½ÃÀ庸°í¼­
»óǰÄÚµå
1804717

Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå : ±¸¼º¿ä¼Ò, Àü°³, Åë½Å ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

SCADA in Renewable Energy Market by Component, Deployment, Communication Technology, Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀåÀº 2024³â¿¡ 32¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 36¾ï 2,000¸¸ ´Þ·¯, CAGR 10.18%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 58¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 32¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 36¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 58¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 10.18%

Áö¼Ó°¡´ÉÇÑ ¹ßÀüÀ» À§ÇÑ Ã·´Ü ¸ð´ÏÅ͸µ ¹× Á¦¾î Çõ½ÅÀ» ÅëÇØ Àç»ý¿¡³ÊÁö ¹ßÀüÀ» °¡¼ÓÈ­ÇÏ´Â SCADA ½Ã½ºÅÛÀÇ »õ·Î¿î Á߿伺 ºÎ°¢

°¨½Ã Á¦¾î ¹× µ¥ÀÌÅÍ ¼öÁý(SCADA) ½Ã½ºÅÛÀº Çö´ë Àç»ý¿¡³ÊÁö »ç¾÷ÀÇ ÁßÃß·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ÀÌÇØ°ü°èÀÚµéÀÌ º¸´Ù È¿À²ÀûÀÎ ¹ßÀüÀ» À§ÇØ ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º¸¦ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ž籤¹ßÀü¼Ò°¡ »ç¸·À» °¡·ÎÁú·¯ È®ÀåµÇ°í, dz·Â ÅͺóÀÌ ÇØ»ó¿¡¼­ »ó½ÂÇϰí, ¼ö·Â¹ßÀü ½Ã¼³ÀÌ ¼öÀ§ º¯µ¿¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ÅëÇÕ ¸ð´ÏÅ͸µ ¹× ÀÚµ¿ Á¦¾îÀÇ Çʿ伺ÀÌ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº ´Ü¼øÇÑ ¿ø°Ý ÃøÁ¤¿¡ ±×Ä¡Áö ¾Ê°í ´Ù¾çÇÑ °èÃø Àåºñ, µðÁöÅÐ Æ®À© ¸ðµ¨, °í±Þ ºÐ¼®À» ÅëÇÕÇÏ¿© Ç÷£Æ® ¼º´É¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºä¸¦ Á¦°øÇÕ´Ï´Ù.

µðÁöÅÐÈ­ ¹× ºÐ»êÈ­ Ãß¼¼ ¼Ó¿¡¼­ Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ¹èÆ÷¸¦ ÀçÁ¤ÀÇÇÏ´Â º¯ÇõÀû ȯ°æ º¯È­¸¦ Ž»öÇÕ´Ï´Ù.

Àç»ý¿¡³ÊÁö ºÐ¾ß´Â µðÁöÅÐÈ­, Å»Áß¾ÓÈ­, ±×¸®°í ÁøÈ­ÇÏ´Â ±ÔÁ¦ ȯ°æÀ¸·Î ÀÎÇØ Å« º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ž籤, dz·Â, ¼ö·Â, Áö¿­, ¹ÙÀÌ¿À¸Å½º ¹ßÀü ¼³ºñ¿¡¼­ SCADA ¾ÆÅ°ÅØÃ³´Â ¸ð³î¸®½Ä ¿ÂÇÁ·¹¹Ì½º ±¸¼º¿¡¼­ ¿§Áö ÄÄÇ»ÆÃ ³ëµå¿Í Ŭ¶ó¿ìµå ¼­ºñ½º¸¦ À¶ÇÕÇÑ ÇÏÀ̺긮µå ÇÁ·¹ÀÓ¿öÅ©·Î ºü¸£°Ô ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿ø°úÀÇ ±ä¹ÐÇÑ ÅëÇÕ, À¯¿¬ÇÑ ±×¸®µå Âü¿©, ½Ç½Ã°£ ÀûÀÀ¼ºÀÇ Çʿ伺¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

SCADA Àåºñ °ø±Þ¸Á ¹× Àç»ý¿¡³ÊÁö ÀÎÇÁ¶ó °³¹ß¿¡ ´ëÇÑ ¹Ì±¹ 2025³â °ü¼¼ÀÇ ´©Àû ¿µÇâ Æò°¡

