시장보고서
상품코드
1804717

재생에너지 분야 SCADA 시장 : 구성요소, 전개, 통신 기술, 용도, 최종사용자별 - 세계 예측(2025-2030년)

SCADA in Renewable Energy Market by Component, Deployment, Communication Technology, Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

재생에너지 분야 SCADA 시장은 2024년에 32억 9,000만 달러로 평가되었으며, 2025년에는 36억 2,000만 달러, CAGR 10.18%로 성장하여 2030년에는 58억 9,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 32억 9,000만 달러
추정 연도 2025년 36억 2,000만 달러
예측 연도 2030년 58억 9,000만 달러
CAGR(%) 10.18%

지속가능한 발전을 위한 첨단 모니터링 및 제어 혁신을 통해 재생에너지 발전을 가속화하는 SCADA 시스템의 새로운 중요성 부각

감시 제어 및 데이터 수집(SCADA) 시스템은 현대 재생에너지 사업의 중추로 부상하고 있으며, 이해관계자들이 보다 효율적인 발전을 위해 실시간 인텔리전스를 활용할 수 있도록 하고 있습니다. 태양광발전소가 사막을 가로질러 확장되고, 풍력 터빈이 해상에서 상승하고, 수력발전 시설이 수위 변동에 적응함에 따라 통합 모니터링 및 자동 제어의 필요성이 그 어느 때보다 높아지고 있습니다. 이러한 플랫폼은 단순한 원격 측정에 그치지 않고 다양한 계측 장비, 디지털 트윈 모델, 고급 분석을 통합하여 플랜트 성능에 대한 종합적인 뷰를 제공합니다.

디지털화 및 분산화 추세 속에서 재생에너지 분야 SCADA 배포를 재정의하는 변혁적 환경 변화를 탐색합니다.

재생에너지 분야는 디지털화, 탈중앙화, 그리고 진화하는 규제 환경으로 인해 큰 변화를 겪고 있습니다. 태양광, 풍력, 수력, 지열, 바이오매스 발전 설비에서 SCADA 아키텍처는 모놀리식 온프레미스 구성에서 엣지 컴퓨팅 노드와 클라우드 서비스를 융합한 하이브리드 프레임워크로 빠르게 전환되고 있습니다. 이러한 추세는 분산형 에너지 자원과의 긴밀한 통합, 유연한 그리드 참여, 실시간 적응성의 필요성에 의해 추진되고 있습니다.

SCADA 장비 공급망 및 재생에너지 인프라 개발에 대한 미국 2025년 관세의 누적 영향 평가

2025년, 미국은 수입 SCADA 장비에 관세를 도입하여 전 세계 공급망에 파급효과를 가져왔습니다. 국내 제조를 강화하고 핵심 인프라를 보호하기 위한 이 정책 이니셔티브는 해외에서 조달한 컨트롤러, 휴먼-머신 인터페이스 패널, 원격 터미널 유닛, 센서, 트랜스듀서 등의 비용을 상승시켰습니다. 그 결과, 프로젝트 개발자와 시스템 통합업체들은 자본 지출 증가와 새로운 재생에너지 설비의 시운전 지연 가능성에 직면하고 있습니다.

SCADA 채택을 촉진하는 구성요소, 배포, 최종 용도, 통신, 애플리케이션의 역학을 파악할 수 있는 주요 부문별 인사이트를 제공합니다.

