½ÃÀ庸°í¼­
»óǰÄÚµå
1806249

Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå : ±¸¼º¿ä¼Ò, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Àü°³ ¹æ½Äº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Precision Viticulture Market by Component, Technology, Application, End User, Deployment Mode - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀåÀº 2024³â¿¡´Â 17¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 19¾ï 2,000¸¸ ´Þ·¯, CAGR 10.98%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 32¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 17¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 19¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 32¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 10.98%

Á¤¹Ð Æ÷µµ Àç¹èÀÇ ±âÃÊ¿Í Çö´ë ³ó¾÷ÀÇ ¿ì¼ö¼º°ú Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» ÅëÇÕÇÏ´Â »õ·Î¿î ¿ªÇÒ¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.

Á¤¹Ð Æ÷µµ Àç¹è´Â ÷´Ü °¨Áö ±â¼ú, µ¥ÀÌÅÍ ºÐ¼®, ÀÚµ¿È­¸¦ ÅëÇÕÇÏ¿© Æ÷µµ »ý»êÀÇ ±â¼ú°ú °úÇÐÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â ¼öÀÛ¾÷ °üÂû°ú ¿ª»çÀû Á÷°ü¿¡ ÀÇÁ¸Çß´ø Æ÷µµ Àç¹èÀÚµéÀÌ Æ÷µµ Àç¹è °úÁ¤ÀÇ ¸ðµç ´Ü°è¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ±â¹Ý ±ÔÀ²·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. Åä¾ç ¼öºÐ, ÁÖº¯ ȯ°æ, Æ÷µµ³ª¹«ÀÇ °Ç°­ »óŸ¦ ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á Æ÷µµ¿ø °ü¸®ÀÚ´Â ¼öÈ®·® ǰÁú°ú ÀÚ¿ø È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ Á¤º¸¿¡ ÀÔ°¢ÇÑ °³ÀÔÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¤¹Ð Çٽɱâ¼úÀÇ »óȲ°ú »ý»êÀÚ ¿î¿µÀÇ Çõ¸íÀ» °¡Á®¿À°í, Áß¿äÇÑ ±â¼ú ¹ßÀü°ú ¿î¿µÀÇ ÀüȯÀ» ½Äº°ÇÕ´Ï´Ù.

¼¾¼­ÀÇ ¼ÒÇüÈ­, ¿¬°á¼º, ºÐ¼® ´É·ÂÀÇ ºñ¾àÀûÀÎ Çâ»óÀ¸·Î Á¤¹Ð Æ÷µµ Àç¹èÀÇ »óȲÀº Å©°Ô ¹Ù²î¾ú½À´Ï´Ù. Ãʱ⿡´Â »ý»êÀÚµéÀÌ °³º° ¸Å°³º¯¼ö¸¦ ÃßÀûÇϱâ À§ÇØ °í¸³µÈ ¼¾¼­¿¡ ÀÇÁ¸ÇßÁö¸¸, ¿À´Ã³¯ÀÇ Ç÷§ÆûÀº ¿©·¯ µ¥ÀÌÅÍ ½ºÆ®¸²À» ÅëÇÕÇÏ¿© ÇϳªÀÇ ÅëÇÕµÈ °ü¸® ´ë½Ãº¸µå·Î ÅëÇÕÇÏ´Â ÅëÇÕ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÅëÇÕÀ» ÅëÇØ ¹Ì±âÈÄ, º´ÇØÃæ ÇÖ½ºÆÌ, °ü°³ Çʿ伺 µîÀ» Æ÷µµ³ª¹« ÀÌÇÏ ´ÜÀ§¿¡¼­ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

2025³â ¹Ì±¹ÀÇ °ü¼¼ Á¶Ä¡°¡ Æ÷µµ Àç¹èÀÇ ÅõÀÔ ºñ¿ë°ú ¼öÃâ ¿ªÇп¡ ¹ÌÄ¡´Â Á¾ÇÕÀûÀÎ ¿µÇâ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®

