½ÃÀ庸°í¼­
»óǰÄÚµå
1806198

¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, ½Ã½ºÅÛ À¯Çüº°, ³Ã°¢ ±â¼úº°, ¼³Ä¡ À¯Çüº°, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Liquid Cooling System Market by Type, Component, System Type, Cooling Technique, Installation Type, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 49¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 56¾ï 6,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 13.86%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 108¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 49¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 56¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 108¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 13.86%

»ê¾÷ ¹× ±â¼ú ºÎ¹®ÀÇ ¿­ °ü¸® ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ ¾×ü ³Ã°¢ ¼Ö·ç¼ÇÀÇ Çõ½ÅÀû ÀáÀç·ÂÀ» ޱ¸ÇÕ´Ï´Ù.

¿­ °ü¸®´Â µ¥ÀÌÅͼ¾ÅÍ ¹× °í¼º´É ÄÄÇ»ÆÃ¿¡¼­ Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÑ À̽´°¡ µÇ°í ÀÖ½À´Ï´Ù. Àü·Â ¹Ðµµ°¡ °è¼Ó »ó½ÂÇϰí ȯ°æ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó ±âÁ¸ÀÇ °ø·©½Ä ³Ã°¢ ½Ã½ºÅÛÀº ´õ ÀÌ»ó È¿À²ÀûÀ¸·Î ¿­À» ¹æÃâÇÒ ¼ö ¾ø°Ô µÇ¾ú½À´Ï´Ù. µû¶ó¼­ ¾×ü ³Ã°¢ ¼Ö·ç¼ÇÀº ¿ì¼öÇÑ ¿­ÀüµµÀ², ¿¡³ÊÁö ¼Òºñ °¨¼Ò, °¡È¤ÇÑ ÀÛ¾÷ ºÎÇÏ ÇÏ¿¡¼­ Çâ»óµÈ ½Å·Ú¼ºÀ» Á¦°øÇÏ´Â °í¼º´É ´ë¾ÈÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù.

¾×ü ³Ã°¢ ¼Ö·ç¼ÇÀ» ÀçÁ¤ÀÇÇϰí, ¼¼°è ½ÃÀå ¹ßÀü¸¦ °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ±â¼ú ¹ßÀü°ú Àü·«Àû Á¦ÈÞ ºÐ¼®

Àç·á °úÇаú À¯Ã¼ ¿ªÇÐÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¾×ü ³Ã°¢ ±â¼ú¿¡ »õ·Î¿î Çõ½ÅÀÇ ¹°°áÀÌ ¹Ð·Á¿À°í ÀÖ½À´Ï´Ù. »õ·Î¿î À¯Àüü À¯Ã¼, Çâ»óµÈ ¿­ Ư¼º, ¼ÒÇü Äݵå Ç÷¹ÀÌÆ®, ¸ðµâ½Ä ³Ã°¢ ºÐ¹è ÀåÄ¡ µîÀÌ ¼º´É°ú È¿À²¼ºÀÇ »õ·Î¿î º¥Ä¡¸¶Å©¸¦ ¼³Á¤Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ħ¼ö ³Ã°¢ ¹× ÈÄ¸é µµ¾î ¿­±³È¯±â ¼Ö·ç¼ÇÀÇ µîÀåÀº ´ëü ¾ÆÅ°ÅØÃ³°¡ ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍÀÇ °ø°£ Ȱ¿ëÀ» ¾î¶»°Ô ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´ÂÁö¸¦ º¸¿©ÁÝ´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ Á¦µµ°¡ °ø±Þ¸Á ºÎǰ °¡°Ý ¹× »ê¾÷ °æÀï·Â¿¡ ¹ÌÄ¡´Â ¸Õ ¿µÇâ Æò°¡