SCADA 시장을 자세히 조사하면 다양한 부문에서 뚜렷한 패턴이 드러납니다. 구성요소의 관점에서 볼 때, 하드웨어는 여전히 가장 큰 범주이며, 분산 제어 시스템 및 프로그래머블 로직 컨트롤러와 같은 컨트롤러, 휴먼-머신 인터페이스 패널, 원격 터미널 유닛, 그리고 다양한 센서 및 트랜스듀서를 포함합니다. 포함하고 있습니다. 이 계층을 보완하는 서비스에는 운영 숙련도를 높이기 위해 설계된 컨설팅 및 교육 이니셔티브, 이기종 시스템을 통합하고 배포하는 통합 및 배포 프로젝트, 가동 시간을 보장하는 지속적인 지원 및 유지보수 계약이 포함됩니다. 소프트웨어 측면에서는 고급 머신러닝을 활용한 분석 플랫폼, 현장 기술자가 중요한 경보에 대응할 수 있는 모바일 애플리케이션, 데이터 수집 및 제어 로직을 다루는 종합적인 SCADA 플랫폼, 침입탐지 및 액세스 관리에 특화된 보안 소프트웨어 등 다양한 솔루션이 있습니다. 솔루션이 있습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 재생에너지 시장에서 SCADA 채택을 형성하는 지역적 역학 파악

아메리카 전체에서 SCADA의 도입이 성숙시장과 신흥시장 모두에서 가속화되고 있습니다. 북미의 사업자들은 그리드의 신뢰성을 중시하고, 태양광과 풍력발전의 높은 보급률을 통합하기 위해 고도의 제어 로직을 활용하고 있습니다. 중남미 전력회사들은 노후화된 수력발전 인프라를 현대화하고 바이오매스 코제너레이션을 확대할 수 있는 기회를 포착하고 있으며, 서비스 제공업체들은 턴키 현대화 프로젝트를 제공하기 위해 파트너십을 체결하고 있습니다. 멕시코의 규제 개혁은 투자를 더욱 촉진하고, 통신 프로토콜과 사이버 보안 프레임워크를 표준화하기 위한 국경 간 협력을 촉진하고 있습니다.

재생에너지 제어 시스템 분야의 경쟁 전략과 혁신의 길을 제시하는 주요 SCADA 제공업체들의 전략적 프로필.

세계 기술 리더는 탄탄한 R&D 투자와 전략적 제휴를 통해 그 입지를 공고히 하고 있습니다. 지멘스는 AI 기반 분석 및 보안 통신 계층의 혁신을 지속적으로 추진하고 있으며, ABB는 자동화 전문성과 종합적인 서비스 제공을 통합하고 있습니다. 슈나이더일렉트릭은 개방형 상호운용성과 사이버 보안 컴플라이언스를 중시하는 EcoStruxure 플랫폼을 통해 차별화를 꾀하고 있으며, 제너럴 일렉트릭은 디지털 트윈 기능을 활용하여 터빈과 인버터의 운영을 최적화하고 있습니다.

재생에너지 이해관계자들이 SCADA 혁신을 통해 운영의 우수성과 성장을 위해 SCADA 혁신을 활용할 수 있는 실행 가능한 방안 제시

업계 리더들은 실시간 응답성과 장기적인 확장성을 모두 달성하기 위해 엣지 및 클라우드 아키텍처의 통합을 우선순위에 두어야 합니다. 지능형 엣지 노드를 배치하여 신속한 이상 징후를 감지하고, 클라우드 리소스를 활용하여 고급 분석 및 히스토리 데이터 집계를 통해 기업은 전사적 가시성을 지원하면서 대기 시간을 단축할 수 있습니다.

재생에너지 분야 SCADA 시장에 대한 확실한 인사이트를 위해 1차 조사와 2차 분석을 통합한 종합적인 조사 방법

이 조사는 철저한 2차 조사와 면밀한 1차 조사를 결합한 엄격한 방법을 기반으로 합니다. 이 과정은 재생에너지 분야 SCADA 동향에 대한 기초적인 이해를 확립하기 위해 업계 보고서, 학술 간행물, 규제 당국에 대한 신고, 벤더의 백서 등을 종합적으로 검토하는 것으로 시작되었습니다.