¹Ì±¹ÀÌ 2025³â¿¡ »õ·Î¿î °ü¼¼ Á¶Ä¡¸¦ µµÀÔÇÏ´Â °ÍÀº Æ÷µµ Àç¹è Àåºñ ¼öÀÔ¾÷ü¿Í Æ÷µµ À¯·¡ Á¦Ç° ¼öÃâ¾÷ü¿¡°Ô Áß¿äÇÑ Àǹ̰¡ ÀÖ½À´Ï´Ù. ¿µ»ó±â±â, Åë½Å ¸ðµâ µî Çϵå¿þ¾î ºÎǰ¿¡ ´ëÇÑ °ü¼¼ ÀλóÀº ¼³ºñÅõÀÚ ÀÇ»ç°áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀϺΠ»ý»ê¾÷üµéÀº ÇöÁö Á¦Á¶ ÆÄÆ®³Ê½ÊÀ̳ª ´ëü °ø±Þ¾÷ü¸¦ ¸ð»öÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. µ¿½Ã¿¡ ¼­ºñ½º Á¦°ø¾÷ü´Â ÃÖÁ¾»ç¿ëÀÚ¿¡ ´ëÇÑ °¡Ä¡ Á¦¾ÈÀ» À¯ÁöÇϸ鼭 ºñ¿ë »ó½ÂÀ» Èí¼öÇϱâ À§ÇØ °¡°Ý ¸ðµ¨À» Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±¸¼º¿ä¼Ò, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ ¹× Àü°³ ¹æ½ÄÀÇ Ãß¼¼¸¦ ¹àÈ÷°í, ´Ù°¢ÀûÀÌ°í ½ÉÃþÀûÀÎ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ¹àÈü´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ÀÇ ¹Ì¹¦ÇÑ °ËÁõÀ» ÅëÇØ Á¤¹Ð Æ÷µµ Àç¹èÀÇ Ã¤ÅÃÀ» Çü¼ºÇÏ´Â »óÈ£ ÀÇÁ¸ÀÇ ÃþÀÌ ¹àÇôÁ³½À´Ï´Ù. ±¸¼º¿ä¼Ò ºÐ¼®¿¡¼­´Â ¾×Ãß¿¡ÀÌÅÍ, Åë½Å ¸ðµâ, ¿µ»ó ÀåÄ¡, ½Àµµ, pH, Åä¾ç ¼öºÐ, ¿Âµµ¿¡ À̸£´Â ´Ù¾çÇÑ ¼¾¼­¿Í °°Àº Çϵå¿þ¾î ¿ä¼Ò°¡ ÄÁ¼³ÆÃ, ÅëÇÕ ¹× Å×½ºÆ®, Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ¹× Áö¿ø°ú °°Àº ¼­ºñ½º·Î º¸¿ÏµÇ´Â »óȲÀÌ µå·¯³³´Ï´Ù. º¸¿ÏµÇ´Â »óȲÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ÀÌ Çϵå¿þ¾î¿Í ¼­ºñ½ºÀÇ ½Ã³ÊÁö È¿°ú´Â ³óÀå °ü¸® Á¤º¸ ½Ã½ºÅÛ, ¸ÅÇÎ ¹× ½Ã°¢È­ µµ±¸, ¿¹Ãø ºÐ¼® ¹× ½Ã¹Ä·¹ÀÌ¼Ç ¿£ÁøÀ» Á¦°øÇÏ´Â Á¤±³ÇÑ ¼ÒÇÁÆ®¿þ¾î Á¦Ç°±º¿¡ ÀÇÇØ °­È­µË´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ Á¤¹Ð Æ÷µµ Àç¹è µµÀÔÀ» Çü¼ºÇÏ´Â ÁÖ¿ä Áö¿ª ¿ªÇÐ ºÐ¼®

Á¤¹Ð Æ÷µµ Àç¹è ±â¼úÀÇ Ã¤Åðú º¸±Þ¿¡´Â Áö¿ª ¿ªÇÐÀÌ °áÁ¤ÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ÌÁÖ ´ë·ú¿¡¼­´Â ¿¬±¸°³¹ß ÀÚ±Ý, Áö¿ø Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©, °­·ÂÇÑ ³ó¾÷ Çõ½Å ¹®È­°¡ ¼¾¼­ ³×Æ®¿öÅ©¿Í ÅëÇÕ µ¥ÀÌÅÍ Ç÷§ÆûÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾Æ¸Þ¸®Ä«, ³²¹ÌÀÇ »ý»êÀÚµéÀº ÀÌ·¯ÇÑ Áøº¸¸¦ Ȱ¿ëÇÏ¿© ¹° °ü¸® ¹®Á¦¸¦ ÇØ°áÇÏ°í ¼öÈ®·® ¾ÈÁ¤¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