2025³â, ¹Ì±¹Àº ¼öÀÔ SCADA Àåºñ¿¡ °ü¼¼¸¦ µµÀÔÇÏ¿© Àü ¼¼°è °ø±Þ¸Á¿¡ ÆÄ±ÞÈ¿°ú¸¦ °¡Á®¿Ô½À´Ï´Ù. ±¹³» Á¦Á¶¸¦ °­È­Çϰí ÇÙ½É ÀÎÇÁ¶ó¸¦ º¸È£Çϱâ À§ÇÑ ÀÌ Á¤Ã¥ ÀÌ´Ï¼ÅÆ¼ºê´Â ÇØ¿Ü¿¡¼­ Á¶´ÞÇÑ ÄÁÆ®·Ñ·¯, ÈÞ¸Õ-¸Ó½Å ÀÎÅÍÆäÀ̽º ÆÐ³Î, ¿ø°Ý Å͹̳ΠÀ¯´Ö, ¼¾¼­, Æ®·£½ºµà¼­ µîÀÇ ºñ¿ëÀ» »ó½Â½ÃÄ×½À´Ï´Ù. ±× °á°ú, ÇÁ·ÎÁ§Æ® °³¹ßÀÚ¿Í ½Ã½ºÅÛ ÅëÇÕ¾÷üµéÀº ÀÚº» ÁöÃâ Áõ°¡¿Í »õ·Î¿î Àç»ý¿¡³ÊÁö ¼³ºñÀÇ ½Ã¿îÀü Áö¿¬ °¡´É¼º¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.

SCADA äÅÃÀ» ÃËÁøÇÏ´Â ±¸¼º¿ä¼Ò, ¹èÆ÷, ÃÖÁ¾ ¿ëµµ, Åë½Å, ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¿ªÇÐÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â ÁÖ¿ä ºÎ¹®º° ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

SCADA ½ÃÀåÀ» ÀÚ¼¼È÷ Á¶»çÇÏ¸é ´Ù¾çÇÑ ºÎ¹®¿¡¼­ ¶Ñ·ÇÇÑ ÆÐÅÏÀÌ µå·¯³³´Ï´Ù. ±¸¼º¿ä¼ÒÀÇ °üÁ¡¿¡¼­ º¼ ¶§, Çϵå¿þ¾î´Â ¿©ÀüÈ÷ °¡Àå Å« ¹üÁÖÀ̸ç, ºÐ»ê Á¦¾î ½Ã½ºÅÛ ¹× ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ ÄÁÆ®·Ñ·¯¿Í °°Àº ÄÁÆ®·Ñ·¯, ÈÞ¸Õ-¸Ó½Å ÀÎÅÍÆäÀ̽º ÆÐ³Î, ¿ø°Ý Å͹̳ΠÀ¯´Ö, ±×¸®°í ´Ù¾çÇÑ ¼¾¼­ ¹× Æ®·£½ºµà¼­¸¦ Æ÷ÇÔÇÕ´Ï´Ù. Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ °èÃþÀ» º¸¿ÏÇÏ´Â ¼­ºñ½º¿¡´Â ¿î¿µ ¼÷·Ãµµ¸¦ ³ôÀ̱â À§ÇØ ¼³°èµÈ ÄÁ¼³ÆÃ ¹× ±³À° ÀÌ´Ï¼ÅÆ¼ºê, À̱âÁ¾ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ°í ¹èÆ÷ÇÏ´Â ÅëÇÕ ¹× ¹èÆ÷ ÇÁ·ÎÁ§Æ®, °¡µ¿ ½Ã°£À» º¸ÀåÇÏ´Â Áö¼ÓÀûÀÎ Áö¿ø ¹× À¯Áöº¸¼ö °è¾àÀÌ Æ÷ÇԵ˴ϴÙ. ¼ÒÇÁÆ®¿þ¾î Ãø¸é¿¡¼­´Â °í±Þ ¸Ó½Å·¯´×À» Ȱ¿ëÇÑ ºÐ¼® Ç÷§Æû, ÇöÀå ±â¼úÀÚ°¡ Áß¿äÇÑ °æº¸¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼Ç, µ¥ÀÌÅÍ ¼öÁý ¹× Á¦¾î ·ÎÁ÷À» ´Ù·ç´Â Á¾ÇÕÀûÀÎ SCADA Ç÷§Æû, ħÀÔŽÁö ¹× ¾×¼¼½º °ü¸®¿¡ ƯȭµÈ º¸¾È ¼ÒÇÁÆ®¿þ¾î µî ´Ù¾çÇÑ ¼Ö·ç¼ÇÀÌ ÀÖ½À´Ï´Ù. ¼Ö·ç¼ÇÀÌ ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àç»ý¿¡³ÊÁö ½ÃÀå¿¡¼­ SCADA äÅÃÀ» Çü¼ºÇÏ´Â Áö¿ªÀû ¿ªÇÐ ÆÄ¾Ç