SCADA 시장 동향과 전략적 인사이트를 통합하여 재생에너지 이해관계자들을 탄력적인 디지털 제어 생태계로 이끄는 SCADA 시장 동향 및 전략적 인사이트 제공

종합적인 인사이트는 재생에너지 사업에서 SCADA 시스템의 변혁적 영향을 강조합니다. 실시간 제어 루프를 통한 그리드 안정성 강화부터 예지보전을 통한 비용 효율성 향상에 이르기까지, 이러한 플랫폼은 탈탄소화 및 복원력 목표를 달성하는 데 핵심적인 역할을 하고 있습니다. 엣지 컴퓨팅, 클라우드 아키텍처, 강력한 사이버 보안 조치의 상호 작용은 시스템 성능과 신뢰성에 대한 기대치를 재구성하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 재생에너지 분야 SCADA 시장 : 구성요소별

  • 하드웨어
    • 컨트롤러
      • 분산 제어 시스템
      • PLC
    • 휴먼 머신 인터페이스 패널
    • 원격단말장치
    • 센서와 트랜스듀서
  • 서비스
    • 컨설팅과 트레이닝
    • 통합과 전개
    • 지원과 유지관리
  • 소프트웨어
    • 데이터 분석
    • 휴먼 머신 인터페이스(HMI)
    • 감시제어

제9장 재생에너지 분야 SCADA 시장 : 전개별

  • 클라우드
  • 온프레미스

제10장 재생에너지 분야 SCADA 시장 : 통신 기술별

  • 유선
    • 이더넷
    • 광섬유
  • 무선
    • 셀룰러
    • 무선 주파수
    • 위성

제11장 재생에너지 분야 SCADA 시장 : 용도별

  • 알람 관리
  • 자산 성과 관리
  • 컨트롤 관리
  • 데이터 수집과 모니터링
  • 보고와 분석

제12장 재생에너지 분야 SCADA 시장 : 최종사용자별

  • 에너지 협동조합과 커뮤니티 프로젝트
  • EPC 계약업체와 OEM
  • 정부 및 유틸리티
  • 독립 발전 사업자(IPP)

제13장 아메리카의 재생에너지 분야 SCADA 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 재생에너지 분야 SCADA 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 재생에너지 분야 SCADA 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ABB Ltd
    • Siemens AG
    • Eaton Corporation plc
    • Emerson Electric Co.
    • GE Vernova Inc.
    • Hitachi Energy Ltd
    • Honeywell International Inc.
    • Indra Sistemas S.A.
    • Inductive Automation, LLC.
    • Mitsubishi Electric Corporation
    • Ovarro Ltd. by Indicor LLC.
    • Rockwell Automation, Inc.
    • Survalent Technology Corporation
    • Toshiba Corporation
    • Trihedral Engineering Limited
    • Yokogawa Electric Corporation
    • Advantech Co., Ltd.
    • Elipse Software
    • GreenPowerMonitor
    • Ingeteam, S.A.
    • Larsen & Toubro Limited
    • SuryaLogix
    • ZIV Automation

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

KSM 25.09.11

The SCADA in Renewable Energy Market was valued at USD 3.29 billion in 2024 and is projected to grow to USD 3.62 billion in 2025, with a CAGR of 10.18%, reaching USD 5.89 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.29 billion
Estimated Year [2025] USD 3.62 billion
Forecast Year [2030] USD 5.89 billion
CAGR (%) 10.18%

Emerging Importance of SCADA Systems in Accelerating Renewable Energy Operations Through Advanced Monitoring and Control Innovations for Sustainable Power Generation

Supervisory Control and Data Acquisition (SCADA) systems have emerged as the backbone of modern renewable energy operations, enabling stakeholders to harness real-time intelligence for more efficient power generation. As solar farms expand across deserts, wind turbines rise offshore, and hydropower facilities adapt to fluctuating water levels, the need for integrated monitoring and automated control has never been greater. Beyond simple telemetry, these platforms unify diverse instrumentation, digital twin models, and advanced analytics to provide a comprehensive view of plant performance.

