

경쟁 우위를 확보하고자 하는 업계 리더는 첨단 재료 모델링, 가속 수명 테스트, 실제 환경에서의 성능 모니터링을 통합한 기능별 R&D 투자를 우선시해야 합니다. 주요 최종 사용자와 공동 혁신 센터를 설립함으로써 재료 공급업체는 진화하는 용도 요구 사항과 환경 표준에 정확하게 부합하는 맞춤형 진동 제어 시스템을 공동 개발할 수 있습니다. 또한, 디지털 제조 플랫폼은 접착제, 코팅제, 폼의 제조 워크플로우를 간소화하고, 신속한 배합 조정을 가능하게 하며, 예측적 공정 제어를 통해 낭비를 최소화할 수 있습니다.

정량 분석, 전문가 인터뷰, 데이터 삼각측량 등을 결합한 조사 방법으로 진동 감쇠 재료에 대한 지식을 탐구합니다.

본 보고서를 뒷받침하는 분석은 정량적 및 정성적 조사 방법을 모두 통합하여 종합적인 범위와 통찰력의 높은 신뢰성을 보장합니다. 1차 데이터는 주요 최종 사용 산업 분야의 재료 과학자, 제품 관리자 및 조달 담당자와의 심층 인터뷰를 통해 수집되었으며, 주요 제조 시설의 현지 시설 방문을 통해 보완되었습니다. 2차 조사는 업계 신문, 규제 당국 제출 서류, 전문지 등을 활용하여 신소재 기술, 지속가능성 관련 지침 및 관세 동향을 파악했습니다.

진화하는 엔지니어링 환경에서 제진 재료의 미래를 이끌기 위한 주요 발견과 전략적 과제 통합

본 보고서에서 제시된 증거는 제진 생태계의 이해관계자들에게 몇 가지 중요한 과제로 요약됩니다. 첫째, 첨단 고분자 과학과 금속 라미네이트 공학의 융합은 최종 사용 산업이 무게와 환경 규정 준수에 대한 타협 없이 최적의 소음 및 진동 제어를 달성할 수 있는 방법을 정의합니다. 둘째, 지역 무역 정책과 지속가능성 규제가 공급망 구성을 계속 형성하고, 적극적인 관세 완화 전략과 친환경 제품 로드맵의 필요성이 강조될 것입니다. 마지막으로, 새로운 제진 솔루션 시장 출시 시간을 단축하는 공동 연구 개발 모델과 디지털 제조 역량을 중심으로 경쟁이 심화되고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 제진재 시장 : 제품별

  • 방진 패드
  • 제진 접착제 및 코팅
  • 진동 흡수 장비

제9장 제진재 시장 : 제품 유형별

  • 접착제 및 실란트
  • 코팅
  • 시트 및 패드
  • 스프레이
  • 스트립 및 롤
  • 테이프

제10장 제진재 시장 : 형태별

  • 금속 기반
    • 알루미늄
    • 복합 적층판
    • 구리 합금
    • 강철
  • 고분자 재료
    • 아크릴
    • 부틸 고무
    • 폴리에틸렌
    • 폴리우레탄(PU)
    • 폴리염화비닐(PVC)
    • 실리콘

제11장 제진재 시장 : 최종 이용 산업별

  • 항공우주 및 방위
    • 민간 항공기
    • 군용기
    • 우주선
  • 자동차
    • 상용차
    • 승용차
  • 건설 및 광업
    • 중기
    • 구조 진동 제어
  • 전자기기 및 가전제품
    • 소비자 일렉트로닉스
    • 가전제품
  • 산업기계
    • 발전기 및 터빈
    • 공작기계
    • 펌프 및 압축기

제12장 아메리카의 제진재 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 제진재 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 제진재 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • KITAGAWA Industries Co., LTD.
    • DuPont de Nemours, Inc.
    • The Dow Chemical Company
    • Exxon Mobil Corporation
    • 3M Company
    • Henkel AG & Co. KGaA
    • Nitto Denko Corporation
    • Saint-Gobain S.A.
    • H.B. Fuller Company
    • Rogers Corporation
    • Parker-Hannifin Corporation
    • Trelleborg AB
    • Sumitomo Riko Company Limited.
    • Sika AG
    • Hutchinson SA
    • Fabreeka International
    • Acoustical Surfaces, Inc.
    • Sorbothane, Inc.
    • Getzner Werkstoffe GmbH
    • LTI Holdings, Inc.

