½ÃÀ庸°í¼­
»óǰÄÚµå
1806204

Àç»ýÀÇ·á ½ÃÀå : Á¦Ç° À¯Çü, °ø±Þ¿ø, ÀÀ¿ë ºÐ¾ß, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Regenerative Medicine Market by Product Type, Source, Application Areas, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 195 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Àç»ýÀÇ·á ½ÃÀåÀº 2024³â¿¡´Â 283¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 349¾ï 9,000¸¸ ´Þ·¯, CAGR 23.86%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,024¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 283¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 349¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 1,024¾ï ´Þ·¯
CAGR(%) 23.86%

Çö´ë ÇコÄɾîÀÇ Çõ½Å°ú Ä¡·á¹ý °³¹ßÀÇ º¯ÇõÀû °³Ã´Àڷμ­ Àç»ýÀÇ·áÀÇ ÁøÈ­ »óȲÀ» »ìÆìº¾´Ï´Ù.

Àç»ýÀÇ·á´Â ¸¸¼ºÁúȯ°ú ÅðÇ༺ ÁúȯÀÇ Ä¡·á¿¡¼­ ¹«¾ùÀÌ °¡´ÉÇÑÁö¸¦ ÀçÁ¤ÀÇÇÏ´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ Á¤Á¡¿¡ ¼­ ÀÖ½À´Ï´Ù. ¼¼Æ÷»ý¹°ÇÐ, »ýüÀç·á°úÇÐ, À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ÀÌ ºÐ¾ß´Â ÀÌ·ÐÀû °¡´É¼ºÀ» ³Ñ¾î ±¸Ã¼ÀûÀÎ ÀÓ»ó Çö½Ç·Î ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. Áٱ⼼Æ÷ Ä¡·áÀÇ ¼±±¸ÀûÀÎ ½ÃµµºÎÅÍ ¼¼Æ÷¸¦ ÀÌ¿ëÇÑ Á¢±Ù¹ýÀÇ °³¼±¿¡ À̸£±â±îÁö, ¿¬±¸ÀÚ¿Í ÀÓ»óÀÇ´Â Àü·Ê ¾ø´Â Ä¡·áÀÇ °¡´É¼ºÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ÇコÄÉ¾î »ýŰ谡 ½ÉÇ÷°üÁúȯ, ½Å°æ Áúȯ, º¹ÀâÇÑ »óóÀÇ Áõ°¡ Ãß¼¼¿¡ ´ëÀÀÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥, Àç»ý Àü·«Àº ±âÁ¸ÀÇ ¾à¸®ÇÐÀû °³ÀÔ¿¡ ´ëÇÑ ¼³µæ·Â ÀÖ´Â ´ë¾ÈÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ ±ÞÁõÇϰí Çаè, »ê¾÷°è, ±ÔÁ¦±â°üÀ» ¾Æ¿ì¸£´Â °øµ¿ ³×Æ®¿öÅ©°¡ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.

Àç»ý Ä¡·áÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ÃËÁøÇÏ´Â Áß¿äÇÑ º¯°îÁ¡À» ½Äº°Çϰí, Ä¡·á Çõ½ÅÀÇ ¿ªµ¿ÀûÀÎ ¹Ì·¡ »ýŰ踦 Çü¼ºÇÕ´Ï´Ù.

Àç»ýÀÇ·á ºÐ¾ß´Â ±× Àü·«Àû ¹æÇâÀ» À籸¼ºÇÏ´Â ÀÏ·ÃÀÇ º¯°îÁ¡À» °æÇèÇϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù Á¤¹Ð À¯ÀüÀÚ ÆíÁýÀÇ È¹±âÀûÀÎ ¹ßÀüÀº Ä¡·á ÆäÀ̷εåÀÇ º¸´Ù È¿À²ÀûÀÎ Àü´ÞÀ» ÃËÁøÇÏ°í °³³äÀû ¿¬±¸¿Í È®Àå °¡´ÉÇÑ ÀÓ»ó Àû¿ë »çÀÌÀÇ °£±ØÀ» ¸Þ¿ì°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ÀΰøÁö´É°ú ¸Ó½Å·¯´× µµ±¸ÀÇ ÅëÇÕÀº ¸ñÇ¥ Ž»öÀ» °¡¼ÓÈ­Çϰí Á¦Á¶ ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­ÇÏ¿© °³¹ß ±â°£À» ´ÜÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °¡¼Ó±â¸¦ º¸¿ÏÇÏ´Â °ÍÀº ÁÖ¿ä ½ÃÀåÀÇ ¼±ÁøÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©À̸ç, ¹ÌÃæÁ· ÀÇ·á ¼ö¿ä¿¡ º¸´Ù ½Å¼ÓÇÏ°Ô ´ëÀÀÇϱâ À§ÇØ ½ÂÀÎ °æ·Î¸¦ °¡¼ÓÈ­Çϰí ÀûÀÀÇü ¶óÀ̼±½º ¸ðµ¨À» µµÀÔÇϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ º¯°æÀÌ ±¹Á¦ Àç»ýÀÇ·á °ø±Þ ³×Æ®¿öÅ© ¹× °øµ¿ ¿¬±¸ Á¦ÈÞ¿¡ ¹ÌÄ¡´Â ¿µÇâ Æò°¡