¹Ì±¹ÀÌ 2025³â »õ·Î¿î °ü¼¼ Á¦µµ¸¦ µµÀÔÇÔ¿¡ µû¶ó ¾×ü ³Ã°¢ ºÎǰÀÇ ¼¼°è °ø±Þ¸Á¿¡ Å« º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. ÆßÇÁ, ¿­±³È¯±â, Ư¼ö ³Ã°¢Á¦ µî ÇÙ½É ¿ä¼Ò¿¡ ºÎ°úµÇ´Â ¼öÀÔ °ü¼¼´Â Á¶´Þ ºñ¿ëÀ» »ó½Â½Ã۰í ÇØ¿Ü °ø±Þ¾÷ü¿ÍÀÇ °ü°è¸¦ ±äÀå½Ã۰í ÀÖ½À´Ï´Ù. ±× °á°ú, ¸¹Àº ¿­ ¼Ö·ç¼Ç Á¦°ø¾÷üµéÀº ¸®µåŸÀÓÀÌ ±æ¾îÁö°í °¡°Ý º¯µ¿ÀÌ Ä¿Áö´Â °ÍÀ» °æÇèÇϰí ÀÖ½À´Ï´Ù.

À¯Çü, ±¸¼º ¿ä¼Ò, ½Ã½ºÅÛ À¯Çü, ³Ã°¢ ±â¼ú ¼³Ä¡ À¯Çü ¹× ¿ëµµ °üÁ¡¿¡¼­ÀÇ ºÎ¹® ºÐ·ù¸¦ ÅëÇØ Áß¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ¾òÀº ÅëÂû·ÂÀº ¹Ì¹¦ÇÏ°Ô ´Ù¸¥ »óȲÀ» µå·¯³»°í ÀÖ½À´Ï´Ù. ³Ã°¢ ¼Ö·ç¼Ç À¯Çüº°·Î »ìÆìº¸¸é, °í¹Ðµµ ÄÄÇ»ÆÃ ȯ°æ¿¡¼­´Â Direct-to-Chip ³Ã°¢ ½Ã½ºÅÛÀÌ °è¼Ó Àα⸦ ²ø°í ÀÖÀ¸¸ç, ´ë±Ô¸ð µ¥ÀÌÅͼ¾ÅÍ¿¡¼­´Â ħ¼ö ³Ã°¢ÀÇ ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. À̿ʹ ´ëÁ¶ÀûÀ¸·Î, ¸®¾î µµ¾î ¾×ü ³Ã°¢Àº ±âÁ¸ ·¢ ¾ÆÅ°ÅØÃ³¿¡ ½±°Ô ÈÄÀåÇÒ ¼ö ÀÖ´Â ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

ºÏ¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÇ ¾×ü³Ã°¢ µµÀÔ ¹× ±â¼ú Çõ½Å µ¿ÇâÀ» Çü¼ºÇÏ´Â Áö¿ª ¿ªÇÐ ºÐ¼®

¾×ü ³Ã°¢ ½ÃÀåÀÇ Áö¿ªÀû ¿ªÇÐÀº °¢ Áö¿ªÀÇ ±¤¹üÀ§ÇÑ °æÁ¦ ¹× ±ÔÁ¦ ȯ°æÀ» ¹Ý¿µÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ¹Ì±¹ÀÌ ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ¿Í ¹ÝµµÃ¼ Á¦Á¶¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, ij³ª´Ù¿Í ¸ß½ÃÄÚ°¡ ±â¼ú Á¦ÈÞ¿Í Á¶¸³ ¶óÀÎ È®Àå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº µðÁöÅÐ ÀÎÇÁ¶ó¿Í ÀÚµ¿Â÷ Àüµ¿È­¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÷´Ü ¿­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áö¼ÓÀûÀ¸·Î °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¾×ü³Ã°¢ ½ÃÀå ȯ°æÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ±â¾÷ÀÇ Àü·«Àû ¿òÁ÷ÀÓ°ú Á¦Ç° Çõ½Å, °æÀï ±¸µµ¸¦ »ìÆìº¾´Ï´Ù.