In an environment driven by decarbonization targets and volatile market dynamics, decision-makers demand instantaneous insights into asset health, grid stability, and energy yield. SCADA architectures bridge the gap between remote field devices and centralized control centers, transforming raw sensor data into actionable information. Operators can identify emerging faults, optimize dispatch schedules, and orchestrate multi-site portfolios with unprecedented precision. Furthermore, the synergy between edge computing and cloud-based dashboards is enabling continuous improvement loops and predictive maintenance regimes.

Looking ahead, the convergence of artificial intelligence, cybersecurity frameworks, and interoperable communications will redefine expectations of resilience and scalability. Rapid advances in machine learning algorithms are unlocking pattern recognition capabilities previously reserved for high-performance computing environments, while stringent security protocols ensure system integrity in the face of evolving threats. As regulatory bodies intensify scrutiny of energy infrastructure, robust SCADA implementations will be instrumental in meeting compliance requirements and fostering stakeholder trust.

Navigating the Transformative Landscape Shifts Redefining SCADA Deployment in Renewable Energy Amidst Digitalization and Decentralization Trends

The renewable energy sector is undergoing a profound transformation fueled by digitalization, decentralization, and evolving regulatory landscapes. Across solar, wind, hydro, geothermal, and biomass installations, SCADA architectures are rapidly shifting from monolithic on-premise configurations to hybrid frameworks that fuse edge computing nodes with cloud services. This trend is driven by the need for tighter integration with distributed energy resources, flexible grid participation, and real-time adaptability.

Moreover, the proliferation of Internet of Things (IoT) devices has amplified data volumes, compelling developers to incorporate edge analytics capabilities. These decentralized processing engines reduce network latency, ensuring rapid anomaly detection and automated response. At the same time, heightened cybersecurity threats have prompted a move toward zero-trust network segmentation, secure communication channels, and continuous vulnerability assessments. As a result, resilience and uptime are being redefined at the architectural level.

Furthermore, as utilities and independent power producers embrace microgrids, virtual power plants, and peer-to-peer energy trading, SCADA systems must accommodate complex market signals and regulatory frameworks. The interplay between energy storage, demand response, and renewable intermittency demands seamless orchestration, driving vendors to enhance interoperability standards and open-source integrations. Consequently, stakeholders are positioned to unlock value through flexible contracts, dynamic pricing models, and predictive grid management strategies.

Evaluating the Cumulative Impact of United States 2025 Tariffs on SCADA Equipment Supply Chains and Renewable Energy Infrastructure Development

In 2025, the introduction of United States tariffs on imported SCADA equipment has created a ripple effect across the global supply chain. This policy initiative, aimed at bolstering domestic manufacturing and protecting critical infrastructure, has elevated costs for controllers, human-machine interface panels, remote terminal units, sensors, and transducers sourced from overseas. Consequently, project developers and system integrators face heightened capital expenditures and potential delays in commissioning new renewable installations.

As procurement budgets tighten, organizations are exploring localization strategies, fostering partnerships with regional suppliers and original equipment manufacturers. However, the transition toward domestic production often necessitates retooling facilities, retraining workforces, and establishing new quality-assurance protocols. These investments, while reinforcing supply chain security, may temporarily impact profit margins and extend lead times for critical hardware components.

Amid these shifts, agile vendors are innovating to mitigate cost pressures. Some have diversified their manufacturing footprints across neighboring countries to optimize tariff exposure, while others are accelerating adoption of software-driven architectures that minimize reliance on specialized hardware. At the same time, demand for subscription-based deployment models is rising, enabling end users to convert capital-intensive purchases into operational expenses, thereby smoothing budgetary cycles in the face of tariff-induced volatility.

Illuminating Key Segmentation Insights Unveiling Component, Deployment, End Use, Communication and Application Dynamics Driving SCADA Adoption

A granular examination of the SCADA market reveals distinct patterns across disparate segments. From a component perspective, hardware remains the largest category, encompassing controllers such as distributed control systems and programmable logic controllers, human-machine interface panels, remote terminal units, as well as an array of sensors and transducers. Complementing this layer, services encompass consulting and training initiatives designed to bolster operational proficiency, integration and deployment projects that knit together disparate systems, and ongoing support and maintenance agreements that safeguard uptime. On the software front, solutions span analytics platforms that leverage advanced machine learning, mobile applications that enable field technicians to act on critical alerts, comprehensive SCADA platforms that handle data acquisition and control logic, and security software dedicated to intrusion detection and access management.