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

LSH 25.09.12

The Vibration Damping Materials Market was valued at USD 11.19 billion in 2024 and is projected to grow to USD 11.64 billion in 2025, with a CAGR of 4.20%, reaching USD 14.33 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 11.19 billion
Estimated Year [2025] USD 11.64 billion
Forecast Year [2030] USD 14.33 billion
CAGR (%) 4.20%

Establishing the Core Context and Strategic Significance of Vibration Damping Materials within Modern Engineering Ecosystems to Propel Innovation

Vibration damping materials have emerged as pivotal enablers in the pursuit of enhanced performance, noise reduction, and structural integrity across a wide array of engineering applications. From precision electronics and consumer appliances to automotive systems and aerospace structures, the capacity to attenuate unwanted oscillations and mitigate mechanical stress has become an imperative for design excellence. As industries confront increasingly stringent regulatory mandates for noise, vibration, and harshness, alongside rising customer expectations for comfort and longevity, the strategic relevance of anti-vibration solutions has never been more pronounced. Modern formulations, spanning metallic laminates, advanced polymeric composites, and innovative adhesive coatings, now promise to deliver tailored damping characteristics that align with diverse operational environments.

Consequently, decision makers must navigate a complex ecosystem of material science breakthroughs, end use industry dynamics, and evolving supply chain considerations. In this executive summary, we establish the foundational context by outlining the key factors driving demand, the spectrum of product offerings, and the critical performance attributes shaping client adoption. By setting this stage, readers will gain a cohesive understanding of why vibration damping materials occupy an increasingly central role in optimizing system reliability, regulatory compliance, and overall product differentiation within competitive markets

Unveiling Critical Transformative Shifts Redefining the Vibration Damping Materials Landscape Driven by Technological, Regulatory, and Sustainability Imperatives

Over recent years, seismic shifts have reshaped the vibration damping materials landscape, fueled by technological breakthroughs, sustainability mandates, and shifting stakeholder expectations. Advanced polymeric formulations, such as high-performance silicones and butyl rubbers enhanced with nanofillers, have unlocked new damping efficiencies across a broader frequency spectrum. Concurrently, additive manufacturing techniques are enabling the integration of bespoke damping components directly into structural assemblies, thereby reducing part counts and enhancing design flexibility. Furthermore, collaborative partnerships between material suppliers and OEMs are accelerating co-development programs that yield application-specific coatings, pads, and absorbers precisely tuned for target vibration profiles.

Moreover, the drive toward greener chemistry and lighter weight architectures has elevated the importance of recyclable polymeric sheets, bio-based foams, and low volatile organic compound (VOC) adhesive systems. Regulatory bodies across North America, Europe, and Asia-Pacific are tightening emissions thresholds, compelling manufacturers to adopt eco-friendly damping adhesives and coatings. Consequently, the industry is witnessing a transformation from commodity-driven pad and absorber solutions to high-value, engineered material systems that balance damping performance with environmental stewardship. These converging trends underscore the necessity for stakeholders to reassess traditional supply chains, invest in R&D breakthroughs, and forge strategic alliances that will define the next wave of innovation in vibration control

Assessing the Far Reaching Cumulative Impact of United States Tariff Measures Effective in 2025 on Vibration Damping Material Trade Flows and Supply Chains

In 2025, the implementation of revised United States tariff schedules has introduced significant headwinds for global vibration damping material trade flows and cost structures. Tariffs imposed on select metallic laminates and imported polymeric formulations have compelled manufacturers to reorganize sourcing strategies and absorb incremental costs or pass them through the value chain. As a result, domestic producers have seized the opportunity to enhance competitive positioning by scaling local capacity expansion, optimizing production footprints, and accelerating process improvements to offset elevated input costs.