2025³â, ¹Ì±¹Àº ÀÏ·ÃÀÇ °ü¼¼ Á¶Á¤À» ½Ç½ÃÇÏ¿© Àü ¼¼°è Àç»ýÀÇ·á °ø±Þ¸Á Àüü¿¡ Å« ÆÄ±ÞÈ¿°ú¸¦ °¡Á®¿Ô½À´Ï´Ù. ±× Àǵµ´Â ±¹³» Á¦Á¶ ´É·ÂÀ» º¸È£Çϱâ À§ÇÑ °ÍÀ̾úÁö¸¸, °¡°øµÇÁö ¾ÊÀº »ýü Àç·á, ¹ÙÀÌ·¯½º º¤ÅÍ, Ư¼ö ºñ°è ºÎǰ¿¡ ´ëÇÑ ¼öÀÔ °ü¼¼ ÀλóÀº ¸¹Àº ±¹Á¦ ÆÄÆ®³ÊÀÇ Á¦Á¶ ºñ¿ëÀ» »ó½Â½ÃÄ×½À´Ï´Ù. ±× °á°ú, Á¦Á¶¾÷ü¿Í ¿¬±¸±â°üÀº Á¶´Þ Àü·«À» Àç°ËÅäÇϰí, ´Ï¾î¼î¾î¸µ ±âȸ¿Í ´ëü Áö¿ª Çãºê¸¦ ¸ð»öÇÏ¿© Ä¡¼Ú´Â ºñ¿ë ¾Ð¹ÚÀ» ¿ÏÈ­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

Àç»ýÀÇ·áÀÇ Á¦Ç°, °ø±Þ¿ø, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ Ãø¸é¿¡¼­ Àü·«Àû °æ·Î¸¦ ¹àÈ÷±â À§ÇØ ½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ °üÁ¡À» ¹àÈü´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ ÀÌÇØ´Â Àü·«Àû ÅõÀÚ ÇÁ·¹ÀÓ¿öÅ©¿Í Á¶»ç °æ·ÎÀÇ ¿ì¼±¼øÀ§¸¦ Á¤ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Á¦Ç° À¯Çü¿¡ µû¶ó ÀÌ ºÐ¾ß´Â ¼¼Æ÷ Ä¡·áºÎÅÍ ¼¼Æ÷¿Ü/¼¼Æ÷¹è¾ç Á¢±Ù¹ý, À¯ÀüÀÚ Ä¡·á ¼Ö·ç¼Ç, Á¶Á÷°øÇÐ Ç÷§Æû¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¹æ½ÄÀ» Æ÷°ýÇϰí ÀÖ½À´Ï´Ù. ¼¼Æ÷ Ä¡·á´Â ¼öÁö»ó¼¼Æ÷, ÀÚ¿¬»ìÇØ¼¼Æ÷, T¼¼Æ÷ µî ¸é¿ª¼¼Æ÷ Á¦Ç° µî Áٱ⼼Æ÷¸¦ »ç¿ëÇÏÁö ¾Ê´Â Ä¡·á¹ý°ú ´Ù´É¼º Áٱ⼼Æ÷³ª ¼ºÃ¼ Àü±¸¼¼Æ÷ Áý´ÜÀ» Ȱ¿ëÇÏ´Â Áٱ⼼Æ÷ ±â¹Ý Ä¡·á¹ýÀ¸·Î ±¸ºÐµË´Ï´Ù. À¯ÀüÀÚ ÆíÁý ±â¼ú, À¯ÀüÀÚ µµÀÔ º¤ÅÍ, ±×¸®°í RNA¿Í DNA¸¦ ±â¹ÝÀ¸·Î ÇÑ ½Ã½ºÅÛÀº º¤ÅÍÀÇ ºÐ·ù°¡ ºñ¹ÙÀÌ·¯½º¼º ¹× ¹ÙÀÌ·¯½º¼º Ç÷§Æû±îÁö È®ÀåµÇ¾î ´õ¿í º¹ÀâÇÑ ·¹À̾ Á¦½ÃÇϰí ÀÖ½À´Ï´Ù. Á¶Á÷°øÇÐÀº ´Ù½Ã »ýüÀç·á, ¼ºÀåÀÎÀÚ ¹× »çÀÌÅäÄ«ÀÎ Á¦Á¦, ½ºÄ³Æúµù ±¸Á¶¹°·Î ¼¼ºÐÈ­µÇ¸ç, õ¿¬ »ýüÀç·á¿Í ÇÕ¼º »ýüÀç·áÀÇ ¼±ÅÃÀÌ ¼º´É°ú ºñ¿ë ÇÁ·ÎÆÄÀÏÀÇ Â÷À̸¦ ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù.

Àç»ýÀÇ·á »ýŰ迡¼­ ¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±âȸ¸¦ Çü¼ºÇÏ´Â Áö¿ªÀû ¿ªÇÐ ºÐ¼®