Deployment models are bifurcated between on-premise architectures maintained within the operator's firewall and cloud-based offerings provisioned through hybrid, private, or public environments. Hybrid cloud implementations have emerged as a popular compromise, offering the agility of cloud scalability with the predictability of localized processing. Meanwhile, pure private cloud deployments cater to organizations with stringent data sovereignty requirements, and public cloud options appeal to those prioritizing rapid provisioning and cost efficiency.

End use paints a mosaic of vertical applications across renewable energy. Biomass installations range from combined heat and power facilities to centralized power plants. Geothermal systems include binary cycle, dry steam, and flash steam plants. Hydropower is segmented into large reservoir facilities and small run-of-river projects. Solar operations encompass both concentrated solar power arrays and photovoltaic farms. Wind assets are classified by onshore and offshore configurations, each presenting unique environmental and regulatory considerations.

Communication technology underpins every segment. Wired infrastructures utilize Ethernet backbones, fiber-optic rings, and serial communication links, while wireless alternatives rely on cellular networks, radio frequency protocols, and satellite connectivity. Finally, application layers deliver functionalities in alarm management to prioritize critical events, asset performance management to optimize equipment lifecycles, control management for real-time setpoint adjustments, data acquisition and monitoring for continuous insight, and reporting and analytics to inform strategic decisions.

Uncovering Regional Dynamics Shaping SCADA Adoption Across Americas Europe Middle East Africa and Asia Pacific Renewable Energy Markets

Across the Americas, SCADA implementations have ramped up in both mature and emerging markets. North American operators emphasize grid reliability, leveraging advanced control logic to integrate high penetrations of solar and wind capacity. Central and South American utilities are seizing opportunities to modernize aging hydropower infrastructure and expand biomass cogeneration, with service providers forging partnerships to deliver turnkey modernization projects. Mexico's regulatory reforms have further stimulated investment, prompting cross-border collaboration to standardize communication protocols and cybersecurity frameworks.

In Europe, the Middle East, and Africa region, stringent climate targets and decarbonization mandates are driving comprehensive digital overhauls. Western European nations focus on cross-border energy interconnectivity and advanced analytics to balance intermittent generation. In the Middle East, the race to develop utility-scale solar arrays has incentivized cloud-native SCADA deployments that can scale in step with project pipelines. Meanwhile, Africa's hydropower expansions and geothermal explorations are catalyzing demand for modular control systems that can operate in challenging environmental conditions and intermittent network coverage.

Asia-Pacific markets present a diverse tableau of growth trajectories. China continues to push the frontier of wind-solar hybrid plants, integrating AI-driven control loops to stabilize output. India's ambitious renewable targets are juxtaposed with grid modernization initiatives, wherein state-owned entities partner with international vendors to implement cybersecurity-hardened architectures. Japan and Australia are pioneering offshore wind and tidal energy SCADA use cases, and Southeast Asian nations are adopting scalable hybrid cloud solutions to leapfrog legacy infrastructure constraints.

Strategic Profiles of Leading SCADA Providers Illuminating Competitive Strategies and Innovation Pathways in Renewable Energy Control Systems

Global technology leaders have cemented their positions through robust R&D investments and strategic alliances. Siemens continues to drive innovation in AI-powered analytics and secure communication layers, while ABB integrates its automation expertise with comprehensive service offerings. Schneider Electric differentiates through its EcoStruxure platform, which emphasizes open interoperability and cybersecurity compliance, and General Electric leverages its digital twin capabilities to optimize turbine and inverter operations.