¾Æ¸Þ¸®Ä« Àüü¿¡¼­ SCADAÀÇ µµÀÔÀÌ ¼º¼÷½ÃÀå°ú ½ÅÈï½ÃÀå ¸ðµÎ¿¡¼­ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ »ç¾÷ÀÚµéÀº ±×¸®µåÀÇ ½Å·Ú¼ºÀ» Áß½ÃÇϰí, ž籤°ú dz·Â¹ßÀüÀÇ ³ôÀº º¸±Þ·üÀ» ÅëÇÕÇϱâ À§ÇØ °íµµÀÇ Á¦¾î ·ÎÁ÷À» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Áß³²¹Ì Àü·Âȸ»çµéÀº ³ëÈÄÈ­µÈ ¼ö·Â¹ßÀü ÀÎÇÁ¶ó¸¦ Çö´ëÈ­ÇÏ°í ¹ÙÀÌ¿À¸Å½º ÄÚÁ¦³Ê·¹À̼ÇÀ» È®´ëÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Æ÷ÂøÇϰí ÀÖÀ¸¸ç, ¼­ºñ½º Á¦°ø¾÷üµéÀº ÅÏŰ Çö´ëÈ­ ÇÁ·ÎÁ§Æ®¸¦ Á¦°øÇϱâ À§ÇØ ÆÄÆ®³Ê½ÊÀ» ü°áÇϰí ÀÖ½À´Ï´Ù. ¸ß½ÃÄÚÀÇ ±ÔÁ¦ °³ÇõÀº ÅõÀÚ¸¦ ´õ¿í ÃËÁøÇϰí, Åë½Å ÇÁ·ÎÅäÄݰú »çÀ̹ö º¸¾È ÇÁ·¹ÀÓ¿öÅ©¸¦ Ç¥ÁØÈ­Çϱâ À§ÇÑ ±¹°æ °£ Çù·ÂÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö Á¦¾î ½Ã½ºÅÛ ºÐ¾ßÀÇ °æÀï Àü·«°ú Çõ½ÅÀÇ ±æÀ» Á¦½ÃÇÏ´Â ÁÖ¿ä SCADA Á¦°ø¾÷üµéÀÇ Àü·«Àû ÇÁ·ÎÇÊ.

¼¼°è ±â¼ú ¸®´õ´Â źźÇÑ R&D ÅõÀÚ¿Í Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ ±× ÀÔÁö¸¦ °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù. Áö¸à½º´Â AI ±â¹Ý ºÐ¼® ¹× º¸¾È Åë½Å °èÃþÀÇ Çõ½ÅÀ» Áö¼ÓÀûÀ¸·Î ÃßÁøÇϰí ÀÖÀ¸¸ç, ABB´Â ÀÚµ¿È­ Àü¹®¼º°ú Á¾ÇÕÀûÀÎ ¼­ºñ½º Á¦°øÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ½´³ªÀÌ´õÀÏ·ºÆ®¸¯Àº °³¹æÇü »óÈ£¿î¿ë¼º°ú »çÀ̹ö º¸¾È ÄÄÇöóÀ̾𽺸¦ Áß½ÃÇÏ´Â EcoStruxure Ç÷§ÆûÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖÀ¸¸ç, Á¦³Ê·² ÀÏ·ºÆ®¸¯Àº µðÁöÅÐ Æ®À© ±â´ÉÀ» Ȱ¿ëÇÏ¿© Åͺó°ú ÀιöÅÍÀÇ ¿î¿µÀ» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö ÀÌÇØ°ü°èÀÚµéÀÌ SCADA Çõ½ÅÀ» ÅëÇØ ¿î¿µÀÇ ¿ì¼ö¼º°ú ¼ºÀåÀ» À§ÇØ SCADA Çõ½ÅÀ» Ȱ¿ëÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ¹æ¾È Á¦½Ã

¾÷°è ¸®´õµéÀº ½Ç½Ã°£ ÀÀ´ä¼º°ú Àå±âÀûÀÎ È®À强À» ¸ðµÎ ´Þ¼ºÇϱâ À§ÇØ ¿§Áö ¹× Ŭ¶ó¿ìµå ¾ÆÅ°ÅØÃ³ÀÇ ÅëÇÕÀ» ¿ì¼±¼øÀ§¿¡ µÎ¾î¾ß ÇÕ´Ï´Ù. Áö´ÉÇü ¿§Áö ³ëµå¸¦ ¹èÄ¡ÇÏ¿© ½Å¼ÓÇÑ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí, Ŭ¶ó¿ìµå ¸®¼Ò½º¸¦ Ȱ¿ëÇÏ¿© °í±Þ ºÐ¼® ¹× È÷½ºÅ丮 µ¥ÀÌÅÍ Áý°è¸¦ ÅëÇØ ±â¾÷Àº Àü»çÀû °¡½Ã¼ºÀ» Áö¿øÇϸ鼭 ´ë±â ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå¿¡ ´ëÇÑ È®½ÇÇÑ ÀλçÀÌÆ®¸¦ À§ÇØ 1Â÷ Á¶»ç¿Í 2Â÷ ºÐ¼®À» ÅëÇÕÇÑ Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ý