Á¤¹Ð Çٽɱâ¼ú ½ÃÀåÀ» ¼±µµÇÏ´Â ¼±µµ±â¾÷µéÀÇ Àü·«Àû ÀÚ¼¼¿Í ȹ±âÀûÀÎ Çõ½Å, °æÀï»ç¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ Á¤¹Ð Çٽɱâ¼ú ½ÃÀåÀ» ¹ßÀü½ÃŰ´Â Àü·«ÀûÀÎ ÀÚ¼¼¸¦ Á¶¸íÇØº¾´Ï´Ù.

Á¤¹Ð Æ÷µµ Àç¹èÀÇ °æÀïÀÇ ÀåÀº ¸í¸Á ÀÖ´Â ³ó¾÷ Àåºñ Á¦Á¶¾÷ü, ±â¼ú ´ë±â¾÷, ¹ÎøÇÑ ½Å»ý ±â¾÷ÀÌ È¥ÀçµÇ¾î ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ÁÖ¿ä ¾÷üµéÀº ÅëÇÕ IoT ¼¾¼­ ¾î·¹ÀÌ, °íÇØ»óµµ À̹ÌÁö ó¸® ÀåÄ¡, ½Ç½Ã°£À¸·Î Æ÷µµ¿ø ÀÎÅÚ¸®Àü½º¸¦ Á¦°øÇÏ´Â ÀûÀÀÇü AI ±â¹Ý ºÐ¼® Ç÷§ÆûÀ» ¹ßÇ¥Çß½À´Ï´Ù. Çϵå¿þ¾î Á¦Á¶¾÷ü¿Í ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÚÀÇ Çù·ÂÀû ÆÄÆ®³Ê½ÊÀº ¿£µå Åõ ¿£µå ¼Ö·ç¼ÇÀ» ¸¸µé¾î µ¥ÀÌÅÍ »óÈ£¿î¿ë¼º°ú »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

Á¤¹Ð Æ÷µµ Àç¹èÀÇ »õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇÏ°í ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ ¾÷°è ¸®´õµéÀÌ ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾ÈÀ» ¸¸µé¾î ¾÷°è ¸®´õµé¿¡°Ô ÈûÀ» ½Ç¾îÁÙ ¼ö ÀÖ´Â ¹æ¾È ¸¶·Ã

ÁøÈ­ÇÏ´Â Á¤¹Ð Æ÷µµ Àç¹è ȯ°æÀ» Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº ¼¾¼­, Ç÷§Æû, ±â¾÷ ÀÚ¿ø ½Ã½ºÅÛ °£ÀÇ ¿øÈ°ÇÑ ¿¬°áÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¸ðµâ½Ä µ¥ÀÌÅÍ ÅëÇÕ ¾ÆÅ°ÅØÃ³ °³¹ßÀ» ¿ì¼±¼øÀ§¿¡ µÎ¾î¾ß ÇÕ´Ï´Ù. ¼¾¼­ ±â¼ú Çõ½Å ±â¾÷°úÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Â÷¼¼´ë ¸ð´ÏÅ͸µ ÀåºñÀÇ ¹èÆ÷¸¦ °¡¼ÓÈ­Çϰí, ÃÖÁ¾»ç¿ëÀÚ ±³À° ÇÁ·Î±×·¥¿¡ ´ëÇÑ ÁýÁßÀûÀÎ ÅõÀÚ¸¦ ÅëÇØ äÅÃÀ» ÃËÁøÇϰí ÅõÀÚ ¼öÀÍ·üÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¤¹Ð Æ÷µµ Àç¹è Á¶»ç¿¡¼­ °­·ÂÇÑ µ¥ÀÌÅÍ ¼öÁý ºÐ¼®ÀÇ ¾ö°ÝÇÔ°ú ÅëÂû·Â ÀÖ´Â Á¶»ç °á°ú¸¦ º¸ÀåÇϱâ À§ÇØ Ã¤ÅÃµÈ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý °³¿ä