Àç»ýÀÇ·á ºÐ¾ßÀÇ ÅõÀÚ °áÁ¤, ±ÔÁ¦ µ¿Çâ, »ó¾÷È­ Àü·« ¼ö¸³¿¡ ÀÖ¾î Áö¿ªÀû ´µ¾Ó½º°¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ´ë·ú¿¡¼­´Â ¹Î°£ ¹× °ø°ø ±â°üÀÇ È°¹ßÇÑ ÀÚ±Ý Á¶´Þ·Î ÀÓ»ó Àû¿ëÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ÷´Ü Á¦Á¶ ±âÁö°¡ ´«¿¡ ¶ç°Ô È®´ëµÇ°í »õ·Î¿î Ä¡·á¹ýÀÇ ½ÂÀÎ ÀýÂ÷°¡ °£¼ÒÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÁÖ¿ä ¿¬±¸±â°ü°ú ¾÷°è °ü°èÀÚµéÀÇ ±¹°æÀ» ÃÊ¿ùÇÑ Çù·ÂÀ¸·Î ¿ì¼ö ¼¾ÅͰ¡ ¼³¸³µÇ¾î ÃÖ÷´Ü Ä¡·áÀÇ ½Å¼ÓÇÑ ¹Ýº¹À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ Àç»ýÀÇ·áÀÇ »ó¾÷È­ °æ·Î¸¦ ÀçÁ¤ÀÇÇÏ°í °æÀïÀ» ÁÖµµÇÏ´Â ¾÷°è ¼±µµÀû ¼±±¸ÀÚµéÀ» ¼Ò°³ÇÕ´Ï´Ù¡£Àç»ýÀÇ·áÀÇ »ó¾÷È­ °æ·Î¸¦ ÀçÁ¤ÀÇÇÏ´Â Àü·«Àû Á¦ÈÞ¸¦ ¼Ò°³ÇÕ´Ï´Ù.

¾÷°è¸¦ ¼±µµÇÏ´Â ±â¾÷µéÀº ³»ºÎ ¿¬±¸°³¹ß°ú ¿ÜºÎ Á¦ÈÞ¸¦ ±ÕÇü ÀÖ°Ô Á¶ÇÕÇÑ ´Ù¾çÇÑ Àü·«À» ÅëÇØ Æ÷Æ®Æú¸®¿À¸¦ ÁøÈ­½Ã۰í ÀÖ½À´Ï´Ù. ÀϺΠ¼±±¸ÀûÀÎ ¹ÙÀÌ¿À Á¦¾à ±â¾÷µéÀº Àü¹® Áö½ÄÀ» ÅëÇÕÇÏ°í ÆÄÀÌÇÁ¶óÀÎ °³¹ßÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ¼¼Æ÷ Ä¡·á ¹× À¯ÀüÀÚ Ä¡·á Àü¹® ºÎ¼­¸¦ ¼³¸³Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÆÀµéÀº À¯¿¬¼º°ú ±Ô¸ð¸¦ È®´ëÇϱâ À§ÇØ »ç³» ¿ª·®°ú ÇÔ²² Çмú ¼¾ÅÍ ¹× Àü¹® À§Å¹ °³¹ß ¾÷ü¿ÍÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ »ç³» ¿ª·®À» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. °øµ¿ »ç¾÷Àº ¶ÇÇÑ Á¦Á¶ ÀÎÇÁ¶ó¿¡ ´ëÇÑ °øµ¿ ÅõÀÚ¿¡ ¼±È£µÇ´Â ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, Àüü °³¹ß ÀÏÁ¤¿¡ °ÉÃÄ ÀÌÇØ°ü°è¸¦ ÀÏÄ¡½Ã۰í À§ÇèÀ» °øÀ¯Çϵµ·Ï º¸ÀåÇÕ´Ï´Ù.

Çõ½ÅÀ» °¡¼ÓÈ­Çϰí, Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» ÃËÁøÇϸç, Àç»ýÀÇ·áÀÇ ÁÖ¿ä °úÁ¦¸¦ ±Øº¹Çϰí, ¸®´õ¸¦ °­È­ÇÒ ¼ö ÀÖµµ·Ï Ÿ°ÙÆÃµÈ Á¦¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

º¹ÀâÇÑ Àç»ýÀÇ·á ȯ°æÀ» ÇìÃijª°¡±â À§ÇØ ¾÷°è ¸®´õµéÀº Àü·«Àû, ¿î¿µÀû, ±ÔÁ¦Àû Ãø¸é¿¡ °ÉÄ£ ´Ù°¢ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Çмú ±â°ü ¹× Àü¹® °è¾à Á¶Á÷°ú °ß°íÇÑ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ¿© ÀÚº» ÁöÃâ À§ÇèÀ» ÁÙÀ̸鼭 ÆÄÀÌÇÁ¶óÀÎÀÇ ÁøÇàÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àμ¾Æ¼ºê¸¦ Á¶Á¤ÇÏ°í ¸ðµâÇü Á¦Á¶ Ç÷§Æû¿¡ °øµ¿ ÅõÀÚÇÔÀ¸·Î½á ÀÌÇØ°ü°èÀÚµéÀº »ý»ê ¼ö¿ä°¡ Áõ°¡ÇÏ´õ¶óµµ ¹Îø¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Á¶»ç¿Í 2Â÷ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀ» ÅëÇØ Á¾ÇÕÀûÀÎ Àç»ýÀÇ·á¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ Á¦½ÃÇÏ´Â ÀλçÀÌÆ®´Â ±íÀÌ¿Í Å¸´ç¼ºÀ» ¸ðµÎ º¸ÀåÇϱâ À§ÇØ ¼³°èµÈ ¾ö°ÝÇÑ È¥ÇÕ ¹æ¹ý·Ð ÇÁ·¹ÀÓ¿öÅ©¸¦ ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â °úÇÐÀû â¾÷ÀÚ, °øÁ¤ ¿£Áö´Ï¾î, ±ÔÁ¦ Àü¹®°¡, »ó¾÷ Àü·«°¡ µî ´Ù¾çÇÑ ÀÌÇØ°ü°èÀÚ¿ÍÀÇ ½ÉÃþ ÀÎÅͺ並 ÁøÇàÇß½À´Ï´Ù. ÀÌ ´ëÈ­´Â ±â¼ú µµÀÔ, ±ÔÁ¦ µ¿Çâ, ÀÓ»ó °³¹ß °úÁ¦¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ °üÁ¡À» ¹àÈ÷±â À§ÇØ ±¸¼ºµÇ¾ú½À´Ï´Ù. ÀÌ¿Í º´ÇàÇÏ¿©, 2Â÷ µ¥ÀÌÅÍ ºÐ¼®¿¡¼­´Â »õ·Î¿î Æ®·»µå¿Í º¥Ä¡¸¶Å·À» °ËÁõÇϱâ À§ÇØ ÇǾºä ¹®Çå, Á¤ºÎ Á¤Ã¥ ¹®¼­, ÀϹݿ¡ °ø°³µÈ ÀÓ»ó½ÃÇè ¸®Æ÷ÁöÅ丮¸¦ Ȱ¿ëÇß½À´Ï´Ù.