ÀÌ Á¶»ç´Â öÀúÇÑ 2Â÷ Á¶»ç¿Í ¸é¹ÐÇÑ 1Â÷ Á¶»ç¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ ¹æ¹ýÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. ÀÌ °úÁ¤Àº Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA µ¿Çâ¿¡ ´ëÇÑ ±âÃÊÀûÀÎ ÀÌÇØ¸¦ È®¸³Çϱâ À§ÇØ ¾÷°è º¸°í¼­, Çмú °£Ç๰, ±ÔÁ¦ ´ç±¹¿¡ ´ëÇÑ ½Å°í, º¥´õÀÇ ¹é¼­ µîÀ» Á¾ÇÕÀûÀ¸·Î °ËÅäÇÏ´Â °ÍÀ¸·Î ½ÃÀ۵Ǿú½À´Ï´Ù.

SCADA ½ÃÀå µ¿Çâ°ú Àü·«Àû ÀλçÀÌÆ®¸¦ ÅëÇÕÇÏ¿© Àç»ý¿¡³ÊÁö ÀÌÇØ°ü°èÀÚµéÀ» ź·ÂÀûÀÎ µðÁöÅÐ Á¦¾î »ýŰè·Î À̲ô´Â SCADA ½ÃÀå µ¿Çâ ¹× Àü·«Àû ÀλçÀÌÆ® Á¦°ø

Á¾ÇÕÀûÀÎ ÀλçÀÌÆ®´Â Àç»ý¿¡³ÊÁö »ç¾÷¿¡¼­ SCADA ½Ã½ºÅÛÀÇ º¯ÇõÀû ¿µÇâÀ» °­Á¶ÇÕ´Ï´Ù. ½Ç½Ã°£ Á¦¾î ·çÇÁ¸¦ ÅëÇÑ ±×¸®µå ¾ÈÁ¤¼º °­È­ºÎÅÍ ¿¹Áöº¸ÀüÀ» ÅëÇÑ ºñ¿ë È¿À²¼º Çâ»ó¿¡ À̸£±â±îÁö, ÀÌ·¯ÇÑ Ç÷§ÆûÀº Żź¼ÒÈ­ ¹× º¹¿ø·Â ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ, Ŭ¶ó¿ìµå ¾ÆÅ°ÅØÃ³, °­·ÂÇÑ »çÀ̹ö º¸¾È Á¶Ä¡ÀÇ »óÈ£ ÀÛ¿ëÀº ½Ã½ºÅÛ ¼º´É°ú ½Å·Ú¼º¿¡ ´ëÇÑ ±â´ëÄ¡¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå : ±¸¼º¿ä¼Òº°

  • Çϵå¿þ¾î
    • ÄÁÆ®·Ñ·¯
      • ºÐ»ê Á¦¾î ½Ã½ºÅÛ
      • PLC
    • ÈÞ¸Õ ¸Ó½Å ÀÎÅÍÆäÀ̽º ÆÐ³Î
    • ¿ø°Ý´Ü¸»ÀåÄ¡
    • ¼¾¼­¿Í Æ®·£½ºµà¼­
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ°ú Æ®·¹ÀÌ´×
    • ÅëÇÕ°ú Àü°³
    • Áö¿ø°ú À¯Áö°ü¸®
  • ¼ÒÇÁÆ®¿þ¾î
    • µ¥ÀÌÅÍ ºÐ¼®
    • ÈÞ¸Õ ¸Ó½Å ÀÎÅÍÆäÀ̽º(HMI)
    • °¨½ÃÁ¦¾î

Á¦9Àå Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå : Åë½Å ±â¼úº°

  • À¯¼±
    • ÀÌ´õ³Ý
    • ±¤¼¶À¯
  • ¹«¼±
    • ¼¿·ê·¯
    • ¹«¼± Á֯ļö
    • À§¼º

Á¦11Àå Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå : ¿ëµµº°

  • ¾Ë¶÷ °ü¸®
  • ÀÚ»ê ¼º°ú °ü¸®
  • ÄÁÆ®·Ñ °ü¸®
  • µ¥ÀÌÅÍ ¼öÁý°ú ¸ð´ÏÅ͸µ
  • º¸°í¿Í ºÐ¼®