¾×ü ³Ã°¢ ºÐ¾ßÀÇ ¼±µµ ±â¾÷µéÀº ¸ðµâÇü Á¦Ç° ¾ÆÅ°ÅØÃ³¿Í Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ÀϺΠ±âÁ¸ ±â¾÷µéÀº À¯Ã¼ ó¸® Àü¹® ±â¾÷À» ÀμöÇϰųª ¹ÝµµÃ¼ °øÀå°ú ÆÄÆ®³Ê½ÊÀ» ¸Î°í ¸ÂÃãÇü ¿­ ¼Ö·ç¼ÇÀ» °øµ¿ °³¹ßÇÏ´Â µî Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀº ³Ã°¢ ¼­ºê½Ã½ºÅÛ°ú »õ·Î¿î ÇÁ·Î¼¼¼­ ±â¼ú°úÀÇ ¿øÈ°ÇÑ È£È¯¼ºÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¿£µåÅõ¿£µå ÅëÇÕ¿¡ ´ëÇÑ ¾à¼ÓÀ» °­Á¶ÇÏ´Â °ÍÀÔ´Ï´Ù.

¾×ü ³Ã°¢ ºÐ¾ßÀÇ Çõ½Å°ú ¿î¿µ ¿ì¼ö¼º, Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» °¡¼ÓÇϱâ À§ÇØ ¾÷°è °æ¿µÁø¿¡°Ô Àü·«Àû Á¦¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õµé¿¡°Ô À¯Ã¼ Ư¼º ¹× ¿­ ÀÎÅÍÆäÀ̽º °­È­¸¦ À§ÇÑ R&D¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ¸¦ ¿ì¼±¼øÀ§·Î »ïÀ¸¶ó°í Á¶¾ðÇÕ´Ï´Ù. ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ »ç¾÷ÀÚ ¹× °Å·¡Ã³ »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü¿Í Çù·ÂÇÏ¿© °ËÁõ Áֱ⸦ ´ÜÃàÇϰí Ç¥ÁØ Ç÷§ÆûÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. µðÁöÅÐ Æ®À© ±â¼ú°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» äÅÃÇÏ¿© ¼º´ÉÀ» ÃÖÀûÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÇâÈÄ ¼³°è ¹Ýº¹¿¡ µµ¿òÀÌ µÇ´Â ±ÍÁßÇÑ »ç¿ë µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå ÀλçÀÌÆ®ÀÇ ±âÃʰ¡ µÇ´Â µ¥ÀÌÅ͸¦ °ËÁõÇÏ°í ºÐ¼®Çϱâ À§ÇØ Ã¤ÅÃµÈ Á¾ÇÕÀûÀÎ ¿¬±¸ Á¢±Ù ¹æ½Ä °³¿ä

º» ºÐ¼®ÀÇ ±âÃʰ¡ µÇ´Â Á¶»ç´Â 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç¸¦ ¾ö°ÝÇÏ°Ô °áÇÕÇÏ¿© Á¤È®¼º°ú ±íÀ̸¦ È®º¸ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. 1Â÷ Á¶»ç´Â ¿­ ¼Ö·ç¼Ç Á¦°ø¾÷ü, ¹ÝµµÃ¼ Á¦Á¶¾÷ü, µ¥ÀÌÅͼ¾ÅÍ »ç¾÷ÀÚ, ÃÖÁ¾ »ç¿ëÀÚ ±â¾÷ÀÇ °æ¿µÁø ¹× ¿£Áö´Ï¾î¸¦ ´ë»óÀ¸·Î ÇÑ ±¸Á¶È­µÈ ÀÎÅͺä·Î ±¸¼ºµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­¸¦ ÅëÇØ Á¦Ç° °³¹ß ·Îµå¸Ê, äÅà À庮, Àü·«Àû ¿ì¼±¼øÀ§¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù.

¼¼°è ½ÃÀå¿¡¼­ ¾×ü ³Ã°¢ ±â¼úÀÇ ¹Ì·¡ ±Ëµµ¸¦ Á¤ÀÇÇÏ´Â Àü·«Àû Áß¿ä »çÇ×°ú »õ·Î¿î ±âȸ¸¦ ¿ä¾àÇÏ¿© Á¦½ÃÇÕ´Ï´Ù.