¼¼°è Àç»ýÀÇ·á ¿ªÇÐ ¹× ½ÃÀå ¿µÇâ¿äÀο¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Á¶»ç¿¡¼­ µµÃâµÈ ÁÖ¿ä ¿äÁ¡°ú Àü·«Àû ÇÙ½É »çÇ× ¿ä¾à

Àç»ýÀÇ·á ºÐ¾ß´Â ±â¼úÀû Çõ½Å, ÁøÈ­ÇÏ´Â ±ÔÁ¦ »óȲ, ¼¼°è °ø±Þ¸Á ³» Àü·«Àû ÀçÆíÀ¸·Î Á¤ÀǵǴ º¯°îÁ¡¿¡ ÀÖ½À´Ï´Ù. ÷´Ü ¼¼Æ÷ Ä¡·áÁ¦¿Í À¯ÀüÀÚ Ä¡·áÁ¦´Â Á¤Ã¥Àû Áö¿ø°ú »ý»ê´É·ÂÀÇ È®´ë¿¡ ÈûÀÔ¾î ½ÇÇè´Ü°è¿¡¼­ °¡±î¿î ½ÃÀÏ ³»¿¡ »ó¾÷È­ ´Ü°è¿¡ Á¢¾îµé°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ½ÃÀå¿¡¼­ÀÇ °ü¼¼ Á¶Á¤Àº ºñ¿ë ¾Ð¹Ú°ú °ø±Þ¸Á º¹À⼺À» ÃÊ·¡ÇÏ´Â ÇÑÆí, ÇöÁö »ý»ê°ú ź·ÂÀûÀÎ ÆÄÆ®³Ê½ÊÀ» À§ÇÑ Çõ½ÅÀûÀÎ Àü·«À» Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Àç»ýÀÇ·á ½ÃÀå : Á¦Ç° À¯Çüº°

  • ¼¼Æ÷ Ä¡·á
    • ºñÁٱ⼼Æ÷ Ä¡·á
      • ¸é¿ª ¼¼Æ÷
      • ¼öÁö»ó ¼¼Æ÷
      • ÀÚ¿¬»ìÇØ(NK) ¼¼Æ÷
      • T¼¼Æ÷
      • ºñ¸é¿ª ¼¼Æ÷
    • Áٱ⼼Æ÷ Ä¡·á
  • ¼¼Æ÷¿Ü ¹× ¹«¼¼Æ÷ Ä¡·á
  • À¯ÀüÀÚ Ä¡·á
    • À¯ÀüÀÚ ÆíÁý ±â¼ú
    • À¯ÀüÀÚ µµÀÔ º¤ÅÍ
      • ºñ¹ÙÀÌ·¯½º º¤ÅÍ
      • ¹ÙÀÌ·¯½º º¤ÅÍ
    • RNA ¹× DNA ±â¹Ý Ä¡·á¹ý
  • Á¶Á÷°øÇÐ
    • ¹ÙÀÌ¿À¼ÒÀç
      • õ¿¬ ¹ÙÀÌ¿À¼ÒÀç
      • ÇÕ¼º ¹ÙÀÌ¿À¼ÒÀç
    • ¼ºÀåÀÎÀÚ¿Í »çÀÌÅäÄ«ÀÎ
    • ½ºÄ³Æúµå

Á¦9Àå Àç»ýÀÇ·á ½ÃÀå : ¼Ò½ºº°

  • µ¿Á¾À̰è
  • ÀÚ°¡À̽Ä
  • ÇÕ¼º
  • ÀÌÁ¾

Á¦10Àå Àç»ýÀÇ·á ½ÃÀå : ÀÀ¿ë ºÐ¾ßº°

  • ½ÉÇ÷°ü°è
    • Ç÷°ü½Å»ý°ú Ç÷°ü Àç»ý
    • ¼±Ãµ¼º ½ÉÀ庴 ¼öº¹
    • ½ÉÀåÆÇ¸· ġȯ¼ú
    • ½É±Ù°æ»ö Ä¡·á
  • ÇǺΰú
    • ¹Ì¿ë ½Ã¼ú
    • È­»ó Ä¡·á
    • ¸¸¼º »óó Ä¡À¯
  • ´ç´¢º´
    • º£Å¸ ¼¼Æ÷ À̽Ä
    • Ãéµµ ¼¼Æ÷ Àç»ý
  • ½Å°æÇÐ
    • ¾ËÃ÷ÇÏÀ̸Ӻ´ Ä¡·á
    • ´Ù¹ß¼º °æÈ­Áõ Ä¡·á
    • ÆÄŲ½¼º´ Ä¡·á
    • ô¼ö ¼Õ»ó ¼öº¹
    • ³úÁ¹Áß È¸º¹
  • Á¾¾çÇÐ
    • ¾Ï ¸é¿ªÄ¡·á
    • Á¾¾ç ÀýÁ¦
  • ¾È°ú
    • °¢¸· ¼öº¹
    • ¸Á¸· Àç»ý
  • Á¤Çü¿Ü°ú ¹× ±Ù°ñ°Ý
    • °ñÀç»ý
    • ¿¬°ñ ¼öº¹
    • °Ç ¼öº¹

