½ÃÀ庸°í¼­
»óǰÄÚµå
1804796

Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : ¸ðÅÍ À¯Çüº°, Á¤°Ý Ãâ·Âº°, Á¤°Ý Àü¾Ðº°, ³Ã°¢ ¹æ½Äº°, ¼±¹Ú À¯Çüº°, ÆÇ¸Å ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Non-Propulsion Electric Motor Systems in Shipbuilding Market by Motor Type, Power Rating, Voltage Rating, Cooling Method, Vessel Type, Sales Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 183 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡´Â 56¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 59¾ï 8,000¸¸ ´Þ·¯, CAGR 6.18%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 80¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 56¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 59¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 80¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 6.18%

Çö´ë Á¶¼± ȯ°æ¿¡¼­ÀÇ ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ Àü·«Àû Àǹ̸¦ ޱ¸Çϰí È¿À²¼º°ú Áö¼Ó°¡´É¼º Çâ»óÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀº ÇØ¾ç »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¹ßÀüÀ̸ç, ¿îÇ× È¿À²°ú ȯ°æ ¼º´ÉÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¸ðÅÍ´Â ¼±¹ÚÀÇ ¾ÞÄ¿¸µ ¹× ¹ë·¯½ºÆ® °ü¸®ºÎÅÍ ºôÁö ÆßÇÁ, µ¥Å© Å©·¹ÀÎ ¸®ÇÁÆÃ, ¼Ò¹æ, °è·ù, Á¶Å¸, ȯ±â µî ¼±¹ÚÀÇ ´Ù¾çÇÑ ±â´ÉÀ» ±¸µ¿ÇÏ¿© ¼±¹ÚÀÌ Á¡Á¡ ´õ ±î´Ù·Î¿öÁö´Â ±ÔÁ¦ ¹× Áö¼Ó°¡´É¼º ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀüÅëÀûÀÎ À¯¾Ð ¹× ±â°è ±¸µ¿ º¸Á¶ Àåºñ°¡ ¿ÏÀü Àü±â ¾ÆÅ°ÅØÃ³·Î ÀüȯµÊ¿¡ µû¶ó ¼±ÁÖ ¹× ¿î¿µÀÚ´Â ½Å·Ú¼ºÀ» ³ôÀ̰í À¯Áöº¸¼ö º¹À⼺À» ÁÙÀ̸ç Ç×±¸ ¹× ÇØ»ó¿¡¼­ ´õ Á¶¿ëÇÑ ¿î¿µÀ» ´Þ¼º ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¶¼±¾÷¿¡¼­ ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ ¹èÄ¡¸¦ ÀçÁ¤ÀÇÇϰí, Çõ½ÅÀûÀÎ ±â¼ú ¹× ±ÔÁ¦ º¯È­¸¦ ¹ß°ßÇÕ´Ï´Ù.

ÃÖ±Ù ¸î ³â µ¿¾È ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ »óȲÀº ±â¼ú Çõ½Å°ú ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ÀÎÇØ Å« º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ´õ ³ôÀº ÅäÅ© ¹Ðµµ, Çâ»óµÈ ¿­ °ü¸®, ½Ç½Ã°£ ¼º´É ¸ð´ÏÅ͸µÀ» °®Ãá ¸ðÅ͸¦ Á¦°øÇϱâ À§ÇØ °í±Þ Àç·á, Àü·Â ÀüÀÚ ÀåÄ¡, ½º¸¶Æ® ¼¾¼­¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ µðÁöÅÐÈ­ Ãß¼¼´Â ¿¹Áöº¸Àü ¾Ë°í¸®Áò°ú ¿ø°Ý Áø´Ü ±â´ÉÀ» ¸ðÅÍ ÄÁÆ®·Ñ·¯¿¡ Á÷Á¢ ÅëÇÕÇÏ¿© Á¶¼±¼Ò¿Í ¿î¿µÀÚ°¡ °íÀåÀ» ¿¹ÃøÇϰí À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­ÇÏ¿© °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÁÙÀÏ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÌ µµÀÔ ¿¹Á¤ÀÎ ¼öÀÔ ºñÃßÁø¿ë Àü±â ¸ðÅÍ¿¡ ºÎ°úÇÏ´Â °ü¼¼ÀÇ º¹ÇÕÀû ¿µÇâ°ú ±¹³» Á¶¼±¾÷ÀÇ ¿ªÇÐ °ü°è Æò°¡