¾×ü ³Ã°¢À» µÑ·¯½Ñ ȯ°æÀº ±Þ¼ÓÇÑ ±â¼ú Çõ½Å, ÁøÈ­ÇÏ´Â °Å·¡ ¿ªÇÐ, ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ë ¿ä±¸ »çÇ×À» Ư¡À¸·Î ÇÕ´Ï´Ù. ÀÌÇØ°ü°èÀÚÀÇ Àü·«Àû Çʼö »çÇ׿¡´Â À¯Ã¼ È­ÇÐÀÇ ¹ßÀü, ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³ °³¼±, °øµ¿ »ýŰè À°¼º µîÀÌ Æ÷ÇԵ˴ϴÙ. ¼¼ºÐÈ­ ÅëÂû·ÂÀ» È¿°úÀûÀ¸·Î Ȱ¿ëÇϰí, Áö¿ªÀû ´µ¾Ó½º¸¦ ÀÌÇØÇϸç, °ü¼¼ À̽´¿¡ Àû±ØÀûÀ¸·Î ´ëÀÀÇÏ´Â ½ÃÀå ÁøÃâ±â¾÷µéÀº »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÏ´Â µ¥ À¯¸®ÇÑ À§Ä¡¸¦ Á¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°

  • Ĩ¿¡ÀÇ Á÷Á¢ ³Ã°¢
  • ħÁö ³Ã°¢
  • ¸®¾î µµ¾î ¾×ü ³Ã°¢

Á¦9Àå ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Ä¥·¯
  • Äݵå Ç÷¹ÀÌÆ®
  • ³Ã°¢Á¦
    • À¯Àü¾×
    • ¹°
  • ³Ã°¢ ºÐ¹è À¯´Ö
  • ¿­±³È¯±â
  • ÆßÇÁ

Á¦10Àå ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : ½Ã½ºÅÛ À¯Çüº°

  • Ŭ·ÎÁîµå ·çÇÁ ³Ã°¢ ½Ã½ºÅÛ
  • ¿ÀÇ ·çÇÁ ³Ã°¢ ½Ã½ºÅÛ

Á¦11Àå ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : ³Ã°¢ ±â¼úº°

  • Á÷Á¢ ¾×ü ³Ã°¢
  • °£Á¢ ¾×ü ³Ã°¢

Á¦12Àå ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • OEM ÅëÇÕ
  • RETROFIT

Á¦13Àå ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷ ¹× ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º
  • ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º
  • µ¥ÀÌÅͼ¾ÅÍ ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ
  • ÇコÄÉ¾î ¹× ÀÇ·á±â±â
  • °í¼º´É ÄÄÇ»ÆÃ(HPC)
  • »ê¾÷ ±â±â ¹× Á¦Á¶

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¾×ü ³Ã°¢ ½Ã½ºÅÛ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Alfa Laval AB
    • AMETEK.Inc.
    • Asetek A/S
    • Aspen Systems Inc.
    • Boyd Corporation
    • CoolIT Systems, Inc.
    • Dober
    • Fujitsu Limited
    • GIGA-BYTE Technology Co., Ltd.
    • Green Revolution Cooling Inc.
    • Hitachi Ltd.
    • Koolance, Inc.
    • Laird Thermal Systems, Inc.
    • LiquidStack Holding B.V.
    • Midas Green Technologies LLC
    • Mikros Technologies
    • Motivair Corporation
    • Parker Hannifin Corp.
    • Rittal GmbH & Co. KG
    • Schneider Electric SE
    • Hypertec Group Inc
    • IBM Corporation
    • Intel Corporation
    • Dell Technologies Inc.
    • Lenovo Group Limited

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH

The Liquid Cooling System Market was valued at USD 4.98 billion in 2024 and is projected to grow to USD 5.66 billion in 2025, with a CAGR of 13.86%, reaching USD 10.86 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.98 billion
Estimated Year [2025] USD 5.66 billion
Forecast Year [2030] USD 10.86 billion
CAGR (%) 13.86%

Exploring the Transformative Potential of Liquid Cooling Solutions in Addressing Thermal Management Challenges Across Industries and Technology Sectors

Thermal management has emerged as a pivotal concern for industries ranging from data centers and high-performance computing to aerospace and automotive electronics. As power densities continue to rise and environmental regulations tighten, conventional air-cooling systems are increasingly unable to dissipate heat efficiently. Liquid cooling solutions have therefore gained prominence as a high-performance alternative, offering superior thermal conductivity, reduced energy consumption, and enhanced reliability under demanding workloads.

