시장보고서
상품코드
1806130

3D 프린팅 시장 : 컴포넌트, 기술, 재료, 용도별 - 세계 예측(2025-2030년)

3D Printing Market by Component, Technology, Material, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

3D 프린팅 시장은 2024년에는 225억 8,000만 달러로 평가되었습니다. 2025년에는 252억 9,000만 달러로 성장하고, CAGR 12.49%로 2030년에는 457억 6,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 225억 8,000만 달러
추정 연도 : 2025년 252억 9,000만 달러
예측 연도 : 2030년 457억 6,000만 달러
CAGR(%) 12.49%

3D 프린팅을 통한 생산 혁명: 현대의 제조 전략을 형성하는 변화의 가능성과 새로운 기회를 발견합니다.

3D 프린팅이 틈새 시제품 제작에서 생산 혁신의 핵심이 되면서 제조업의 상황은 패러다임의 전환을 맞이하고 있습니다. 첨단 적층 가공 기술은 더 이상 래피드 프로토타이핑에 국한되지 않고 항공우주, 헬스케어, 자동차, 가전제품에 침투하여 기존공급망과 생산 공정에 도전장을 던지고 있습니다. 이러한 진화는 재료 특성의 지속적인 개선, 정밀 엔지니어링, 디지털 설계 도구의 통합에 기인하며, 이 모든 것이 레이어별로 생성할 수 있는 영역을 확장하고 있습니다.

차세대 산업 르네상스 항해: 디지털 컨버전스별 소재 혁신과 생태계 확장이 3D 프린팅의 판도를 어떻게 바꾸고 있는가?

새로운 디지털 생태계는 하드웨어, 소프트웨어, 재료과학 사이에 전례 없는 시너지 효과를 창출하여 차세대 산업 르네상스를 촉진하고 있습니다. 클라우드 네이티브 플랫폼은 설계 협업을 가속화하고, 인공지능 기반 최적화 알고리즘은 이전에는 불가능했던 맞춤형 부품 형상을 제공합니다. 동시에 바이오 레진에서 고온 폴리머에 이르기까지 새로운 원료에 대한 탐구는 기능적 성능의 경계를 재구성하고 있습니다.

2025년 미국 관세 조정이 공급망에 미치는 파급효과 평가 3D 프린팅의 가격 구조와 경쟁 역학

2025년 미국의 새로운 관세 조치의 시행은 적층 가공 산업에 미묘한 과제와 기회를 가져다 줄 것입니다. 수입 금속 분말, 특수 광중합체, 첨단 고분자 필라멘트에 대한 관세 인상은 비용 구조를 압박하고 있습니다. 동시에 국내 소재 공급업체와 장비 제조업체는 경쟁력을 확보할 수 있는 위치에 있으며, 지역 밀착형 기술 혁신과 공급망 다변화를 위한 투자에 박차를 가할 수 있습니다.

3D 프린팅 시장 생태계 내 가치 창출 요인을 파악할 수 있는 구성 요소 기술 재료 및 용도에 대한 종합적인 통찰력 공개

세분화에 대한 미묘한 조사를 통해 적층 가공 영역의 다면적인 특성이 밝혀졌습니다. 구성 요소의 관점에서 볼 때, 프로토타이핑에 최적화된 데스크톱 프린터와 대량 생산을 위해 설계된 산업 규모의 기계가 공존하고, 서비스 제공업체는 컨설팅, 유지보수 및 교육 지원을 제공하며, 소프트웨어 제품군은 설계 및 시뮬레이션 기능을 강화합니다. 시뮬레이션 기능을 강화합니다. 이와 함께 바인더젯팅, 선택적 레이저 소결, 전자빔 용융, 용융 증착 모델링과 같은 분말 기반 기술도 스테레오 리소그래피, 디지털 광학 공정과 같은 광 기반 공정과 함께 확산되고 있습니다.

북미, 남미, 중동 및 아프리카, 아시아태평양의 지역적 역학을 비교 분석하여 전략적 성장 기회를 파악할 수 있습니다.