¹Ì±¹ Á¤ºÎÀÇ 2025³â ½Å±Ô °ü¼¼ ¹ßÇ¥´Â ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ ºñ¿ë ¹æÁ¤½Ä¿¡ Áß¿äÇÑ º¯¼ö¸¦ µµÀÔÇÒ °ÍÀÔ´Ï´Ù. ÁÖ¿ä Á¦Á¶ °ÅÁ¡¿¡¼­ ¼öÀԵǴ ºÎǰ ¹× ÇÏÀ§ Á¶¸³Ç°Àº Ãß°¡ °ü¼¼°¡ ºÎ°úµÉ ¼ö ÀÖÀ¸¸ç, OEM ¹× Á¶¼±¼ÒµéÀº ¼¼°è Á¶´Þ Àü·«À» Àç°ËÅäÇØ¾ß ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ÈñÅä·ù ÀÚ¼®À̳ª Ư¼ö ¶ó¹Ì³×ÀÌÆ®¿Í °°Àº Áß¿äÇÑ ¿øÀÚÀç´Â °ü¼¼¿¡ ¿µÇâÀ» ¹Þ±â ½¬¿î Áö¿ªÀ» Åë°úÇÒ °æ¿ì ºñ¿ëÀÌ ³ô¾ÆÁú ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ÃÖÁ¾ °í°´ÀÇ °¡°Ý Ã¥Á¤ ¹× °è¾à Çù»ó¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ ÇØ¾ç ½Ã³ª¸®¿À¿¡¼­ ºñÃßÁø¿ë Àü±â ¸ðÅÍ ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Â´Â Àü·«À» °¡´ÉÇÏ°Ô Çϰí, Áß¿äÇÑ ¼¼ºÐÈ­ Â÷¿øÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

´ÙÂ÷¿øÀû ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©´Â ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ ¼ö¿ä ÆÐÅϰú »ç¿ëÀÚ Á¤ÀÇ ¿ä±¸ »çÇ×ÀÇ ´µ¾Ó½º¸¦ ¸íÈ®È÷ ÇÕ´Ï´Ù. ¸ðÅÍÀÇ Á¾·ùº°·Î ºÐ·ùÇϸé, ¾ÞÄ¿ À©µé¶ó½º ¸ðÅÍ, ¹ë·¯½ºÆ® ÆßÇÁ ¸ðÅÍ, ºôÁö ÆßÇÁ ¸ðÅÍ, µ¥Å© Å©·¹ÀΠȣÀ̽ºÆ® ¸ðÅÍ, ¼Ò¹æ ÆßÇÁ ¸ðÅÍ, °è·ù À©Ä¡ ¸ðÅÍ, Á¶Çâ ±â¾î ¸ðÅÍ, ȯ±â ÆÒ ¸ðÅÍ´Â °¢°¢ °íÀ¯ÇÑ ÅäÅ©, ¼Óµµ, ȯ°æ º¸È£ ¿ä±¸ »çÇ×À» Á¦½ÃÇϸç OEMÀ» Â÷º°È­µÈ Á¦Ç° Æ÷Æ®Æú¸®¿À¿Í ¾ÖÇÁÅ͸¶ÄÏ Áö¿ø Àü·«À¸·Î ÀεµÇÕ´Ï´Ù.

¼¼°è ÇØ¾ç ½ÃÀå¿¡¼­ ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ Ã¤Åÿ¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áö¿ªÀû ¿ªÇÐ ¹× »õ·Î¿î ±âȸ¸¦ °­Á¶ÇÕ´Ï´Ù.

Áö¿ª ¿ªÇÐÀº ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ Ã¤Åà °î¼±¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â ³ëÈÄÈ­µÈ ¼±´Ü °³Á¶ ÀÌ´Ï¼ÅÆ¼ºê¿Í Ç׸¸ ¹èÃâ ±ÔÁ¦ ±¸¿ªÀÌ °áÇÕµÇ¾î ¾ÖÇÁÅÍ ¼­ºñ½º ³×Æ®¿öÅ©¿Í ½Å¼ÓÇÑ ºÎǰ Á¶´Þ¿¡ ÁßÁ¡À» µÐ Àü±â º¸Á¶ Àåºñ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ´«À» µ¹¸®¸é, ¾ö°ÝÇÑ È¯°æ Áöħ°ú ÁÖ¿ä Ç×·ÎÀÇ ³ôÀº ¼±¹Ú ¼ö¼Û·®ÀÌ °áÇÕµÇ¾î ¼±±ÞÇùȸ°¡ ¼ö¿ë ±âÁØÀ» Á¤ÀÇÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ½ÅÁ¶¼± ¹× °³Á¶ ¼Ö·ç¼Ç ¸ðµÎ¿¡ ´ëÇØ °­·ÂÇÑ ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ »ê¾÷ ȯ°æ¿¡¼­ Çõ½Å°ú °æÀï ȯ°æÀÇ Â÷º°È­¸¦ ÁÖµµÇÏ´Â ¾÷°è ¼±µµ ±â¾÷ ÇÁ·ÎÆÄÀϸµ.