In light of these developments, this executive summary distills the critical drivers and trends shaping the liquid cooling ecosystem. It outlines the structural shifts affecting technology adoption, examines the implications of new trade measures, and highlights key segmentation insights across multiple parameters. Additionally, regional market dynamics and leading corporate strategies are explored to provide a holistic view of the competitive landscape. Finally, strategic recommendations and an overview of the research methodology are presented to support informed decision-making and equip industry leaders for the challenges ahead.

Analyzing Key Technological Advancements and Strategic Alliances That Are Redefining Liquid Cooling Solutions and Accelerating Market Evolution Worldwide

Rapid advancements in materials science and fluid dynamics have catalyzed a new wave of innovation in liquid cooling technologies. Novel dielectric fluids with enhanced thermal properties, compact cold plates, and modular cooling distribution units are setting new benchmarks for performance and efficiency. Simultaneously, the rise of immersion cooling and rear-door heat exchanger solutions demonstrates how alternative architectures can optimize space utilization in hyperscale data centers.

Strategic alliances between semiconductor manufacturers, thermal solution providers, and cloud service operators are accelerating the integration of liquid cooling into next-generation platforms. Collaborative R&D initiatives are focusing on digital twin simulations and IoT-enabled monitoring systems to enable predictive maintenance and real-time thermal management. These developments mark a clear shift from incremental improvements toward systemic reengineering of cooling infrastructures.

Evaluating the Far-Reaching Implications of the 2025 United States Tariff Regime on Supply Chains Component Pricing and Industry Competitiveness

The introduction of a new tariff regime by the United States in 2025 has introduced significant complexity into global supply chains for liquid cooling components. Import duties imposed on critical elements such as pumps, heat exchangers, and specialized coolants have driven procurement costs higher and strained relationships with overseas suppliers. As a result, many thermal solution providers have experienced extended lead times and increased price volatility.

In response, stakeholders have explored various mitigation strategies. Some companies have accelerated efforts to reshore manufacturing operations or establish dual-sourcing agreements to reduce dependency on single origins. Others have implemented price hedging mechanisms and strengthened supplier partnerships to secure stable inventory levels. These adaptive measures are reshaping cost structures and competitive positioning across the value chain, underscoring the importance of strategic agility.

Revealing Critical Insights from Segmentation Categories Spanning Type Component System Type Cooling Technique Installation Type and Application Perspectives

Insights from the analysis of market segmentation reveal a nuanced landscape. When considering cooling solutions based on type, direct-to-chip cooling systems continue to gain traction in high-density computing environments, while immersion cooling demonstrates growing appeal for large-scale data center deployments. Rear-door liquid cooling, by contrast, offers a retrofit-friendly alternative for existing rack architectures.

Examining the market by component sheds light on areas of heightened innovation. Chillers and cold plates remain critical for precision temperature control, whereas cooling distribution units and heat exchangers are evolving to support higher flow rates with minimal pressure drops. The coolant segment is bifurcated between dielectric fluids, valued for their electrical insulation properties, and water, prized for its cost-effectiveness and availability. Pumps designed for greater volumetric efficiency and low acoustic signatures underscore the attention given to operational reliability.

Analysis of system type indicates that closed-loop configurations are favored for mission-critical applications due to their containment advantages, while open-loop systems appeal to environments where simplicity and ease of maintenance are paramount. A deeper look at cooling technique highlights how direct liquid cooling delivers superior heat removal at the source, whereas indirect liquid cooling integrates seamlessly with ambient air-based architectures. From an installation perspective, OEM-integrated solutions are being adopted by original equipment manufacturers to differentiate their offerings, whereas retrofit options enable end users to upgrade legacy infrastructure. Finally, application-level segmentation illustrates pronounced demand in aerospace and defense for ruggedized solutions, burgeoning adoption in automotive and power electronics for thermal management of electric vehicle components, and sustained growth in data centers, cloud computing, healthcare device cooling, high-performance computing, and industrial manufacturing sectors.