Á¦12Àå Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¿¡³ÊÁö Çùµ¿Á¶ÇÕ°ú Ä¿¹Â´ÏƼ ÇÁ·ÎÁ§Æ®
  • EPC °è¾à¾÷ü¿Í OEM
  • Á¤ºÎ ¹× À¯Æ¿¸®Æ¼
  • µ¶¸³ ¹ßÀü »ç¾÷ÀÚ(IPP)

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àç»ý¿¡³ÊÁö ºÐ¾ß SCADA ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • ABB Ltd
    • Siemens AG
    • Eaton Corporation plc
    • Emerson Electric Co.
    • GE Vernova Inc.
    • Hitachi Energy Ltd
    • Honeywell International Inc.
    • Indra Sistemas S.A.
    • Inductive Automation, LLC.
    • Mitsubishi Electric Corporation
    • Ovarro Ltd. by Indicor LLC.
    • Rockwell Automation, Inc.
    • Survalent Technology Corporation
    • Toshiba Corporation
    • Trihedral Engineering Limited
    • Yokogawa Electric Corporation
    • Advantech Co., Ltd.
    • Elipse Software
    • GreenPowerMonitor
    • Ingeteam, S.A.
    • Larsen & Toubro Limited
    • SuryaLogix
    • ZIV Automation

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM

The SCADA in Renewable Energy Market was valued at USD 3.29 billion in 2024 and is projected to grow to USD 3.62 billion in 2025, with a CAGR of 10.18%, reaching USD 5.89 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.29 billion
Estimated Year [2025] USD 3.62 billion
Forecast Year [2030] USD 5.89 billion
CAGR (%) 10.18%

Emerging Importance of SCADA Systems in Accelerating Renewable Energy Operations Through Advanced Monitoring and Control Innovations for Sustainable Power Generation

Supervisory Control and Data Acquisition (SCADA) systems have emerged as the backbone of modern renewable energy operations, enabling stakeholders to harness real-time intelligence for more efficient power generation. As solar farms expand across deserts, wind turbines rise offshore, and hydropower facilities adapt to fluctuating water levels, the need for integrated monitoring and automated control has never been greater. Beyond simple telemetry, these platforms unify diverse instrumentation, digital twin models, and advanced analytics to provide a comprehensive view of plant performance.

In an environment driven by decarbonization targets and volatile market dynamics, decision-makers demand instantaneous insights into asset health, grid stability, and energy yield. SCADA architectures bridge the gap between remote field devices and centralized control centers, transforming raw sensor data into actionable information. Operators can identify emerging faults, optimize dispatch schedules, and orchestrate multi-site portfolios with unprecedented precision. Furthermore, the synergy between edge computing and cloud-based dashboards is enabling continuous improvement loops and predictive maintenance regimes.

Looking ahead, the convergence of artificial intelligence, cybersecurity frameworks, and interoperable communications will redefine expectations of resilience and scalability. Rapid advances in machine learning algorithms are unlocking pattern recognition capabilities previously reserved for high-performance computing environments, while stringent security protocols ensure system integrity in the face of evolving threats. As regulatory bodies intensify scrutiny of energy infrastructure, robust SCADA implementations will be instrumental in meeting compliance requirements and fostering stakeholder trust.

Navigating the Transformative Landscape Shifts Redefining SCADA Deployment in Renewable Energy Amidst Digitalization and Decentralization Trends

The renewable energy sector is undergoing a profound transformation fueled by digitalization, decentralization, and evolving regulatory landscapes. Across solar, wind, hydro, geothermal, and biomass installations, SCADA architectures are rapidly shifting from monolithic on-premise configurations to hybrid frameworks that fuse edge computing nodes with cloud services. This trend is driven by the need for tighter integration with distributed energy resources, flexible grid participation, and real-time adaptability.

Moreover, the proliferation of Internet of Things (IoT) devices has amplified data volumes, compelling developers to incorporate edge analytics capabilities. These decentralized processing engines reduce network latency, ensuring rapid anomaly detection and automated response. At the same time, heightened cybersecurity threats have prompted a move toward zero-trust network segmentation, secure communication channels, and continuous vulnerability assessments. As a result, resilience and uptime are being redefined at the architectural level.

Furthermore, as utilities and independent power producers embrace microgrids, virtual power plants, and peer-to-peer energy trading, SCADA systems must accommodate complex market signals and regulatory frameworks. The interplay between energy storage, demand response, and renewable intermittency demands seamless orchestration, driving vendors to enhance interoperability standards and open-source integrations. Consequently, stakeholders are positioned to unlock value through flexible contracts, dynamic pricing models, and predictive grid management strategies.