ºñÃßÁø¿ë Àüµ¿±â ½Ã½ºÅÛÀÇ °æÀï »óȲÀº ¼¼°è OEM°ú Àü¹® Á¦Á¶¾÷ü°¡ È¥ÀçµÇ¾î ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ±âÁ¸ ±â¾÷µéÀº ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÅëÇØ Á¡ÁøÀûÀÎ È¿À²¼º Çâ»óÀ» ´Þ¼ºÇÏ´Â ¹Ý¸é, Áß¼Ò±â¾÷µéÀº ¹Îø¼ºÀ» Ȱ¿ëÇÏ¿© Æ´»õ ¼Ö·ç¼Ç°ú ½Å¼ÓÇÑ ¸ÂÃãÈ­ ±â´ÉÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¸ðÅÍ Á¦Á¶¾÷ü¿Í ÀÚµ¿È­ °ø±Þ¾÷ü¿ÍÀÇ Çù·ÂÀº Á¶¼±¾÷ü°¡ Á¶´Þ ¹× ¼³Ä¡¸¦ °£¼ÒÈ­ÇÏ´Â ÅëÇÕ µå¶óÀÌºê ÆÐŰÁö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ Çõ½ÅÀ» ÅëÇØ Á¶¼±¼Ò ¹× Á¦Á¶¾÷ü¿¡ ÈûÀ» ½Ç¾îÁÙ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õ´Â °íÈ¿À² ¸ðÅÍ ±â¼ú°ú ½º¸¶Æ® Á¦¾î Ç÷§Æû¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ¸¦ ¿ì¼±½ÃÇÏ°í ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀÇ ¿ìÀ§¸¦ ÀÔÁõÇØ¾ß ÇÕ´Ï´Ù. ÇÐ°è ¹× ¼±±Þ Çùȸ¿ÍÀÇ °øµ¿ ¿¬±¸ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ¿© »õ·Î¿î ¸ðÅÍ ¼³°èÀÇ °ËÁõÀ» °¡¼ÓÈ­Çϰí, ÁøÈ­ÇÏ´Â ¾ÈÀü ¹× ȯ°æ Ç¥ÁØ¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ» ÀÎÁõÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ À¯¿¬ÇÑ Á¦Á¶ °øÁ¤°ú ¸ðµâ½Ä Á¦Ç° ¾ÆÅ°ÅØÃ³¸¦ °³¹ßÇÏ¿© ´Ù¾çÇÑ ¼±¹Ú À¯Çü°ú Ãâ·Â ¿ä±¸ »çÇ׿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ºü¸¥ Ä¿½ºÅ͸¶ÀÌ¡°ú È®À强À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ¿¡ ´ëÇÑ ºÐ¼®Àû ÀλçÀÌÆ®¸¦ µÞ¹ÞħÇÏ´Â Á¾ÇÕÀûÀÎ ¿¬±¸ ÇÁ·¹ÀÓ¿öÅ©¿Í µ¥ÀÌÅÍ ¼öÁý ¹æ¹ý·Ð¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¾´Ï´Ù.

º» ºÐ¼®¿¡¼­´Â 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ È¥ÇÕÁ¶»ç ¹æ½ÄÀ» äÅÃÇÏ¿´½À´Ï´Ù. Á¶¼±¼Ò, ¼±¹Ú ¿î¿µ»ç, Àüµ¿±â OEM, ½Ã½ºÅÛ ÅëÇÕ¾÷ü ÀÇ»ç°áÁ¤±ÇÀÚ¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ ¾òÀº 1Â÷Àû ÀλçÀÌÆ®¸¦ ÅëÇØ ¿î¿µ»óÀÇ °úÁ¦¿Í ÅõÀÚ ¿ì¼±¼øÀ§¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÌÇØµµ¸¦ È®º¸Çß½À´Ï´Ù. 2Â÷ Á¶»ç Á¤º¸¿¡´Â ±â¼ú µ¿Çâ°ú °æÀï °ü°è¸¦ È®ÀÎÇÒ ¼ö ÀÖ´Â ¾÷°è °£Ç๰, ±ÔÁ¦ ´ç±¹ ½Å°í, ¼±±ÞÇùȸ ±â¼ú Ç¥ÁØ, ƯÇã µ¥ÀÌÅͺ£À̽º µîÀÌ Æ÷ÇԵ˴ϴÙ.