Mid-market specialists are also carving out niches. Companies like Advantech and Inductive Automation have built reputations on modular, scalable SCADA platforms ideal for hybrid energy projects. Yokogawa and Mitsubishi Electric capitalize on their long-standing presence in industrial control, offering turnkey solutions tailored for high-temperature geothermal and large-scale hydro facilities. Meanwhile, Emerson focuses on asset performance management, integrating SCADA data with health monitoring systems to drive predictive maintenance.

Competition is intensifying around services and subscription models. Vendors are bundling consulting, integration, and support services into annual contracts, transitioning from one-off hardware sales to ongoing customer engagements. This shift enhances customer retention, provides continuous revenue streams, and aligns incentives around system performance rather than simple equipment throughput.

Actionable Recommendations Empowering Renewable Energy Stakeholders to Leverage SCADA Innovations for Operational Excellence and Growth

Industry leaders should prioritize the integration of edge and cloud architectures to achieve both real-time responsiveness and long-term scalability. By deploying intelligent edge nodes for rapid anomaly detection and leveraging cloud resources for advanced analytics and historical data aggregation, organizations can reduce latency while supporting enterprise-wide visibility.

Second, strengthening cybersecurity must remain paramount. Implementing zero-trust models, regularly updating firmware, and conducting continuous vulnerability assessments will safeguard control networks from increasingly sophisticated threats. Collaboration with trusted cybersecurity specialists and participation in industry information-sharing groups can further enhance resilience.

Third, forging cross-sector partnerships and contributing to open-source standards will accelerate innovation. By aligning with industry consortiums and academic institutions, stakeholders can establish interoperable frameworks that reduce integration overheads and foster a competitive vendor ecosystem. Standardized communication protocols and data schemas will serve as the foundation for seamless system expansions.

Finally, investing in advanced analytics and workforce development is critical. Equipping teams with training in machine learning, process optimization, and cybersecurity will empower organizations to capitalize on data insights. Coupling these capabilities with continuous improvement methodologies will ensure that SCADA implementations evolve in step with market demands and regulatory requirements.

Comprehensive Research Methodology Integrating Primary Engagement and Secondary Analysis for Robust SCADA Market Insights in Renewable Energy

This research is grounded in a rigorous methodology that combines exhaustive secondary research and in-depth primary engagements. The process began with a comprehensive review of industry reports, academic publications, regulatory filings, and vendor white papers to establish a foundational understanding of SCADA trends in renewable energy.

Subsequently, structured interviews were conducted with executives, system integrators, infrastructure operators, and technology vendors. These discussions provided qualitative insights into strategic priorities, deployment challenges, and next-generation feature requirements. Triangulation of quantitative data and interview findings ensured that conclusions were validated against multiple sources, reducing potential biases.

Data was further segmented along component, deployment model, end use, communication technology, and application lines to reveal nuanced adoption patterns. Each finding underwent a multi-layer verification process, incorporating feedback from subject matter experts and cross-referencing against proprietary project databases. The result is a set of insights that reflect the current state of the market, emerging innovations, and future growth enablers.

Synthesis of SCADA Market Trends and Strategic Insights Guiding Renewable Energy Stakeholders Toward Resilient Digital Control Ecosystems

The collective insights underscore the transformative impact of SCADA systems on renewable energy operations. From enhancing grid stability through real-time control loops to driving cost efficiencies via predictive maintenance, these platforms are central to meeting decarbonization and resilience objectives. The interplay between edge computing, cloud architectures, and robust cybersecurity measures is reshaping expectations for system performance and reliability.