Á¦11Àå Àç»ýÀÇ·á ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÇмúÁ¶»ç±â°ü
  • ÀÓ»ó½ÃÇè¼öʱâ°ü
  • º´¿ø°ú Áø·á¼Ò
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ Àç»ýÀÇ·á ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Àç»ýÀÇ·á ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àç»ýÀÇ·á ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • 4D Molecular Therapeutics, Inc.
    • AbbVie Inc.
    • Abeona Therapeutics Inc.
    • Adaptimmune Therapeutics PLC
    • Adverum Biotechnologies, Inc.
    • AGC Biologics
    • Astellas Pharma Inc.
    • Bayer AG
    • CMIC Co., Ltd.
    • CRISPR Therapeutics AG
    • F. Hoffmann-La Roche Ltd.
    • Fate Therapeutics, Inc.
    • FUJIFILM Holdings Corporation
    • Gilead Sciences, Inc.
    • HEALIOS K.K.
    • Integra LifeSciences Holdings Corporation
    • JCR Pharmaceuticals Co., Ltd.
    • Johnson & Johnson
    • Merck KGaA
    • Mesoblast Limited
    • Novartis AG
    • Orchard Therapeutics PLC
    • Organogenesis Holdings Inc.
    • Pfizer Inc.
    • Pluri Biotech Ltd.
    • Poseida Therapeutics, Inc.
    • REPROCELL Inc.
    • SanBio Company Limited
    • Stryker Corporation
    • Sumitomo Pharma Co., Ltd.
    • Sysmex Corporation
    • Takeda Pharmaceutical Company Limited
    • Tenaya Therapeutics, Inc.
    • Vericel Corporation
    • Voyager Therapeutics Inc.
    • Zimmer Biomet Holdings, Inc.

Á¦16Àå ¸®¼­Ä¡ AI

Á¦17Àå ¸®¼­Ä¡ Åë°è

Á¦18Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦19Àå ¸®¼­Ä¡ ±â»ç

Á¦20Àå ºÎ·Ï

KSM

The Regenerative Medicine Market was valued at USD 28.35 billion in 2024 and is projected to grow to USD 34.99 billion in 2025, with a CAGR of 23.86%, reaching USD 102.40 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 28.35 billion
Estimated Year [2025] USD 34.99 billion
Forecast Year [2030] USD 102.40 billion
CAGR (%) 23.86%

Exploring the Evolutionary Landscape of Regenerative Medicine as a Transformative Frontier in Modern Healthcare Innovation and Therapeutic Development

Regenerative medicine stands at the cusp of a paradigm shift, redefining what is possible in the treatment of chronic and degenerative diseases. Fueled by advances in cell biology, biomaterials science, and gene editing technologies, this discipline is moving beyond theoretical promise into tangible clinical realities. From pioneering trials in stem cell therapies to the refinement of acellular approaches, researchers and clinicians alike are witnessing unprecedented therapeutic potential. As the global healthcare ecosystem grapples with rising incidences of cardiovascular disorders, neurological conditions, and complex wounds, regenerative strategies offer a compelling alternative to traditional pharmacological interventions. Consequently, investment in research and development has surged, supported by collaborative networks spanning academia, industry, and regulatory bodies.

In response to these trends, this executive summary distills the critical developments shaping the regenerative medicine landscape. It highlights key technological breakthroughs, examines the evolving regulatory environment, and explores how shifting reimbursement paradigms are influencing stakeholder decision-making. Moreover, this report delves into supply chain dynamics and policy influences that will dictate future trajectories. By synthesizing qualitative insights from expert interviews with rigorous secondary analysis, the summary offers a comprehensive foundation for strategic planning. Ultimately, this introduction sets the stage for an in-depth examination of transformative shifts, tariff implications, segmentation patterns, regional dynamics, and actionable recommendations essential for leaders seeking to capitalize on the regenerative medicine revolution.

Identifying Critical Inflection Points Driving the Paradigm Shift in Regenerative Therapies and Shaping a Dynamic Future Ecosystem of Treatment Innovation

The regenerative medicine sector is experiencing a series of inflection points that are collectively reshaping its strategic direction. Recent breakthroughs in precision gene editing have facilitated more efficient delivery of therapeutic payloads, bridging the gap between conceptual research and scalable clinical application. At the same time, integration of artificial intelligence and machine learning tools is accelerating target discovery and optimizing manufacturing workflows, thereby reducing development timelines. These technological accelerators are complemented by progressive regulatory frameworks in key markets, which are progressively offering accelerated approval pathways and adaptive licensing models to address unmet medical needs more rapidly.

Simultaneously, growing alignment between biopharmaceutical sponsors and specialized contract development and manufacturing organizations is fostering greater agility and cost-effectiveness within supply chains. This shift reflects a broader ecosystem trend toward modular, flexible manufacturing that can accommodate personalized therapies and small-batch production. In parallel, rising engagement from venture capital and nontraditional investors signals heightened confidence in the commercial viability of regenerative products. As public-private partnerships evolve and philanthropic funding supports early-stage innovation, the sector is transitioning from siloed research efforts into a cohesive network of collaborative ventures. Consequently, stakeholders must navigate an increasingly dynamic environment characterized by cross-disciplinary alliances, regulatory flexibility, and next-generation manufacturing strategies.