Á¶¼±¾÷°èÀÇ ÁøÈ­ÇÏ´Â ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ »ýŰ踦 Ž»öÇϱâ À§ÇÑ ÇÙ½É ¿äÁ¡ ¹× Àü·«Àû Áß¿ä »çÇ× ÅëÇÕ

ºñÃß·Â Àü±â ¸ðÅÍ ½Ã½ºÅÛÀÇ ÁøÈ­´Â ȯ°æ ±ÔÁ¦, µðÁöÅÐÈ­, ¿îÇ× È¿À²¼º¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ÃßÁøµÇ´Â ±¤¹üÀ§ÇÑ ÇØ¾ç Çõ½Å¿¡ ´ëÇÑ µÞ¹ÞħÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸ðÅÍ ¼³°è, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, Áö´ÉÇü Á¦¾î ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀüÀ¸·Î Á¶¼±¾÷ü¿Í ¿î¿µÀÚ´Â ¾ö°ÝÇÑ ¹èÃâ·® ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¿½Ã¿¡ ¼ö¸íÁֱ⠺ñ¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ 2025³â ¿¹Á¤µÈ ¹Ì±¹ÀÇ °ü¼¼ Àλó µî »õ·Î¿î ¹«¿ª Á¤Ã¥À¸·Î ÀÎÇØ Àû±ØÀûÀÎ °ø±Þ¸Á Àü·«°ú ź·ÂÀûÀÎ Á¶´Þ ¸ðµ¨ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : ¸ðÅÍ À¯Çüº°

  • ¾ÞÄ¿ À©µå·¡½º ¸ðÅÍ
  • ¹ë·¯½ºÆ® ÆßÇÁ ¸ðÅÍ
  • ºôÁö ÆßÇÁ ¸ðÅÍ
  • µ¥Å© Å©·¹ÀΠȣÀ̽ºÆ® ¸ðÅÍ
  • ¼Ò¹æ ÆßÇÁ ¸ðÅÍ
  • °è·ù À©Ä¡ ¸ðÅÍ
  • ½½¶óÀÌµå µµ¾î ¸ðÅÍ
  • ½½¶óÀ̵ù À©µµ¿ì(À©µµ¿ì ¾×Ãß¿¡ÀÌÅÍ) ¸ðÅÍ
  • ½ºÆ¼¾î¸µ ±â¾î ¸ðÅÍ
  • ȯ±âÆÒ ¸ðÅÍ

Á¦9Àå Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : Á¤°Ý Ãâ·Âº°

  • 10-100 ¸¶·Â
  • 10HP ¹Ì¸¸
  • 100 ¸¶·Â ÀÌ»ó

Á¦10Àå Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : Á¤°Ý Àü¾Ðº°

  • °íÀü¾Ð
  • ÀúÀü¾Ð
  • ÁßÀü¾Ð

Á¦11Àå Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : ³Ã°¢ ¹æ¹ýº°

  • °ø·© ¸ðÅÍ
  • ¼ö·©½Ä ¸ðÅÍ

Á¦12Àå Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : ¼±¹Ú À¯Çüº°

  • »ó¾÷ ¿î¼Û
    • ¹úÅ© ij¸®¾î
    • ÄÁÅ×À̳ʼ±
    • ÅÊÄ¿
  • ÇØ±º/¹æÀ§ ÇÔÁ¤
  • ¿ÀÇÁ¼î¾î ¹× Ư¼ö ¼±¹Ú
  • ¿©°´¼±
    • Å©·çÁî
    • Æä¸®
  • Ç׸¸ Å©·¡ÇÁÆ®
  • ¿äÆ®¿Í À¯¶÷¼±