Evaluating the Cumulative Impact of United States 2025 Tariffs on SCADA Equipment Supply Chains and Renewable Energy Infrastructure Development

In 2025, the introduction of United States tariffs on imported SCADA equipment has created a ripple effect across the global supply chain. This policy initiative, aimed at bolstering domestic manufacturing and protecting critical infrastructure, has elevated costs for controllers, human-machine interface panels, remote terminal units, sensors, and transducers sourced from overseas. Consequently, project developers and system integrators face heightened capital expenditures and potential delays in commissioning new renewable installations.

As procurement budgets tighten, organizations are exploring localization strategies, fostering partnerships with regional suppliers and original equipment manufacturers. However, the transition toward domestic production often necessitates retooling facilities, retraining workforces, and establishing new quality-assurance protocols. These investments, while reinforcing supply chain security, may temporarily impact profit margins and extend lead times for critical hardware components.

Amid these shifts, agile vendors are innovating to mitigate cost pressures. Some have diversified their manufacturing footprints across neighboring countries to optimize tariff exposure, while others are accelerating adoption of software-driven architectures that minimize reliance on specialized hardware. At the same time, demand for subscription-based deployment models is rising, enabling end users to convert capital-intensive purchases into operational expenses, thereby smoothing budgetary cycles in the face of tariff-induced volatility.

Illuminating Key Segmentation Insights Unveiling Component, Deployment, End Use, Communication and Application Dynamics Driving SCADA Adoption

A granular examination of the SCADA market reveals distinct patterns across disparate segments. From a component perspective, hardware remains the largest category, encompassing controllers such as distributed control systems and programmable logic controllers, human-machine interface panels, remote terminal units, as well as an array of sensors and transducers. Complementing this layer, services encompass consulting and training initiatives designed to bolster operational proficiency, integration and deployment projects that knit together disparate systems, and ongoing support and maintenance agreements that safeguard uptime. On the software front, solutions span analytics platforms that leverage advanced machine learning, mobile applications that enable field technicians to act on critical alerts, comprehensive SCADA platforms that handle data acquisition and control logic, and security software dedicated to intrusion detection and access management.

Deployment models are bifurcated between on-premise architectures maintained within the operator's firewall and cloud-based offerings provisioned through hybrid, private, or public environments. Hybrid cloud implementations have emerged as a popular compromise, offering the agility of cloud scalability with the predictability of localized processing. Meanwhile, pure private cloud deployments cater to organizations with stringent data sovereignty requirements, and public cloud options appeal to those prioritizing rapid provisioning and cost efficiency.

End use paints a mosaic of vertical applications across renewable energy. Biomass installations range from combined heat and power facilities to centralized power plants. Geothermal systems include binary cycle, dry steam, and flash steam plants. Hydropower is segmented into large reservoir facilities and small run-of-river projects. Solar operations encompass both concentrated solar power arrays and photovoltaic farms. Wind assets are classified by onshore and offshore configurations, each presenting unique environmental and regulatory considerations.

Communication technology underpins every segment. Wired infrastructures utilize Ethernet backbones, fiber-optic rings, and serial communication links, while wireless alternatives rely on cellular networks, radio frequency protocols, and satellite connectivity. Finally, application layers deliver functionalities in alarm management to prioritize critical events, asset performance management to optimize equipment lifecycles, control management for real-time setpoint adjustments, data acquisition and monitoring for continuous insight, and reporting and analytics to inform strategic decisions.

Uncovering Regional Dynamics Shaping SCADA Adoption Across Americas Europe Middle East Africa and Asia Pacific Renewable Energy Markets

Across the Americas, SCADA implementations have ramped up in both mature and emerging markets. North American operators emphasize grid reliability, leveraging advanced control logic to integrate high penetrations of solar and wind capacity. Central and South American utilities are seizing opportunities to modernize aging hydropower infrastructure and expand biomass cogeneration, with service providers forging partnerships to deliver turnkey modernization projects. Mexico's regulatory reforms have further stimulated investment, prompting cross-border collaboration to standardize communication protocols and cybersecurity frameworks.

In Europe, the Middle East, and Africa region, stringent climate targets and decarbonization mandates are driving comprehensive digital overhauls. Western European nations focus on cross-border energy interconnectivity and advanced analytics to balance intermittent generation. In the Middle East, the race to develop utility-scale solar arrays has incentivized cloud-native SCADA deployments that can scale in step with project pipelines. Meanwhile, Africa's hydropower expansions and geothermal explorations are catalyzing demand for modular control systems that can operate in challenging environmental conditions and intermittent network coverage.