Assessing the Impact of United States Tariff Changes in 2025 on International Regenerative Medicine Supply Networks and Collaborative Research Alliances

In 2025, the United States implemented a series of tariff adjustments that have generated substantial ripple effects throughout the global regenerative medicine supply network. While the intention was to protect domestic manufacturing capabilities, increased import duties on raw biomaterials, viral vectors, and specialized scaffolding components have elevated production costs for many international partners. Consequently, manufacturers and research institutions have had to recalibrate sourcing strategies, exploring nearshoring opportunities and alternative regional hubs to mitigate escalating expense pressures.

Moreover, these tariff changes have spurred a strategic realignment of collaborative research alliances. Firms are seeking to establish integrated supply chain partnerships within tariff-friendly jurisdictions, thereby preserving cost efficiencies while maintaining access to critical inputs. Academic and contract organizations have intensified negotiations to secure long-term procurement contracts, often involving co-investment in localized production facilities. Although these measures have introduced temporary delays in certain clinical trial timelines, they have also catalyzed innovative manufacturing approaches, such as single-use bioreactors and modular cleanroom systems, which reduce dependence on cross-border shipments.

Looking ahead, stakeholders must remain vigilant to policy shifts that could further influence trade dynamics. Engaging proactively with regulatory and legislative bodies will be crucial to shaping more balanced tariff frameworks and developing resilient supply networks. In doing so, industry participants can safeguard research continuity, accelerate product development, and foster sustainable growth despite evolving trade policies.

Unveiling Deep Market Segmentation Perspectives to Illuminate Strategic Pathways in Product, Source, Application, and End User Dimensions of Regenerative Medicine

A nuanced understanding of market segmentation is essential for framing strategic investments and prioritizing research pathways. Based on product type, the sector encompasses a diverse array of modalities ranging from cell therapy to extracelluar and acellular approaches, gene therapy solutions, and tissue engineering platforms. Within cell therapy, distinctions emerge between non-stem cell-based modalities-such as immune cell products including dendritic cells, natural killer cells, and T cells-and stem cell-based interventions that leverage pluripotent and adult progenitor populations. Gene editing technologies, gene transfer vectors, and RNA- or DNA-based systems present additional layers of complexity, with vector classifications extending to non-viral and viral-based platforms. Tissue engineering further subdivides into biomaterials, growth factor and cytokine formulations, and scaffold constructs, wherein the choice between natural and synthetic biomaterials drives differential performance and cost profiles.

When considering source origin, therapeutic products are categorized as allogeneic, autologous, synthetic, or xenogeneic, each possessing distinct immunological and manufacturing considerations. Application areas span a broad clinical spectrum, including cardiovascular interventions for angiogenesis and valve repair, dermatological treatments for burn wounds and chronic lesions, and diabetes therapeutics focused on beta cell transplantation. Neurology targets encompass Alzheimer's disease, multiple sclerosis, Parkinson's therapeutics, spinal cord repair, and post-stroke recovery, while oncology strategies leverage immunotherapy and ablative modalities. Ophthalmological innovations address corneal and retinal regeneration, and orthopedic and musculoskeletal repairs concentrate on bone, cartilage, and tendon restoration. End users range from academic research centers and contract research organizations to hospitals, clinics, and pharmaceutical and biotechnology enterprises, each bringing unique procurement criteria and adoption timelines to the landscape.

Analyzing Regional Dynamics Shaping Opportunities in the Americas, Europe Middle East Africa, and Asia Pacific Across the Regenerative Medicine Ecosystem

Regional nuances play a pivotal role in shaping investment decisions, regulatory trajectories, and commercialization strategies across the regenerative medicine field. In the Americas, robust funding from private and public sources has accelerated clinical translation, with notable expansion of advanced manufacturing hubs and streamlined approval processes for novel therapies. Cross-border collaborations between leading research institutions and industry participants in this region have established centers of excellence, fostering rapid iteration of cutting-edge treatments.

Transitioning to Europe, the Middle East, and Africa, a mosaic of regulatory frameworks and reimbursement models influences market entry strategies. While some jurisdictions offer adaptive regulatory pathways and research incentives, others maintain more conservative approaches that require comprehensive safety and efficacy data. Consequently, strategic alliances and consortium-based research initiatives are common tools for managing heterogeneous policy landscapes. Emerging markets within this region are increasingly attractive for early-stage trials, owing to evolving infrastructure and competitive cost environments.

Across the Asia Pacific, ambitious government programs and supportive policy initiatives have catalyzed exponential growth in both academic research and commercial manufacturing capacity. Local manufacturers are investing heavily in scalable bioproduction facilities, while multinational companies are engaging in technology transfer agreements to localize supply chains. The convergence of favorable regulatory reforms, growing patient populations, and competitive operational costs has positioned this region as a critical hub for future regenerative medicine innovation.

Highlighting Leading Industry Pioneers Driving Competition through Strategic Alliances That Are Redefining Commercialization Pathways in Regenerative Medicine

Leading organizations are advancing portfolios through diverse strategies that balance internal R&D with external collaborations. Several pioneering biopharma firms have established dedicated cell and gene therapy divisions to consolidate expertise and accelerate pipeline development. These teams leverage in-house capabilities alongside strategic partnerships with academic centers and specialized contract developers to enhance flexibility and scale. Joint ventures are also emerging as a preferred vehicle for co-investing in manufacturing infrastructure, ensuring aligned incentives and shared risk across development timelines.