Uncovering Regional Dynamics Shaping Liquid Cooling Adoption and Innovation Trends Across Americas Europe Middle East & Africa and Asia-Pacific Markets

Regional dynamics in the liquid cooling market reflect the broader economic and regulatory environments of each territory. In the Americas, the United States leads with substantial investments in hyperscale data centers and semiconductor manufacturing, while Canada and Mexico contribute through technology partnerships and assembly-line expansions. This region's emphasis on digital infrastructure and vehicular electrification continues to drive demand for advanced thermal solutions.

Across Europe, Middle East & Africa, legislative frameworks centered on energy efficiency and carbon reduction are propelling adoption of liquid cooling in industrial and commercial settings. Key European economies are integrating these systems into high-performance computing clusters and broadcast centers, whereas Middle Eastern nations are allocating resources to data center construction as part of digital transformation initiatives. In the Asia-Pacific region, rapid urbanization and a robust consumer electronics sector, particularly in China, Japan, South Korea, and India, are fueling significant uptake of liquid cooling. Telecommunications rollout and localized manufacturing further reinforce the strategic importance of this market.

Examining Strategic Moves Product Innovations and Competitive Positioning of Leading Organizations Catalyzing Growth in the Liquid Cooling Market Landscape

Leading players in the liquid cooling domain are differentiating themselves through a combination of modular product architectures and strategic alliances. Some established organizations have expanded their portfolios by acquiring specialized fluid handling companies and forging partnerships with semiconductor fabs to co-develop custom thermal solutions. These moves underscore a commitment to end-to-end integration, enabling seamless compatibility between cooling subsystems and emerging processor technologies.

At the same time, a cohort of smaller, agile firms is introducing disruptive offerings centered on next-generation dielectric fluids and digital control platforms. These entrants leverage machine learning algorithms to optimize pump speeds and valve positions, driving incremental efficiency gains. Their focus on flexible service models, including performance-based contracts and subscription-style maintenance packages, is reshaping customer expectations and accelerating market fragmentation.

Delivering Strategic Recommendations for Industry Executives to Drive Innovation Operational Excellence and Sustainable Growth in the Liquid Cooling Domain

Industry leaders are advised to prioritize strategic investment in research and development aimed at enhancing fluid properties and thermal interfaces. Collaborating with hyperscale data center operators and original equipment manufacturers can accelerate validation cycles and facilitate the adoption of standard platforms. Embracing digital twin technology and real-time monitoring systems will not only optimize performance but also provide valuable usage data to inform future design iterations.

Supply chain resilience should be bolstered through diversification of sourcing and the establishment of regional manufacturing hubs. Stakeholders can mitigate tariff-related uncertainties by negotiating long-term supply contracts and exploring nearshoring opportunities. Furthermore, aligning product road maps with sustainability goals-such as developing recyclable cooling fluids and energy-efficient pumping systems-will resonate with increasingly eco-conscious end users and support compliance with evolving environmental regulations.

Outlining the Comprehensive Research Approach Employed to Gather Validate and Analyze Data Underpinning the Liquid Cooling System Market Insights

The research underpinning this analysis combines a rigorous blend of primary and secondary methodologies designed to ensure accuracy and depth. Primary research consisted of structured interviews with executives and engineers from thermal solution providers, semiconductor manufacturers, data center operators, and end-use corporations. These conversations provided firsthand insights into product development roadmaps, adoption barriers, and strategic priorities.

Secondary research involved a comprehensive review of industry publications, technical white papers, patent filings, and regulatory documents. Quantitative data were triangulated through cross-verification of supplier financial reports, customs duty schedules, and trade databases. A systematic validation framework was applied to reconcile discrepancies and confirm the reliability of key findings. All research activities adhered to ethical guidelines and confidentiality agreements, ensuring the integrity of proprietary information.