Therefore, multinational players are reevaluating established procurement channels, seeking to diversify supply sources into duty-free trade zones, and exploring vertical integration models to regain margin flexibility. End use industries, particularly in automotive and aerospace, are engaging in forward procurement and hedging activities to mitigate the volatility introduced by tariff differentials. Moreover, downstream converters and coating applicators are renegotiating long-term contracts to secure volume commitments that justify investment in automated mixing and dispensing technologies. Although these measures introduce short-term operational complexities, they also pave the way for more resilient, cost-efficient supply networks capable of adapting to future trade policy fluctuations

Illuminating Segmentation Insights Revealing How Product Categories, Material Forms, and End Use Dynamics Shape Vibration Damping Material Strategies

A granular view of the vibration damping market reveals nuanced demand patterns across multiple segmentation dimensions, each illuminating unique growth vectors and application alignments. When examining product categories, anti-vibration pads demonstrate robust adoption in heavy machinery and construction, damping adhesives and coatings resonate strongly with electronics and appliance manufacturers aiming to meet compact form factor requirements, and vibration absorbers find critical use in aerospace structural assemblies where weight and performance criteria intersect. Similarly, product type analysis shows that sheets and pads remain foundational for industrial machinery applications, foams and strips address bespoke acoustic challenges in consumer electronics, and tapes and sprays offer streamlined solutions for on-site vibration mitigation and retrofitting projects.

Material form further differentiates market dynamics, with metal-based laminates such as aluminum and composite laminates gaining traction in high-temperature or load-bearing contexts, while copper alloys and steel excel where corrosion resistance and mechanical rigidity are paramount. On the polymeric side, acrylics and polyurethanes have emerged as workhorse compounds for general-purpose damping, whereas silicone variants deliver superior performance in extreme environments. In terms of end use industries, the aerospace sector's demand spans commercial aircraft cabin noise reduction and military aircraft structural damping, while the automotive segment allocates resources between passenger vehicle NVH refinement and heavy-duty commercial vehicle durability enhancements. Electronics and appliances manufacturers focus on consumer device resilience and appliance cycle noise reduction, whereas industrial machinery operators prioritize equipment uptime through targeted vibration control in pumps, compressors, and machine tools

Uncovering Critical Regional Insights Highlighting Growth Drivers, Supply Chain Dynamics, and Adoption Patterns Across Key Global Markets

Regional analysis underscores that each major geography presents distinct drivers and adoption curves for vibration damping solutions. In the Americas, regulatory emphasis on noise pollution and vibration standards has propelled investments in advanced damping adhesives and sheets, with manufacturers tapping into established automotive and aerospace clusters to co-innovate next-generation materials. Meanwhile, Europe, the Middle East & Africa has emerged as a hub for sustainability-driven formulations, where stringent environmental directives have catalyzed the adoption of low-VOC coatings and bio-based foams in industries ranging from construction machinery to renewable energy turbine systems.

Across Asia-Pacific, the convergence of rapid industrialization, infrastructure upgrade programs, and burgeoning consumer electronics output has generated surging demand for versatile vibration pads, absorbers, and strips. Regional governments are incentivizing local production through subsidized manufacturing zones, thereby attracting new entrants and encouraging technology transfers. Furthermore, end use clusters in Japan and South Korea are leveraging their advanced R&D ecosystems to pioneer ultra-thin damping films for next-wave portable electronics and electric vehicle powertrain applications. Collectively, these regional dynamics dictate not only the pace of innovation but also the competitive landscape in which material suppliers must tailor their product portfolios

Revealing How Leading Industry Players Are Pioneering Innovation, Forming Strategic Alliances, and Advancing Sustainability in Vibration Damping Solutions

Leading corporations are deploying a range of strategic initiatives to fortify their positions in the vibration damping arena, often blending internal capability development with external collaborations. Several global materials conglomerates have launched integrated business units that combine polymer compounding, coating formulation, and mechanical testing services under one roof. These vertically aligned operations enable rapid prototyping of new damping adhesives alongside predictive performance simulations, thereby shortening the innovation cycle. Other players are forging partnerships with aerospace OEMs to co-develop lightweight metal-based laminates tailored for next-generation commercial and military platforms.