Á¦13Àå Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå : ÆÇ¸Å ä³Îº°

  • ¾ÖÇÁÅ͸¶ÄÏ
  • OEM °è¾à

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¶¼± ºÐ¾ß ºñÃßÁø¿ë Àü±â ¸ðÅÍ ½Ã½ºÅÛ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • ABB Ltd.
    • Siemens Energy AG
    • Caterpillar Inc.
    • Emerson Electric Co.
    • Fuji Electric Co., Ltd.
    • General Electric Company
    • Hitachi, Ltd.
    • Hyundai Heavy Industries Co., Ltd.
    • Ingeteam Corporacion S.A.
    • Kongsberg Gruppen ASA
    • L3Harris Technologies, Inc.
    • Marine Electric Systems, Inc.
    • Mitsubishi Electric Corporation
    • Nidec Corporation
    • Rockwell Automation, Inc.
    • Rolls-Royce Holdings plc
    • Schneider Electric SE
    • Toshiba Corporation
    • Voith GmbH & Co. KGaA
    • Wartsila Corporation
    • WEG SA

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSM 25.09.16

The Non-Propulsion Electric Motor Systems in Shipbuilding Market was valued at USD 5.64 billion in 2024 and is projected to grow to USD 5.98 billion in 2025, with a CAGR of 6.18%, reaching USD 8.09 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.64 billion
Estimated Year [2025] USD 5.98 billion
Forecast Year [2030] USD 8.09 billion
CAGR (%) 6.18%

Exploring the Strategic Significance of Non-Propulsion Electric Motor Systems in Modern Shipbuilding Environments for Enhanced Efficiency and Sustainability

Non-propulsion electric motor systems represent a pivotal advancement in the maritime industry, offering substantial gains in operational efficiency and environmental performance. These motors drive a variety of onboard functions-from anchoring and ballast management to bilge pumping, deck crane hoisting, fire suppression, mooring, steering gear, and ventilation-ensuring that vessels meet increasingly stringent regulatory and sustainability requirements. As traditional hydraulic and mechanically driven auxiliaries give way to fully electric architectures, shipowners and operators can achieve improved reliability, reduced maintenance complexity, and quieter operation in port and at sea.

Understanding the impact of these systems is critical for stakeholders across the value chain. Navies seek enhanced mission readiness and stealth capabilities, commercial shipping lines aim for lower lifecycle costs and lower carbon footprints, and offshore operators prioritize operational uptime and safety under harsh conditions. In this context, the adoption of non-propulsion electric motors aligns with global imperatives for decarbonization and energy efficiency.

This executive summary synthesizes the key developments, market drivers, regulatory influences, segmentation insights, regional dynamics, and competitive factors shaping the evolving landscape. It offers decision-makers a concise yet comprehensive overview of how non-propulsion electric motor systems are transforming shipbuilding practices and guiding the next generation of maritime technology strategies.

Uncovering Transformative Technological and Regulatory Shifts Redefining Deployment of Non-Propulsion Electric Motor Systems in Shipbuilding

In recent years, the non-propulsion electric motor systems landscape has experienced profound shifts driven by both technological innovation and regulatory pressure. Manufacturers are integrating advanced materials, power electronics, and smart sensors to deliver motors with higher torque density, improved thermal management, and real-time performance monitoring. At the same time, digitalization trends are embedding predictive maintenance algorithms and remote diagnostics capabilities directly into motor controllers, allowing shipyards and operators to anticipate failures and optimize maintenance schedules, thereby reducing unplanned downtime.

Regulatory initiatives aimed at cutting greenhouse gas emissions and improving air quality have accelerated the transition from fossil-fuel-dependent auxiliaries to electric drives. Landmark regulations in the European Union, the United States, and key Asia-Pacific markets are mandating lower sulfur oxide and nitrogen oxide outputs, while some flag states are incentivizing zero-emission operations in designated port areas. In parallel, classification societies are issuing new guidelines for electric propulsion and auxiliary systems, reinforcing safety standards, electromagnetic compatibility requirements, and fault-tolerant designs.

Collectively, these technological and regulatory drivers are reshaping procurement strategies, fostering collaboration between motor OEMs and system integrators, and prompting investments in research and development. As a result, the market is witnessing a rapid evolution that demands strategic agility from both established players and emerging entrants.

Assessing the Compounded Impact of Upcoming United States Tariffs on Imported Non-Propulsion Electric Motors and Domestic Shipbuilding Dynamics

The announcement of new tariffs by the United States government for 2025 introduces a significant variable into the cost equation for non-propulsion electric motor systems. Components and subassemblies imported from key manufacturing hubs may face additional duties, prompting OEMs and shipyards to reassess their global sourcing strategies. For example, critical raw materials such as rare-earth magnets and specialized laminations could become more costly if they transit tariff-sensitive jurisdictions, which in turn affects end-customer pricing and contract negotiations.