Asia-Pacific markets present a diverse tableau of growth trajectories. China continues to push the frontier of wind-solar hybrid plants, integrating AI-driven control loops to stabilize output. India's ambitious renewable targets are juxtaposed with grid modernization initiatives, wherein state-owned entities partner with international vendors to implement cybersecurity-hardened architectures. Japan and Australia are pioneering offshore wind and tidal energy SCADA use cases, and Southeast Asian nations are adopting scalable hybrid cloud solutions to leapfrog legacy infrastructure constraints.

Strategic Profiles of Leading SCADA Providers Illuminating Competitive Strategies and Innovation Pathways in Renewable Energy Control Systems

Global technology leaders have cemented their positions through robust R&D investments and strategic alliances. Siemens continues to drive innovation in AI-powered analytics and secure communication layers, while ABB integrates its automation expertise with comprehensive service offerings. Schneider Electric differentiates through its EcoStruxure platform, which emphasizes open interoperability and cybersecurity compliance, and General Electric leverages its digital twin capabilities to optimize turbine and inverter operations.

Mid-market specialists are also carving out niches. Companies like Advantech and Inductive Automation have built reputations on modular, scalable SCADA platforms ideal for hybrid energy projects. Yokogawa and Mitsubishi Electric capitalize on their long-standing presence in industrial control, offering turnkey solutions tailored for high-temperature geothermal and large-scale hydro facilities. Meanwhile, Emerson focuses on asset performance management, integrating SCADA data with health monitoring systems to drive predictive maintenance.

Competition is intensifying around services and subscription models. Vendors are bundling consulting, integration, and support services into annual contracts, transitioning from one-off hardware sales to ongoing customer engagements. This shift enhances customer retention, provides continuous revenue streams, and aligns incentives around system performance rather than simple equipment throughput.

Actionable Recommendations Empowering Renewable Energy Stakeholders to Leverage SCADA Innovations for Operational Excellence and Growth

Industry leaders should prioritize the integration of edge and cloud architectures to achieve both real-time responsiveness and long-term scalability. By deploying intelligent edge nodes for rapid anomaly detection and leveraging cloud resources for advanced analytics and historical data aggregation, organizations can reduce latency while supporting enterprise-wide visibility.

Second, strengthening cybersecurity must remain paramount. Implementing zero-trust models, regularly updating firmware, and conducting continuous vulnerability assessments will safeguard control networks from increasingly sophisticated threats. Collaboration with trusted cybersecurity specialists and participation in industry information-sharing groups can further enhance resilience.

Third, forging cross-sector partnerships and contributing to open-source standards will accelerate innovation. By aligning with industry consortiums and academic institutions, stakeholders can establish interoperable frameworks that reduce integration overheads and foster a competitive vendor ecosystem. Standardized communication protocols and data schemas will serve as the foundation for seamless system expansions.

Finally, investing in advanced analytics and workforce development is critical. Equipping teams with training in machine learning, process optimization, and cybersecurity will empower organizations to capitalize on data insights. Coupling these capabilities with continuous improvement methodologies will ensure that SCADA implementations evolve in step with market demands and regulatory requirements.

Comprehensive Research Methodology Integrating Primary Engagement and Secondary Analysis for Robust SCADA Market Insights in Renewable Energy

This research is grounded in a rigorous methodology that combines exhaustive secondary research and in-depth primary engagements. The process began with a comprehensive review of industry reports, academic publications, regulatory filings, and vendor white papers to establish a foundational understanding of SCADA trends in renewable energy.

Subsequently, structured interviews were conducted with executives, system integrators, infrastructure operators, and technology vendors. These discussions provided qualitative insights into strategic priorities, deployment challenges, and next-generation feature requirements. Triangulation of quantitative data and interview findings ensured that conclusions were validated against multiple sources, reducing potential biases.

Data was further segmented along component, deployment model, end use, communication technology, and application lines to reveal nuanced adoption patterns. Each finding underwent a multi-layer verification process, incorporating feedback from subject matter experts and cross-referencing against proprietary project databases. The result is a set of insights that reflect the current state of the market, emerging innovations, and future growth enablers.

Synthesis of SCADA Market Trends and Strategic Insights Guiding Renewable Energy Stakeholders Toward Resilient Digital Control Ecosystems

The collective insights underscore the transformative impact of SCADA systems on renewable energy operations. From enhancing grid stability through real-time control loops to driving cost efficiencies via predictive maintenance, these platforms are central to meeting decarbonization and resilience objectives. The interplay between edge computing, cloud architectures, and robust cybersecurity measures is reshaping expectations for system performance and reliability.