Simultaneously, specialized foam and sheet manufacturers are expanding their patent portfolios around novel cell-structure designs that achieve unprecedented damping efficiency per unit thickness. In parallel, key adhesive brands are exploring licensing agreements for proprietary silane coupling agents that enhance bond strength to carbon-fiber composites. The strategic objective across all these initiatives is to deliver high-value, application-specific solutions that differentiate offerings, justify premium pricing, and foster long-term customer loyalty. Such collaborative R&D models and targeted acquisitions underscore the competitive intensity and innovation pace characteristic of the modern vibration damping materials sector

Delivering Actionable Strategic Recommendations to Empower Industry Leaders in Driving Innovation and Strengthening Market Resilience in Vibration Damping

Industry leaders aiming to secure a competitive edge should prioritize cross functional R&D investments that integrate advanced material modeling, accelerated life testing, and real-world performance monitoring. By establishing joint innovation centers with key end users, material suppliers can co-create bespoke damping systems that precisely align with evolving application requirements and environmental standards. Moreover, embracing digital manufacturing platforms will streamline production workflows for adhesives, coatings, and foams, enabling rapid formulation adjustments and minimizing waste through predictive process control.

Furthermore, forging strategic supply chain alliances with duty-free trade zone partners and regional converters can buffer against tariff volatility and geopolitical disruptions. Companies should also expand their sustainability road maps by incorporating recycled polymer feeds, bio-based rubber alternatives, and low-VOC chemistries, thereby aligning corporate responsibility goals with customer demand for green solutions. Collectively, these actionable steps will not only enhance innovation throughput and cost resilience but also position organizations to capture emerging opportunities in electric mobility, renewable energy infrastructure, and ultra-quiet industrial equipment markets

Outlining the Research Methodology Combining Quantitative Analysis, Expert Interviews, and Data Triangulation to Uncover Vibration Damping Materials Insights

The analysis underpinning this report integrates both quantitative and qualitative research methodologies to ensure comprehensive coverage and high confidence in insights. Primary data was gathered through in-depth interviews with material scientists, product managers, and procurement executives across key end use industries, supplemented by on-site facility visits to leading manufacturing hubs. Secondary research leveraged trade publications, regulatory filings, and peer-reviewed journals to contextualize emerging material technologies, sustainability directives, and tariff developments.

To validate findings, a triangulation approach was employed, correlating interview insights with observed supply chain adjustments and patent activity trends. Proprietary databases on material performance metrics and adoption rates further enriched the data set, while scenario analysis was used to assess the impact of shifting trade policies and regulatory frameworks. This robust methodological framework ensures that the strategic guidance presented is both actionable and reflective of real-world market dynamics

Synthesizing Key Findings and Strategic Imperatives to Navigate the Future of Vibration Damping Materials in an Evolving Engineering Landscape

The evidence presented in this report converges on several critical imperatives for stakeholders in the vibration damping ecosystem. First, the fusion of advanced polymer science and metallic laminate engineering will define how end use industries achieve optimal noise and vibration control without compromising on weight or environmental compliance. Second, regional trade policies and sustainability regulations will continue to shape supply chain configurations, underscoring the need for proactive tariff mitigation strategies and eco-friendly product road maps. Finally, the competitive landscape is intensifying around collaborative R&D models and digital manufacturing capabilities that accelerate time to market for novel damping solutions.