Furthermore, innovative biotech start-ups are differentiating themselves by targeting niche applications such as neuroregeneration and immuno-oncology, often supported by venture capital and philanthropic grants. These nimble players benefit from agile decision-making processes, allowing them to pivot rapidly based on emerging preclinical and clinical data. Meanwhile, established pharmaceutical companies are incorporating regenerative modalities into existing therapeutic platforms, integrating novel cell or gene therapies with established small molecule or biologic regimens to deliver combination treatments.

Across the ecosystem, intellectual property strategies are evolving to cover not only core therapeutic constructs but also manufacturing processes, delivery devices, and data analytics algorithms. This holistic approach safeguards competitive advantage while enabling cross-licensing arrangements that facilitate market entry. As the competitive landscape intensifies, effective portfolio management and alignment of scientific expertise with operational excellence will remain critical determinants of success.

Delivering Targeted Recommendations to Empower Leaders to Accelerate Innovation, Foster Sustainable Growth and Overcome Key Challenges in Regenerative Medicine

To navigate the complex regenerative medicine environment, industry leaders should adopt a multifaceted approach that spans strategic, operational, and regulatory dimensions. First, forging robust partnerships with academic institutions and specialized contract organizations can accelerate pipeline progression while mitigating capital expenditure risks. By aligning incentives and co-investing in modular manufacturing platforms, stakeholders can maintain agility even as production demands scale.

Second, investing in advanced analytics and digital technologies will be paramount to optimizing clinical trial design and real-time monitoring. Leveraging machine learning for patient stratification and predictive safety assessments can reduce development timelines and enhance trial success rates. Concurrently, establishing robust quality management systems and early engagement with regulatory authorities will streamline approval pathways and support adaptive trial models.

Third, diversifying geographic footprint through the establishment of regional centers of excellence can safeguard against policy volatility and supply chain disruptions. Engaging proactively in policy dialogues and public-private partnerships will help shape balanced regulatory frameworks while unlocking incentives for local production. Lastly, cultivating a holistic intellectual property strategy that encompasses core assets, manufacturing know-how, and data management algorithms will ensure differentiated market positioning. By executing these targeted recommendations, leaders can accelerate innovation, sustain competitive advantage, and deliver transformative therapies to patients worldwide.

Detailing a Rigorous Research Methodology Integrating Primary Interviews with Secondary Data Analysis to Deliver Comprehensive Regenerative Medicine Insights

The insights presented in this report are grounded in a rigorous mixed-methodology framework designed to ensure both depth and validity. Primary research included in-depth interviews with a cross-section of stakeholders, ranging from scientific founders and process engineers to regulatory experts and commercial strategists. These conversations were structured to uncover nuanced perspectives on technology adoption, regulatory trends, and clinical development challenges. In parallel, secondary data analysis leveraged peer-reviewed literature, government policy documents, and publicly disclosed clinical trial repositories to validate emerging trends and benchmarks.

To triangulate findings, an expert validation panel comprising thought leaders from academia, industry associations, and non-profit research organizations reviewed preliminary conclusions. This validation step was integral for refining thematic priorities and verifying the accuracy of market segmentation frameworks. Methodological rigor was further enhanced through consistency checks and cross-regional comparisons, ensuring that insights account for local policy nuances and supply chain dynamics. By integrating qualitative depth with quantitative context, this report delivers a comprehensive and actionable perspective on the global regenerative medicine landscape.

Summarizing Key Takeaways and Strategic Imperatives from the Comprehensive Examination of Regenerative Medicine Dynamics and Market Influencers Worldwide

The regenerative medicine sector is at an inflection point defined by technological breakthroughs, evolving regulatory landscapes, and strategic realignments within global supply networks. Advanced cell and gene therapies are transitioning from experimental stages to near-term commercialization, driven by supportive policy frameworks and expanding manufacturing capabilities. While tariff adjustments in key markets have introduced cost pressures and supply chain complexities, they have also catalyzed innovative strategies for localized production and resilient partnerships.

Segmentation analysis reveals the multiplicity of therapeutic modalities and end-user requirements, underscoring the importance of tailored approaches across product types, sources, application areas, and organizational buyers. Regional insights highlight the Americas, Europe Middle East Africa, and Asia Pacific as critical ecosystems, each offering unique advantages in terms of funding, regulatory agility, and infrastructure. Competitive dynamics continue to be shaped by strategic alliances, intellectual property portfolios, and investments in digital platforms for clinical and manufacturing optimization.