적층 가공의 지역적 역학관계의 특징은 각기 다른 촉진요인과 규제환경에 있습니다. 북미와 남미에서는 연구기관과 대형 OEM의 탄탄한 네트워크가 기술 채택을 촉진하고, 유리한 정책적 인센티브가 중요한 항공우주 및 방산 부품의 국내 생산을 지원하고 있습니다. 한편, 첨단 소재와 디지털 제조 허브에 대한 투자는 기술 혁신가로서 북미의 입지를 강화하고 있습니다.

기술 혁신을 주도하는 주요 혁신가 및 시장 파괴자 프로파일링 3D 프린팅 분야의 전략적 파트너십과 경쟁 우위

적층조형의 주요 기업들은 지속적인 R&D 투자, 전략적 제휴, 수직적 통합을 통해 업계의 벤치마크를 지속적으로 재정의하고 있습니다. 선구적인 기업들은 사내 재료 과학 전문 지식을 활용하여 새로운 합금과 폴리머를 도입하고, 설계 소프트웨어 회사와의 제휴를 통해 워크플로우의 자동화 및 상호 운용성을 강화하고 있습니다. 한편, 서비스 사무소 및 장비 공급업체 간의 통합이 진행되어 세계 유통망이 간소화되고, 애프터서비스 지원 능력이 확대되었습니다.

업계 리더들이 혁신을 활용하고, 운영 우수성을 촉진하며, 3D 프린팅 분야의 지속 가능한 성장을 가속하기 위한 전략적 행동 프레임워크

업계 리더는 혁신과 운영의 엄격함 사이에서 균형을 맞추는 긍정적인 태도를 가져야 합니다. 경영진은 부서 간 협업을 촉진하고 제품 개발 주기를 가속화할 수 있는 디지털 디자인 플랫폼에 대한 투자를 우선적으로 고려해야 합니다. 이와 병행하여 국내 공급업체와 제휴하고 재활용 원료를 채택하여 자재 조달 전략을 강화하는 것이 비용 부담을 줄이고 지속 가능한 신용을 높일 수 있습니다.

조사의 엄밀성을 보장하기 위해 1차 인터뷰 2차 데이터 검증 및 고급 분석 기법을 결합한 견고한 조사 방법론

본 조사는 1차 조사와 2차 조사를 통합하고, 탄탄한 분석 기법을 활용한 엄격한 방법론에 기반하고 있습니다. 경영진, R&D 책임자, 조달 관리자 등 전문가 인터뷰를 통해 새로운 트렌드, 비즈니스 과제, 전략적 우선순위에 대한 직접적인 관점을 제공했습니다. 이러한 정성적 고찰은 기술 발전과 경쟁의 역동성을 종합적으로 다루기 위해 기업 제출 서류, 특허 데이터베이스, 업계 간행물 등을 광범위하게 검토하여 보완되었습니다.

적층 가공의 미래를 형성하는 새로운 기회와 중요한 성공 요인의 전략적 중요성을 강조하는 결론적 관점

디지털 디자인 생태계, 재료 혁신, 서비스 지향적 비즈니스 모델의 융합으로 적층 가공은 첨단 생산 전략에서 매우 중요한 역할을 담당하게 되었습니다. 전략적 요구의 핵심은 공급망 혼란에 대한 회복력 배양, 반복 설계를 통한 제품 수명주기 최적화, 교육, 컨설팅, 예지보전을 아우르는 부가가치 서비스 제공의 확대입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 3D 프린팅 시장 : 컴포넌트별

  • 프린터
    • 데스크톱
    • 산업
  • 서비스
    • 컨설팅
    • 유지관리
    • 트레이닝
  • 소프트웨어
    • 설계 소프트웨어
    • 시뮬레이션 소프트웨어