In response, certain domestic manufacturers are accelerating efforts to localize production of high-value components, while global suppliers are exploring tariff engineering strategies, such as adjusting country of origin certifications or modifying supply chain flows to minimize duty exposure. Consequently, stakeholders must monitor trade policy developments and engage in proactive scenario planning to mitigate margin erosion and avoid delivery delays.

Moreover, the cumulative impact of these measures extends beyond direct cost increases. Equipment financing models, long-term service agreements, and warranty provisions may also adjust to reflect heightened supply chain risks. As a result, companies that demonstrate supply chain resilience, transparent cost structures, and robust contingency planning are likely to gain a competitive edge in an environment shaped by evolving trade dynamics.

Revealing Critical Segmentation Dimensions That Enable Tailored Strategies for Non-Propulsion Electric Motor Applications in Diverse Maritime Scenarios

A multidimensional segmentation framework reveals nuances in demand patterns and customization requirements for non-propulsion electric motor systems. When classified by motor type, Anchor Windlass Motors, Ballast Pump Motors, Bilge Pump Motors, Deck Crane Hoist Motors, Fire Pump Motors, Mooring Winch Motors, Steering Gear Motors, and Ventilation Fan Motors each present unique torque, speed, and environmental protection demands, guiding OEMs toward differentiated product portfolios and aftermarket support strategies.

Examining power rating segments-below 10 HP, 10-100 HP, and more than 100 HP-uncovers distinct use cases in small coastal vessels, mainstream commercial shipping, and major offshore platforms, respectively. Voltage rating categories of low voltage, medium voltage, and high voltage further influence system architecture decisions, affecting cable sizing, switchgear selection, and insulation protocols.

Cooling methods, whether air-cooled motors for simplified installation or water-cooled variants for high-power applications, determine thermal management strategies and space requirements within machinery spaces. Vessel type segmentation across commercial shipping, ferries, naval and defense assets, offshore oil and gas installations, passenger vessels and cruise ships, specialty vessels, and yachts and pleasure craft underscores the importance of tailored compliance, certification, and onboard integration services. Finally, sales channels-aftermarket services versus OEM contracts-shape lifecycle revenue models, with aftermarket penetration offering recurring service opportunities and OEM engagements fostering design-in partnerships at the project inception stage.

Highlighting Regional Dynamics and Emerging Opportunities Influencing Adoption of Non-Propulsion Electric Motor Systems across Global Maritime Markets

Regional dynamics exert significant influence on the adoption curve for non-propulsion electric motor systems. In the Americas, a combination of retrofit initiatives in aging fleets and port emission control area regulations drive investment in electric auxiliaries, with an emphasis on aftersales service networks and rapid parts availability. Moving to Europe, Middle East & Africa, stringent environmental directives coupled with high vessel traffic volumes in major trade routes create a robust market for both newbuild and retrofit solutions, with classification societies playing a pivotal role in defining acceptance criteria.

In the Asia-Pacific region, surging shipbuilding activity, expanding ferry and cruise industries, and government incentives for green shipping foster a dynamic environment for motor OEMs. Local content requirements in certain markets promote joint ventures and technology transfer agreements, while strategic port electrification projects in key hub cities underscore the region's commitment to decarbonization. Across these geographies, partnerships between system integrators, power electronics specialists, and service providers are instrumental in addressing regional idiosyncrasies and ensuring operational readiness.

Profiling Leading Industry Participants Driving Innovation and Competitive Differentiation in the Non-Propulsion Electric Motor Systems Landscape

The competitive landscape for non-propulsion electric motor systems is characterized by a mix of global OEMs and specialized manufacturers. Established corporations invest heavily in R&D to achieve incremental efficiency gains, while smaller players leverage agility to introduce niche solutions and rapid customization capabilities. Collaborative alliances between motor manufacturers and automation providers enable integrated drive packages that simplify procurement and installation for shipbuilders.

Key market participants differentiate themselves through extended warranty programs, remote diagnostics portals, and circular economy initiatives, such as motor refurbishment and remanufacturing services that enhance sustainability credentials. Strategic acquisitions and joint ventures expand geographic reach, enhance product portfolios, and facilitate access to emerging markets. Service excellence, including 24/7 technical support and performance benchmarking tools, serves as a critical competitive lever, as vessel operators increasingly value total cost of ownership and operational transparency.