Looking forward, the market will be defined by an emphasis on interoperability, AI-driven automation, and flexible financing models. Vendors and end users alike will need to adapt to evolving regulatory frameworks and tariff landscapes, balancing the imperatives of localization with the efficiencies of global supply chains. Stakeholders who embrace collaboration, invest in talent development, and prioritize secure, scalable architectures will be best positioned to seize the opportunities of the energy transition.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven predictive maintenance modules into SCADA for wind farms to reduce downtime
  • 5.2. Adoption of edge computing in solar plant SCADA systems for real-time data processing in remote sites
  • 5.3. Implementation of cybersecurity frameworks tailored to SCADA networks in distributed renewable energy installations
  • 5.4. Transition to cloud-native SCADA platforms enabling scalable monitoring of offshore wind and solar assets across geographies
  • 5.5. Use of digital twin technology in hydropower SCADA systems for optimising turbine performance and maintenance schedules
  • 5.6. Integration of IoT sensor networks with SCADA to enhance granular monitoring of solar panel efficiency and fault detection
  • 5.7. Application of blockchain-based data integrity solutions to secure transactional records in decentralized renewable SCADA networks
  • 5.8. Development of interoperable SCADA architectures compliant with IEC 61850 and DNP3 standards for hybrid renewable grids
  • 5.9. Deployment of advanced analytics and machine learning for anomaly detection in SCADA telemetry from distributed solar parks
  • 5.10. Utilisation of 5G connectivity to improve latency and reliability of SCADA communications in offshore wind energy clusters

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. SCADA in Renewable Energy Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Controllers
      • 8.2.1.1. Distributed Control Systems
      • 8.2.1.2. PLCs
    • 8.2.2. Human Machine Interface Panels
    • 8.2.3. Remote Terminal Units
    • 8.2.4. Sensors & Transducers
  • 8.3. Services
    • 8.3.1. Consulting & Training
    • 8.3.2. Integration & Deployment
    • 8.3.3. Support & Maintenance
  • 8.4. Software
    • 8.4.1. Data Analytics
    • 8.4.2. Human Machine Interface (HMI)
    • 8.4.3. Supervisory Control

9. SCADA in Renewable Energy Market, by Deployment

  • 9.1. Introduction
  • 9.2. Cloud
  • 9.3. On-Premise

10. SCADA in Renewable Energy Market, by Communication Technology

  • 10.1. Introduction
  • 10.2. Wired
    • 10.2.1. Ethernet
    • 10.2.2. Fiber Optic
  • 10.3. Wireless
    • 10.3.1. Cellular
    • 10.3.2. Radio Frequency
    • 10.3.3. Satellite

11. SCADA in Renewable Energy Market, by Application

  • 11.1. Introduction
  • 11.2. Alarm Management
  • 11.3. Asset Performance Management
  • 11.4. Control Management
  • 11.5. Data Acquisition & Monitoring
  • 11.6. Reporting & Analytics

12. SCADA in Renewable Energy Market, by End User

  • 12.1. Introduction
  • 12.2. Energy Cooperatives & Community Projects
  • 12.3. EPC Contractors & OEMs
  • 12.4. Government & Public Utilities
  • 12.5. Independent Power Producers (IPPs)

13. Americas SCADA in Renewable Energy Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa SCADA in Renewable Energy Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific SCADA in Renewable Energy Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ABB Ltd
    • 16.3.2. Siemens AG
    • 16.3.3. Eaton Corporation plc
    • 16.3.4. Emerson Electric Co.
    • 16.3.5. GE Vernova Inc.
    • 16.3.6. Hitachi Energy Ltd
    • 16.3.7. Honeywell International Inc.
    • 16.3.8. Indra Sistemas S.A.
    • 16.3.9. Inductive Automation, LLC.
    • 16.3.10. Mitsubishi Electric Corporation
    • 16.3.11. Ovarro Ltd. by Indicor LLC.
    • 16.3.12. Rockwell Automation, Inc.
    • 16.3.13. Survalent Technology Corporation
    • 16.3.14. Toshiba Corporation
    • 16.3.15. Trihedral Engineering Limited
    • 16.3.16. Yokogawa Electric Corporation
    • 16.3.17. Advantech Co., Ltd.
    • 16.3.18. Elipse Software
    • 16.3.19. GreenPowerMonitor
    • 16.3.20. Ingeteam, S.A.
    • 16.3.21. Larsen & Toubro Limited
    • 16.3.22. SuryaLogix
    • 16.3.23. ZIV Automation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