제9장 3D 프린팅 시장 : 기술별

  • 바인더 제팅
  • 디지털 광처리
  • 전자빔 용해
  • 열용해 적층법
  • 선택적 레이저 소결
  • 스테레오 리소그래피

제10장 3D 프린팅 시장 : 재료별

  • 세라믹
    • 알루미나
    • 지르코니아
  • 복합재료
    • 탄소섬유 복합재
    • 유리섬유 복합재
  • 금속
    • 알루미늄
    • 코발트 크롬
    • 스테인리스 스틸
    • 티타늄
  • 플라스틱
    • ABS
    • 나일론
    • 포토폴리머 수지
    • PLA

제11장 3D 프린팅 시장 : 용도별

  • 항공우주 및 방위
  • 자동차
  • 소비재
    • 일렉트로닉스
    • 패션
    • 포장
  • 교육
  • 헬스케어
    • 의료기기
    • 의지
  • 산업 제조업

제12장 아메리카의 3D 프린팅 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 3D 프린팅 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 3D 프린팅 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ABB Ltd.
    • Doosan Corporation
    • 3D Systems, Inc.
    • ADAXIS SAS
    • ADDICT3D
    • Arc Wireless Solutions, Inc.
    • Beijing Tiertime Technology Co., Ltd.
    • Carbon, Inc.
    • CEAD B.V.
    • Comau S.p.A.
    • Continuous Composites Inc.
    • Desktop Metal, Inc.
    • Divergent Technologies
    • Dyze Design, Inc.
    • Engineering Technique
    • EOS GmbH
    • FACFOX, INC.
    • Fanuc Corporation
    • Hans WEBER Maschinenfabrik GmbH
    • Hewlett-Packard Development Company, L.P.
    • Hoganas AB
    • Hyperion Robotics Oy
    • Kawasaki Heavy Industries, Ltd.
    • KUKA AG
    • Massive Dimension
    • Materialise NV
    • Meltio3D
    • Mitsubishi Electric Corporation
    • MX3D
    • Omron Corporation
    • Optomec Inc.
    • Orbital Composites Inc.
    • Siemens AG
    • Stratasys, Ltd.
    • taulman3D, LLC
    • The ExOne Company
    • Titan Robotics Inc.
    • Universal Robots A/S
    • Vertex Dynamix LLC.
    • VOiLA3D
    • Yaskawa Electric Corporation
    • Yizumi Holdings Co., Ltd.

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

LSH 25.09.16

The 3D Printing Market was valued at USD 22.58 billion in 2024 and is projected to grow to USD 25.29 billion in 2025, with a CAGR of 12.49%, reaching USD 45.76 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 22.58 billion
Estimated Year [2025] USD 25.29 billion
Forecast Year [2030] USD 45.76 billion
CAGR (%) 12.49%

Revolutionizing Production with 3D Printing: Unveiling the Transformative Potential and Emerging Opportunities Shaping Modern Manufacturing Strategies

The landscape of manufacturing is undergoing a paradigm shift as 3D printing emerges from niche prototyping to a cornerstone of production innovation. No longer confined to rapid prototyping, advanced additive techniques now permeate aerospace, healthcare, automotive, and consumer electronics, challenging the traditional supply chain and production processes. This evolution stems from continuous improvements in material properties, precision engineering, and the integration of digital design tools, all of which have expanded the realm of what can be created layer by layer.

With each breakthrough in printer capability and software sophistication, organizations are able to iterate designs faster, reduce waste, and customize products at scale. As a result, executives are rethinking capital allocation, facility layouts, and talent development to harness these emerging opportunities. The convergence of digital design platforms with high-performance hardware establishes a fertile ground for collaboration between engineers, designers, and end-user stakeholders. Consequently, additive manufacturing is transitioning from experimental trials toward strategic implementation, marking a new chapter in production that promises agility, cost efficiency, and sustainable practices.

Navigating the Next Industrial Renaissance: How Digital Convergence Materials Innovation and Ecosystem Expansion Are Reshaping the 3D Printing Landscape

Emerging digital ecosystems are fueling the next industrial renaissance by orchestrating unprecedented synergy between hardware, software, and materials science. As cloud-native platforms accelerate design collaboration, artificial intelligence-driven optimization algorithms deliver bespoke part geometries that were previously unattainable. Simultaneously, the exploration of novel feedstocks, from bioresins to high-temperature polymers, is reshaping the boundaries of functional performance.