Innovation pipelines focus on advanced motor topologies, next-generation bearing systems, and eco-friendly insulation materials. By monitoring pilot projects in advanced vessel designs-such as hybrid ferries, crew transfer vessels, and autonomous research platforms-companies gain insights into new performance benchmarks and customer experience requirements that inform long-term strategic roadmaps.

Delivering Actionable Strategic Recommendations to Empower Shipbuilders and Manufacturers with Non-Propulsion Electric Motor System Innovations

Industry leaders should prioritize continuous investment in high-efficiency motor technologies and smart control platforms to deliver demonstrable lifecycle cost advantages. Establishing collaborative research partnerships with academic institutions and classification societies can accelerate the validation of novel motor designs and certify compliance with evolving safety and environmental standards. At the same time, developing flexible manufacturing processes and modular product architectures enables rapid customization and scalability to address diverse vessel types and power requirements.

Additionally, cultivating resilient, multi-tier supply chains with dual sourcing strategies can mitigate the impact of trade policy shifts and raw material shortages. Embracing digital twins and predictive analytics platforms enhances service offerings by providing real-time insights into motor health, energy consumption trends, and maintenance forecasts. Training programs for shipyard technicians and end-users foster higher utilization rates and reduce installation errors, while integrated aftermarket support packages-encompassing remote troubleshooting, performance benchmarking, and condition-based maintenance contracts-create recurring revenue streams.

Finally, aligning corporate sustainability goals with product roadmaps and transparent reporting structures strengthens brand reputation and supports customer commitments to decarbonization. By adopting these actionable measures, motor manufacturers and shipbuilders can secure leadership positions in a market defined by technological disruption and regulatory evolution.

Detailing the Comprehensive Research Framework and Data Collection Methodologies Underpinning Analytical Insights into Non-Propulsion Electric Motor Systems

This analysis employs a rigorous mixed-methodology approach combining primary and secondary research channels. Primary insights derive from structured interviews with decision-makers at shipyards, vessel operators, electric motor OEMs, and system integrators, ensuring a comprehensive understanding of operational challenges and investment priorities. Secondary research sources include industry publications, regulatory filings, technical standards from classification societies, and patent databases to validate technology trends and competitive activity.

To ensure data integrity, inputs have undergone triangulation through multiple validation steps, cross-referencing supply chain intelligence, capital expenditure announcements, and aftermarket service performance indicators. Segmentation frameworks have been defined based on motor type, power rating, voltage class, cooling method, vessel application, and sales channel dynamics, providing actionable granularity. Analytical techniques encompass SWOT analysis, scenario planning for tariff impacts, regional opportunity mapping, and strategic benchmarking of R&D pipelines.

Quality assurance protocols include peer review by industry experts, iterative feedback loops with stakeholders, and consistency checks against historical trends and known market events. While every effort has been made to ensure factual accuracy and timeliness, the dynamic nature of trade policies and technological innovation necessitates periodic updates to maintain relevance.

Synthesizing Critical Takeaways and Strategic Imperatives for Navigating the Evolving Non-Propulsion Electric Motor Systems Ecosystem in Shipbuilding

The evolution of non-propulsion electric motor systems underscores a broader maritime transformation driven by environmental mandates, digitalization, and demands for operational efficiency. Technological advancements in motor design, power electronics, and intelligent control systems are enabling shipbuilders and operators to meet stringent emissions targets while optimizing lifecycle costs. At the same time, emerging trade policies-such as the United States tariffs slated for 2025-require proactive supply chain strategies and resilient sourcing models.

A nuanced segmentation analysis reveals that tailoring product offerings across motor types, power and voltage ratings, cooling methods, vessel classifications, and sales channels is key to addressing specific customer needs and unlocking new revenue streams. Regional insights highlight that the Americas, Europe, Middle East & Africa, and Asia-Pacific present distinct regulatory landscapes and market drivers, each fostering unique collaboration models between motor OEMs and maritime stakeholders.