Looking forward, the market will be defined by an emphasis on interoperability, AI-driven automation, and flexible financing models. Vendors and end users alike will need to adapt to evolving regulatory frameworks and tariff landscapes, balancing the imperatives of localization with the efficiencies of global supply chains. Stakeholders who embrace collaboration, invest in talent development, and prioritize secure, scalable architectures will be best positioned to seize the opportunities of the energy transition.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven predictive maintenance modules into SCADA for wind farms to reduce downtime
  • 5.2. Adoption of edge computing in solar plant SCADA systems for real-time data processing in remote sites
  • 5.3. Implementation of cybersecurity frameworks tailored to SCADA networks in distributed renewable energy installations
  • 5.4. Transition to cloud-native SCADA platforms enabling scalable monitoring of offshore wind and solar assets across geographies
  • 5.5. Use of digital twin technology in hydropower SCADA systems for optimising turbine performance and maintenance schedules
  • 5.6. Integration of IoT sensor networks with SCADA to enhance granular monitoring of solar panel efficiency and fault detection
  • 5.7. Application of blockchain-based data integrity solutions to secure transactional records in decentralized renewable SCADA networks
  • 5.8. Development of interoperable SCADA architectures compliant with IEC 61850 and DNP3 standards for hybrid renewable grids
  • 5.9. Deployment of advanced analytics and machine learning for anomaly detection in SCADA telemetry from distributed solar parks
  • 5.10. Utilisation of 5G connectivity to improve latency and reliability of SCADA communications in offshore wind energy clusters

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. SCADA in Renewable Energy Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Controllers
      • 8.2.1.1. Distributed Control Systems
      • 8.2.1.2. PLCs
    • 8.2.2. Human Machine Interface Panels
    • 8.2.3. Remote Terminal Units
    • 8.2.4. Sensors & Transducers
  • 8.3. Services
    • 8.3.1. Consulting & Training
    • 8.3.2. Integration & Deployment
    • 8.3.3. Support & Maintenance
  • 8.4. Software
    • 8.4.1. Data Analytics
    • 8.4.2. Human Machine Interface (HMI)
    • 8.4.3. Supervisory Control

9. SCADA in Renewable Energy Market, by Deployment

  • 9.1. Introduction
  • 9.2. Cloud
  • 9.3. On-Premise

10. SCADA in Renewable Energy Market, by Communication Technology

  • 10.1. Introduction
  • 10.2. Wired
    • 10.2.1. Ethernet
    • 10.2.2. Fiber Optic
  • 10.3. Wireless
    • 10.3.1. Cellular
    • 10.3.2. Radio Frequency
    • 10.3.3. Satellite

11. SCADA in Renewable Energy Market, by Application

  • 11.1. Introduction
  • 11.2. Alarm Management
  • 11.3. Asset Performance Management
  • 11.4. Control Management
  • 11.5. Data Acquisition & Monitoring
  • 11.6. Reporting & Analytics

12. SCADA in Renewable Energy Market, by End User

  • 12.1. Introduction
  • 12.2. Energy Cooperatives & Community Projects
  • 12.3. EPC Contractors & OEMs
  • 12.4. Government & Public Utilities
  • 12.5. Independent Power Producers (IPPs)

13. Americas SCADA in Renewable Energy Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa SCADA in Renewable Energy Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific SCADA in Renewable Energy Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ABB Ltd
    • 16.3.2. Siemens AG
    • 16.3.3. Eaton Corporation plc
    • 16.3.4. Emerson Electric Co.
    • 16.3.5. GE Vernova Inc.
    • 16.3.6. Hitachi Energy Ltd
    • 16.3.7. Honeywell International Inc.
    • 16.3.8. Indra Sistemas S.A.
    • 16.3.9. Inductive Automation, LLC.
    • 16.3.10. Mitsubishi Electric Corporation
    • 16.3.11. Ovarro Ltd. by Indicor LLC.
    • 16.3.12. Rockwell Automation, Inc.
    • 16.3.13. Survalent Technology Corporation
    • 16.3.14. Toshiba Corporation
    • 16.3.15. Trihedral Engineering Limited
    • 16.3.16. Yokogawa Electric Corporation
    • 16.3.17. Advantech Co., Ltd.
    • 16.3.18. Elipse Software
    • 16.3.19. GreenPowerMonitor
    • 16.3.20. Ingeteam, S.A.
    • 16.3.21. Larsen & Toubro Limited
    • 16.3.22. SuryaLogix
    • 16.3.23. ZIV Automation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제