This shift is not confined to a single domain; it affects prototyping, tooling, and production alike. Manufacturers are adopting hybrid production lines where additive and subtractive processes co-exist, enabling rapid scaling from pilot runs to full production. Moreover, the ecosystem expansion extends beyond technology to service offerings, with consulting firms guiding implementation strategies and maintenance providers ensuring uptime. As a result, the additive value chain becomes more resilient, integrated, and dynamic, erasing past limitations and redefining expectations for speed and customization in modern manufacturing.

Assessing the Ripple Effects of the 2025 U.S. Tariff Adjustments on Supply Chains Pricing Structures and Competitive Dynamics in 3D Printing

The implementation of new U.S. tariff measures in 2025 introduces nuanced challenges and opportunities for the additive manufacturing community. Increased duties on imported metal powders, specialized photopolymers, and advanced polymer filaments are placing pressure on cost structures. At the same time, domestic material suppliers and equipment manufacturers are positioned to gain a competitive edge, spurring localized innovation and investments in supply chain diversification.

Consequently, firms are exploring nearshoring options and forging strategic partnerships with regional material producers to mitigate exposure to tariff volatility. This realignment fosters the development of resilient procurement strategies, where dual-sourcing and inventory management become critical levers for operational stability. Furthermore, elevated input costs drive accelerated adoption of recycling and material reclamation technologies, ensuring resource efficiency remains a top priority. As the landscape adapts, agility and foresight will define success for those navigating the evolving tariff environment.

Unveiling Comprehensive Insights Across Components Technologies Materials and Applications to Decode Value Drivers within the 3D Printing Market Ecosystem

A nuanced exploration of segmentation reveals the multifaceted nature of the additive manufacturing domain. From a component viewpoint, desktop printers optimized for prototyping coexist with industrial-scale machines designed for high-volume production, while service providers deliver consulting, maintenance, and training support, and software suites empower design and simulation capabilities. In parallel, the technology landscape spans binder jetting and powder-based techniques like selective laser sintering, electron beam melting, and fused deposition modeling, alongside light-based processes such as stereolithography and digital light processing.

Material diversity further amplifies opportunities, as alumina and zirconia ceramics enable high-temperature applications, carbon fiber and glass fiber composites reinforce structural components, and metals like aluminum, titanium, stainless steel, and cobalt-chrome meet rigorous strength requirements. Photopolymer resins, nylon, ABS, and bio-friendly PLA round out the plastics segment. Finally, this expansive offering supports critical applications across aerospace and defense, automotive prototyping, consumer electronics and fashion goods, educational research, healthcare devices and prosthetics, and industrial manufacturing systems. Such depth underscores the importance of targeted strategies that align product portfolios with specific use cases and performance benchmarks.

Comparative Analysis of Regional Dynamics Spanning the Americas Europe Middle East & Africa and Asia-Pacific to Illuminate Strategic Growth Opportunities

Regional dynamics in additive manufacturing are characterized by distinct growth drivers and regulatory environments. In the Americas, a robust network of research institutions and leading OEMs accelerates technology adoption, while favorable policy incentives support domestic production of critical aerospace and defense components. Meanwhile, investment in advanced materials and digital manufacturing hubs strengthens North America's position as a technology innovator.

Across Europe, the Middle East, and Africa, collaborative research initiatives and sustainability mandates spur projects focusing on lightweight composites and bioresins. Regulatory frameworks increasingly emphasize circular economy principles, encouraging investments in recyclability and material traceability. Conversely, the Asia-Pacific region thrives on a diverse ecosystem of low-cost manufacturing, rapid scale-up capabilities, and government-backed industrial programs. Together, these regional insights highlight where infrastructure investments, policy support, and talent development intersect to shape competitive landscapes and guide strategic priorities.