Summarizing the Strategic Imperatives and Emerging Opportunities Defining the Future Trajectory of Liquid Cooling Technologies in Global Markets

The liquid cooling landscape is characterized by rapid technological innovation, evolving trade dynamics, and a diverse set of end-use requirements. Strategic imperatives for stakeholders include advancing fluid chemistry, refining system architectures, and fostering collaborative ecosystems. Market participants that effectively leverage segmentation insights, navigate regional nuances, and respond proactively to tariff challenges will be well positioned to capture emerging opportunities.

Looking ahead, the convergence of artificial intelligence, electrification trends, and heightened sustainability mandates will further elevate the role of liquid cooling solutions. Decision makers equipped with comprehensive market intelligence will possess a decisive advantage in shaping product portfolios, optimizing supply chains, and forging partnerships that drive long-term growth and operational excellence.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising adoption of two-phase immersion cooling solutions in high performance computing centers
  • 5.2. Integration of advanced microchannel cold plate designs into electric vehicle battery thermal management systems
  • 5.3. Deployment of AI-enabled predictive thermal management platforms for real-time cooling optimization in hyperscale data centers
  • 5.4. Growing use of eco-friendly dielectric fluids and refrigerants for sustainable liquid cooling in data infrastructure
  • 5.5. Emergence of modular rack-level direct liquid cooling units with plug-and-play infrastructure compatibility

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Liquid Cooling System Market, by Type

  • 8.1. Introduction
  • 8.2. Direct-to-Chip Cooling
  • 8.3. Immersion Cooling
  • 8.4. Rear-door Liquid Cooling

9. Liquid Cooling System Market, by Component

  • 9.1. Introduction
  • 9.2. Chiller
  • 9.3. Cold Plate
  • 9.4. Coolants
    • 9.4.1. Dielectric Fluid
    • 9.4.2. Water
  • 9.5. Cooling Distribution Unit
  • 9.6. Heat Exchanger
  • 9.7. Pump

10. Liquid Cooling System Market, by System Type

  • 10.1. Introduction
  • 10.2. Closed-Loop Cooling Systems
  • 10.3. Open-Loop Cooling Systems

11. Liquid Cooling System Market, by Cooling Technique

  • 11.1. Introduction
  • 11.2. Direct Liquid Cooling
  • 11.3. Indirect Liquid Cooling

12. Liquid Cooling System Market, by Installation Type

  • 12.1. Introduction
  • 12.2. OEM Integrated
  • 12.3. Retrofit

13. Liquid Cooling System Market, by Application

  • 13.1. Introduction
  • 13.2. Aerospace & Defense
  • 13.3. Automotive & Power Electronics
  • 13.4. Consumer Electronics
  • 13.5. Data Centers & Cloud Computing
  • 13.6. Healthcare / Medical Devices
  • 13.7. High-Performance Computing (HPC)
  • 13.8. Industrial Equipment & Manufacturing

14. Americas Liquid Cooling System Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Liquid Cooling System Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Liquid Cooling System Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Alfa Laval AB
    • 17.3.2. AMETEK.Inc.
    • 17.3.3. Asetek A/S
    • 17.3.4. Aspen Systems Inc.
    • 17.3.5. Boyd Corporation
    • 17.3.6. CoolIT Systems, Inc.
    • 17.3.7. Dober
    • 17.3.8. Fujitsu Limited
    • 17.3.9. GIGA-BYTE Technology Co., Ltd.
    • 17.3.10. Green Revolution Cooling Inc.
    • 17.3.11. Hitachi Ltd.
    • 17.3.12. Koolance, Inc.
    • 17.3.13. Laird Thermal Systems, Inc.
    • 17.3.14. LiquidStack Holding B.V.
    • 17.3.15. Midas Green Technologies LLC
    • 17.3.16. Mikros Technologies
    • 17.3.17. Motivair Corporation
    • 17.3.18. Parker Hannifin Corp.
    • 17.3.19. Rittal GmbH & Co. KG
    • 17.3.20. Schneider Electric SE
    • 17.3.21. Hypertec Group Inc
    • 17.3.22. IBM Corporation
    • 17.3.23. Intel Corporation
    • 17.3.24. Dell Technologies Inc.
    • 17.3.25. Lenovo Group Limited

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