As competition intensifies, leading companies distinguish themselves through integrated service models, strategic partnerships, and sustainability-focused innovation roadmaps. By embracing the strategic recommendations outlined herein-including investment in smart motor platforms, supply chain diversification, predictive maintenance adoption, and workforce training-industry participants can secure a competitive advantage and navigate the complex dynamics shaping this rapidly evolving market.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of intelligent variable frequency drives with shipboard auxiliaries for optimized load management
  • 5.2. Adoption of high-torque permanent magnet auxiliary motors to reduce vessel emissions and fuel consumption
  • 5.3. Implementation of IoT-based predictive maintenance platforms for real-time monitoring of auxiliary electric motors
  • 5.4. Retrofitting legacy cargo handling equipment with compact electric winch drives to meet new emission regulations
  • 5.5. Deployment of silicon carbide inverter technology for improved efficiency in shipboard HVAC motor systems
  • 5.6. Standardization of plug-and-play electric motor modules to accelerate auxiliary system upgrades across fleets
  • 5.7. Advancements in rare-earth-free motor designs to mitigate supply chain risks in shipbuilding auxiliary systems
  • 5.8. Integration of electric motor-driven compressors with onboard energy storage systems for peak shaving operations
  • 5.9. Development of high-speed shaft generator motors with advanced cooling systems for auxiliary power generation
  • 5.10. Use of digital twin simulations to optimize performance and lifecycle of non-propulsion electric motor assemblies

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Non-Propulsion Electric Motor Systems in Shipbuilding Market, by Motor Type

  • 8.1. Introduction
  • 8.2. Anchor Windlass Motors
  • 8.3. Ballast Pump Motors
  • 8.4. Bilge Pump Motors
  • 8.5. Deck Crane Hoist Motors
  • 8.6. Fire Pump Motors
  • 8.7. Mooring Winch Motors
  • 8.8. Sliding-door Motors
  • 8.9. Sliding-window (Window-Actuator) Motors
  • 8.10. Steering Gear Motors
  • 8.11. Ventilation Fan Motors

9. Non-Propulsion Electric Motor Systems in Shipbuilding Market, by Power Rating

  • 9.1. Introduction
  • 9.2. 10-100 HP
  • 9.3. Below 10 HP
  • 9.4. More than 100 HP

10. Non-Propulsion Electric Motor Systems in Shipbuilding Market, by Voltage Rating

  • 10.1. Introduction
  • 10.2. High Voltage
  • 10.3. Low Voltage
  • 10.4. Medium Voltage

11. Non-Propulsion Electric Motor Systems in Shipbuilding Market, by Cooling Method

  • 11.1. Introduction
  • 11.2. Air-Cooled Motors
  • 11.3. Water-Cooled Motors

12. Non-Propulsion Electric Motor Systems in Shipbuilding Market, by Vessel Type

  • 12.1. Introduction
  • 12.2. Commercial Shipping
    • 12.2.1. Bulk Carriers
    • 12.2.2. Container Ships
    • 12.2.3. Tankers
  • 12.3. Naval / Defense Vessels
  • 12.4. Offshore & Specialized Vessels
  • 12.5. Passenger Vessels
    • 12.5.1. Cruise
    • 12.5.2. Ferries
  • 12.6. Port & Harbor Craft
  • 12.7. Yachts & Pleasure Craft

13. Non-Propulsion Electric Motor Systems in Shipbuilding Market, by Sales Channel

  • 13.1. Introduction
  • 13.2. Aftermarket
  • 13.3. OEM Contracts

14. Americas Non-Propulsion Electric Motor Systems in Shipbuilding Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Non-Propulsion Electric Motor Systems in Shipbuilding Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Non-Propulsion Electric Motor Systems in Shipbuilding Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. ABB Ltd.
    • 17.3.2. Siemens Energy AG
    • 17.3.3. Caterpillar Inc.
    • 17.3.4. Emerson Electric Co.
    • 17.3.5. Fuji Electric Co., Ltd.
    • 17.3.6. General Electric Company
    • 17.3.7. Hitachi, Ltd.
    • 17.3.8. Hyundai Heavy Industries Co., Ltd.
    • 17.3.9. Ingeteam Corporacion S.A.
    • 17.3.10. Kongsberg Gruppen ASA
    • 17.3.11. L3Harris Technologies, Inc.
    • 17.3.12. Marine Electric Systems, Inc.
    • 17.3.13. Mitsubishi Electric Corporation
    • 17.3.14. Nidec Corporation
    • 17.3.15. Rockwell Automation, Inc.
    • 17.3.16. Rolls-Royce Holdings plc
    • 17.3.17. Schneider Electric SE
    • 17.3.18. Toshiba Corporation
    • 17.3.19. Voith GmbH & Co. KGaA
    • 17.3.20. Wartsila Corporation
    • 17.3.21. WEG SA

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