Profiling Leading Innovators and Market Disruptors Driving Technological Breakthroughs Strategic Partnerships and Competitive Advantage in 3D Printing

Leading entities in additive manufacturing continue to redefine industry benchmarks through sustained R&D investment, strategic collaborations, and vertical integration. Pioneers have leveraged in-house material science expertise to introduce novel alloys and polymers, while partnerships with design software firms have enhanced workflow automation and interoperability. Meanwhile, ongoing consolidation among service bureaus and equipment suppliers has streamlined global distribution networks and expanded after-sales support capabilities.

Innovators are also establishing specialized centers of excellence, enabling end-to-end project delivery that spans concept validation to production validation. By integrating advanced analytics and remote monitoring, these organizations deliver predictive maintenance solutions and optimize machine utilization rates. Such approaches not only reinforce brand reputation for reliability but also foster deep customer relationships through co-development programs and tailored value-added services, setting the stage for future differentiation in a rapidly evolving marketplace.

Strategic Action Framework for Industry Leaders to Harness Innovation Drive Operational Excellence and Cultivate Sustainable Growth in the 3D Printing Sector

Industry leadership demands a forward-leaning stance that balances innovation with operational rigor. Executives should prioritize investment in digital design platforms that facilitate cross-functional collaboration and accelerate product development cycles. In parallel, strengthening material sourcing strategies by forging alliances with domestic suppliers and embracing recycled feedstocks will mitigate cost exposure and enhance sustainability credentials.

Moreover, building an ecosystem of strategic partners across consulting, maintenance, and training services will ensure seamless implementation and uptime optimization. Leveraging data analytics tools to monitor machine performance and quality metrics in real time will further unlock productivity gains. Finally, cultivating an organizational culture that values continuous learning and agile adaptation will empower teams to respond to evolving market demands, regulatory changes, and emerging technology paradigms with confidence and speed.

Robust Methodological Approach Combining Primary Interviews Secondary Data Validation and Advanced Analytical Techniques to Ensure Research Rigor

This research is underpinned by a rigorous methodological framework that integrates primary and secondary data collection with robust analytical procedures. Expert interviews with C-suite executives, R&D heads, and procurement managers provided firsthand perspectives on emerging trends, operational challenges, and strategic priorities. These qualitative insights were complemented by extensive review of corporate filings, patent databases, and industry publications to ensure comprehensive coverage of technological advancements and competitive dynamics.

Data validation protocols included triangulation of interview findings with technical white papers, regulatory filings, and public investment disclosures. Advanced analytical techniques such as thematic analysis, comparative benchmarking, and scenario planning were employed to synthesize insights and identify strategic inflection points. Quality assurance measures, including peer reviews and editorial oversight, guarantee the integrity and relevance of conclusions, empowering decision makers to act on a foundation of objectively validated evidence.

Concluding Perspectives Highlighting the Strategic Imperatives Emerging Opportunities and Critical Success Factors Shaping the Future of Additive Manufacturing

The convergence of digital design ecosystems, material innovation, and service-oriented business models has propelled additive manufacturing into a pivotal role within advanced production strategies. Strategic imperatives center on cultivating resilience against supply chain disruptions, optimizing product lifecycles through iterative design, and expanding value-added service offerings that encompass training, consulting, and predictive maintenance.

Success factors include the ability to integrate cross-disciplinary teams, harness real-time analytics for performance optimization, and maintain flexibility in sourcing high-performance materials. As industry leaders navigate evolving tariff environments and region-specific regulatory frameworks, those who align innovation roadmaps with sustainability goals and customer-centric delivery models will emerge as frontrunners. By prioritizing agility and collaborative ecosystems, organizations can transform the promise of additive manufacturing into sustained competitive advantage and future-proof growth.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of sustainable bio-based materials in industrial additive manufacturing processes
  • 5.2. Implementation of AI-driven process monitoring to optimize print quality and reduce waste
  • 5.3. Development of multi-material extrusion techniques for complex functional component fabrication
  • 5.4. Growth of metal powder bed fusion technologies in aerospace and heavy industry production lines
  • 5.5. Emergence of decentralized microfactories enabled by compact desktop 3D printers and cloud software
  • 5.6. Adoption of ASTM standardized testing protocols to ensure regulatory compliance in medical printing