Looking forward, stakeholders must embrace collaborative innovation models, proactive policy engagement, and adaptive commercialization strategies to capitalize on the full potential of regenerative medicine. By synthesizing these key takeaways and imperatives, industry participants can better position themselves to deliver transformative therapies, drive sustainable growth, and ultimately improve patient outcomes worldwide.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Expansion of regenerative therapies targeting chronic wound healing
  • 5.2. Growth of gene editing techniques accelerating regenerative medicine innovation
  • 5.3. Collaborations between academia and industry fueling regenerative product development
  • 5.4. Integration of artificial intelligence to optimize regenerative medicine research
  • 5.5. Rising demand for regenerative solutions addressing age-related disorders
  • 5.6. Emergence of novel biomaterials enhancing scaffold effectiveness in regeneration
  • 5.7. Increasing adoption of 3D bioprinting technology in tissue engineering
  • 5.8. Advancements in stem cell therapies driving personalized regenerative treatments
  • 5.9. Regulatory evolution improving approval pathways for regenerative treatments
  • 5.10. Surge in investments supporting regenerative medicine startups and clinical trials

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Regenerative Medicine Market, by Product Type

  • 8.1. Introduction
  • 8.2. Cell Therapy
    • 8.2.1. Non-Stem Cell-Based Therapy
      • 8.2.1.1. Immune Cells
      • 8.2.1.1.1. Dendritic Cells
      • 8.2.1.1.2. Natural Killer (NK) Cells
      • 8.2.1.1.3. T Cells
      • 8.2.1.2. Non-immune Cells
    • 8.2.2. Stem Cell-Based Therapy
  • 8.3. Extracellular & Acellular Therapies
  • 8.4. Gene Therapy
    • 8.4.1. Gene Editing Technologies
    • 8.4.2. Gene Transfer Vectors
      • 8.4.2.1. Non-Viral Vectors
      • 8.4.2.2. Viral Vectors
    • 8.4.3. RNA & DNA-Based Therapies
  • 8.5. Tissue Engineering
    • 8.5.1. Biomaterials
      • 8.5.1.1. Natural Biomaterials
      • 8.5.1.2. Synthetic Biomaterials
    • 8.5.2. Growth Factors & Cytokines
    • 8.5.3. Scaffolds

9. Regenerative Medicine Market, by Source

  • 9.1. Introduction
  • 9.2. Allogeneic
  • 9.3. Autologous
  • 9.4. Synthetic
  • 9.5. Xenogeneic

10. Regenerative Medicine Market, by Application Areas

  • 10.1. Introduction
  • 10.2. Cardiovascular
    • 10.2.1. Angiogenesis & Vascular Regeneration
    • 10.2.2. Congenital Heart Defect Repair
    • 10.2.3. Heart Valve Replacement
    • 10.2.4. Myocardial Infarction Treatment
  • 10.3. Dermatology
    • 10.3.1. Aesthetic Procedures
    • 10.3.2. Burn Treatment
    • 10.3.3. Chronic Wound Healing
  • 10.4. Diabetes
    • 10.4.1. Beta Cell Transplantation
    • 10.4.2. Islet Cell Regeneration
  • 10.5. Neurology
    • 10.5.1. Alzheimer's Treatment
    • 10.5.2. Multiple Sclerosis Therapy
    • 10.5.3. Parkinson's Therapy
    • 10.5.4. Spinal Cord Injury Repair
    • 10.5.5. Stroke Recovery
  • 10.6. Oncology
    • 10.6.1. Cancer Immunotherapy
    • 10.6.2. Tumor Ablation
  • 10.7. Ophthalmology
    • 10.7.1. Corneal Repair
    • 10.7.2. Retinal Regeneration
  • 10.8. Orthopedic & Musculoskeletal
    • 10.8.1. Bone Regeneration
    • 10.8.2. Cartilage Repair
    • 10.8.3. Tendon Repair

11. Regenerative Medicine Market, by End User

  • 11.1. Introduction
  • 11.2. Academic & Research Institutes
  • 11.3. Contract Research Organizations
  • 11.4. Hospitals & Clinics
  • 11.5. Pharmaceutical & Biotechnology Companies

12. Americas Regenerative Medicine Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Regenerative Medicine Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Regenerative Medicine Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. 4D Molecular Therapeutics, Inc.
    • 15.3.2. AbbVie Inc.
    • 15.3.3. Abeona Therapeutics Inc.
    • 15.3.4. Adaptimmune Therapeutics PLC
    • 15.3.5. Adverum Biotechnologies, Inc.
    • 15.3.6. AGC Biologics
    • 15.3.7. Astellas Pharma Inc.
    • 15.3.8. Bayer AG
    • 15.3.9. CMIC Co., Ltd.
    • 15.3.10. CRISPR Therapeutics AG
    • 15.3.11. F. Hoffmann-La Roche Ltd.
    • 15.3.12. Fate Therapeutics, Inc.
    • 15.3.13. FUJIFILM Holdings Corporation
    • 15.3.14. Gilead Sciences, Inc.
    • 15.3.15. HEALIOS K.K.
    • 15.3.16. Integra LifeSciences Holdings Corporation
    • 15.3.17. JCR Pharmaceuticals Co., Ltd.
    • 15.3.18. Johnson & Johnson
    • 15.3.19. Merck KGaA
    • 15.3.20. Mesoblast Limited
    • 15.3.21. Novartis AG
    • 15.3.22. Orchard Therapeutics PLC
    • 15.3.23. Organogenesis Holdings Inc.
    • 15.3.24. Pfizer Inc.
    • 15.3.25. Pluri Biotech Ltd.
    • 15.3.26. Poseida Therapeutics, Inc.
    • 15.3.27. REPROCELL Inc.
    • 15.3.28. SanBio Company Limited
    • 15.3.29. Stryker Corporation
    • 15.3.30. Sumitomo Pharma Co., Ltd.
    • 15.3.31. Sysmex Corporation
    • 15.3.32. Takeda Pharmaceutical Company Limited
    • 15.3.33. Tenaya Therapeutics, Inc.
    • 15.3.34. Vericel Corporation
    • 15.3.35. Voyager Therapeutics Inc.
    • 15.3.36. Zimmer Biomet Holdings, Inc.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