By synthesizing these findings, companies can craft differentiated value propositions that anticipate end user demands, leverage emerging technologies, and align with global sustainability initiatives. As the vibration damping materials sector evolves, organizations that embrace cross disciplinary innovation, agile supply chain design, and data-driven decision making will be best positioned to capitalize on growth opportunities and maintain leadership in an increasingly complex engineering environment

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of nanomaterials in damping layers for enhanced vibrational attenuation in automotive applications
  • 5.2. Development of bio-based viscoelastic polymers to meet sustainability goals in vibration damping
  • 5.3. Adoption of magnetorheological elastomers for real-time tunable vibration control in industrial machinery
  • 5.4. Implementation of lightweight composite damping materials for electric vehicle NVH optimization
  • 5.5. Use of advanced computational modeling and additive manufacturing to tailor damping material microstructures
  • 5.6. Rise of recyclable thermoplastic elastomers addressing circular economy demands in vibration control
  • 5.7. Integration of self-healing polymeric foams to prolong service life of vibration isolation systems

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Vibration Damping Materials Market, by Product

  • 8.1. Introduction
  • 8.2. Anti-Vibration Pads
  • 8.3. Damping Adhesives & Coatings
  • 8.4. Vibration Absorbers

9. Vibration Damping Materials Market, by Product Type

  • 9.1. Introduction
  • 9.2. Adhesives & Sealants
  • 9.3. Coatings
  • 9.4. Foams
  • 9.5. Sheets & Pads
  • 9.6. Sprays
  • 9.7. Strips/Rolls
  • 9.8. Tapes

10. Vibration Damping Materials Market, by Form

  • 10.1. Introduction
  • 10.2. Metal-Based
    • 10.2.1. Aluminum
    • 10.2.2. Composite Laminates
    • 10.2.3. Copper Alloys
    • 10.2.4. Steel
  • 10.3. Polymeric Materials
    • 10.3.1. Acrylics
    • 10.3.2. Butyl Rubber
    • 10.3.3. Polyethylene
    • 10.3.4. Polyurethane (PU)
    • 10.3.5. Polyvinyl Chloride (PVC)
    • 10.3.6. Silicone

11. Vibration Damping Materials Market, by End Use Industry

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
    • 11.2.1. Commercial Aircraft
    • 11.2.2. Military Aircraft
    • 11.2.3. Spacecraft
  • 11.3. Automotive
    • 11.3.1. Commercial Vehicles
    • 11.3.2. Passenger Vehicles
  • 11.4. Construction & Mining
    • 11.4.1. Heavy Equipment
    • 11.4.2. Structural Vibration Control
  • 11.5. Electronics & Appliances
    • 11.5.1. Consumer Electronics
    • 11.5.2. Home Appliances
  • 11.6. Industrial Machinery
    • 11.6.1. Generators & Turbines
    • 11.6.2. Machine Tools
    • 11.6.3. Pumps & Compressors

12. Americas Vibration Damping Materials Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Vibration Damping Materials Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Vibration Damping Materials Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. KITAGAWA Industries Co., LTD.
    • 15.3.2. DuPont de Nemours, Inc.
    • 15.3.3. The Dow Chemical Company
    • 15.3.4. Exxon Mobil Corporation
    • 15.3.5. 3M Company
    • 15.3.6. Henkel AG & Co. KGaA
    • 15.3.7. Nitto Denko Corporation
    • 15.3.8. Saint-Gobain S.A.
    • 15.3.9. H.B. Fuller Company
    • 15.3.10. Rogers Corporation
    • 15.3.11. Parker-Hannifin Corporation
    • 15.3.12. Trelleborg AB
    • 15.3.13. Sumitomo Riko Company Limited.
    • 15.3.14. Sika AG
    • 15.3.15. Hutchinson SA
    • 15.3.16. Fabreeka International
    • 15.3.17. Acoustical Surfaces, Inc.
    • 15.3.18. Sorbothane, Inc.
    • 15.3.19. Getzner Werkstoffe GmbH
    • 15.3.20. LTI Holdings, Inc.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제