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. 3D Printing Market, by Component

  • 8.1. Introduction
  • 8.2. Printers
    • 8.2.1. Desktop
    • 8.2.2. Industrial
  • 8.3. Services
    • 8.3.1. Consulting
    • 8.3.2. Maintenance
    • 8.3.3. Training
  • 8.4. Software
    • 8.4.1. Design Software
    • 8.4.2. Simulation Software

9. 3D Printing Market, by Technology

  • 9.1. Introduction
  • 9.2. Binder Jetting
  • 9.3. Digital Light Processing
  • 9.4. Electron Beam Melting
  • 9.5. Fused Deposition Modeling
  • 9.6. Selective Laser Sintering
  • 9.7. Stereolithography

10. 3D Printing Market, by Material

  • 10.1. Introduction
  • 10.2. Ceramics
    • 10.2.1. Alumina
    • 10.2.2. Zirconia
  • 10.3. Composites
    • 10.3.1. Carbon Fiber Composite
    • 10.3.2. Glass Fiber Composite
  • 10.4. Metals
    • 10.4.1. Aluminum
    • 10.4.2. Cobalt-Chrome
    • 10.4.3. Stainless Steel
    • 10.4.4. Titanium
  • 10.5. Plastics
    • 10.5.1. ABS
    • 10.5.2. Nylon
    • 10.5.3. Photopolymer Resin
    • 10.5.4. PLA

11. 3D Printing Market, by Application

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
  • 11.3. Automotive
  • 11.4. Consumer Goods
    • 11.4.1. Electronics
    • 11.4.2. Fashion
    • 11.4.3. Packaging
  • 11.5. Education
  • 11.6. Healthcare
    • 11.6.1. Medical Devices
    • 11.6.2. Prosthetics
  • 11.7. Industrial Manufacturing

12. Americas 3D Printing Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa 3D Printing Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific 3D Printing Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. ABB Ltd.
    • 15.3.2. Doosan Corporation
    • 15.3.3. 3D Systems, Inc.
    • 15.3.4. ADAXIS SAS
    • 15.3.5. ADDICT3D
    • 15.3.6. Arc Wireless Solutions, Inc.
    • 15.3.7. Beijing Tiertime Technology Co., Ltd.
    • 15.3.8. Carbon, Inc.
    • 15.3.9. CEAD B.V.
    • 15.3.10. Comau S.p.A.
    • 15.3.11. Continuous Composites Inc.
    • 15.3.12. Desktop Metal, Inc.
    • 15.3.13. Divergent Technologies
    • 15.3.14. Dyze Design, Inc.
    • 15.3.15. Engineering Technique
    • 15.3.16. EOS GmbH
    • 15.3.17. FACFOX, INC.
    • 15.3.18. Fanuc Corporation
    • 15.3.19. Hans WEBER Maschinenfabrik GmbH
    • 15.3.20. Hewlett-Packard Development Company, L.P.
    • 15.3.21. Hoganas AB
    • 15.3.22. Hyperion Robotics Oy
    • 15.3.23. Kawasaki Heavy Industries, Ltd.
    • 15.3.24. KUKA AG
    • 15.3.25. Massive Dimension
    • 15.3.26. Materialise NV
    • 15.3.27. Meltio3D
    • 15.3.28. Mitsubishi Electric Corporation
    • 15.3.29. MX3D
    • 15.3.30. Omron Corporation
    • 15.3.31. Optomec Inc.
    • 15.3.32. Orbital Composites Inc.
    • 15.3.33. Siemens AG
    • 15.3.34. Stratasys, Ltd.
    • 15.3.35. taulman3D, LLC
    • 15.3.36. The ExOne Company
    • 15.3.37. Titan Robotics Inc.
    • 15.3.38. Universal Robots A/S
    • 15.3.39. Vertex Dynamix LLC.
    • 15.3.40. VOiLA3D
    • 15.3.41. Yaskawa Electric Corporation
    • 15.3.42. Yizumi Holdings Co., Ltd.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제