º» Á¶»ç ¹æ¹ýÀº È®½ÇÇϰí Á¤È®ÇÑ Á¶»ç°á°ú¸¦ Á¦°øÇϱâ À§ÇØ ´Ù´Ü°è Á¶»ç ¹æ¹ýÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. º» Á¶»ç´Â ¸ÕÀú Çмú °£Ç๰, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ¾÷°è ¹é¼­ µî 2Â÷ Á¤º¸¸¦ öÀúÇÏ°Ô Á¶»çÇÏ¿© Á¾ÇÕÀûÀÎ ±â¹ÝÀ» ±¸ÃàÇß½À´Ï´Ù. ±× ÈÄ, Æ÷µµ¿ø °ü¸®ÀÚ, ³ó¾÷ÇÐÀÚ, ±â¼ú Á¦°øÀÚ, ³ó¾÷ ±â¼ú Àü¹®°¡¸¦ ´ë»óÀ¸·Î 1Â÷ ÀÎÅͺ並 ÅëÇØ »õ·Î¿î µ¿ÇâÀ» È®ÀÎÇÏ°í ¿î¿µ»óÀÇ °úÁ¦¸¦ È®ÀÎÇß½À´Ï´Ù.

ÁÖ¿ä ¿ä¾àÀÇ ¸¶Áö¸·¿¡´Â Á¤¹Ð Æ÷µµ Àç¹èÀÇ ¹ßÀü¿¡ ´ëÇÑ Áß¿äÇÑ ¿äÁ¡°ú ÇâÈÄ Àü¸Á¿¡ ´ëÇÑ ÅëÂû·Â ÀÖ´Â ÀλçÀÌÆ®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

Á¤¹Ð Æ÷µµ Àç¹èÀÇ ÁøÈ­´Â Æ÷µµ¿ø °ü¸® ¹æ¹ýÀÇ ÆÐ·¯´ÙÀÓ º¯È­¸¦ ÀǹÌÇϸç, µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®ÀÌ ÀüÅëÀûÀÎ °üÂû ¹æ¹ýÀ» ´ëüÇÒ °ÍÀÔ´Ï´Ù. »õ·Î¿î °ü¼¼ ¿ªÇÐÀº ºñ¿ë º¯µ¿À» ¿ÏÈ­Çϱâ À§ÇÑ Àû±ØÀûÀÎ °ø±Þ¸Á Àü·«°ú ´Ù¾çÇÑ Á¶´ÞÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ´Ù°¢ÀûÀÎ ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º ¼Ö·ç¼ÇÀÇ »óÈ£ ÀÇÁ¸¼ºÀ» °­Á¶Çϰí, °¢ ¼Ö·ç¼ÇÀÌ µðÁöÅÐ Çõ½ÅÀÇ ¿©Á¤¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå : ±¸¼º¿ä¼Òº°

  • Çϵå¿þ¾î
    • ¾×Ãß¿¡ÀÌÅÍ
    • Åë½Å ¸ðµâ
    • ¿µ»ó ±â±â
    • ¼¾¼­
      • ½Àµµ ¼¾¼­
      • PH ¼¾¼­
      • Åä¾ç ¼öºÐ ¼¾¼­
      • ¿Âµµ ¼¾¼­
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ
    • ÅëÇÕ°ú Å×½ºÆ®
    • À¯Áö°ü¸®¿Í Áö¿ø
  • ¼ÒÇÁÆ®¿þ¾î
    • ³óÀå °ü¸® Á¤º¸ ½Ã½ºÅÛ(FMIS)
    • ¸ÅÇΰú ½Ã°¢È­
    • ¿¹Ãø ºÐ¼®°ú ½Ã¹Ä·¹À̼Ç

Á¦9Àå Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå : ±â¼úº°

  • µ¥ÀÌÅÍ °ü¸® ¼ÒÇÁÆ®¿þ¾î
  • GIS¿Í GPS
    • Áö¸®°ø°£ ºÐ¼®
    • Æ÷µµ¿ø ¸ÅÇÎ
  • ¿ø°ÝŽ»ç
  • ¼¾¼­ ±â¼ú
  • º¯·® »ìÆ÷ ±â¼ú(VRT)
    • º¯·® ½Ãºñ
    • º¯·® °ü°³
    • º¯·® ³ó¾à »ìÆ÷

Á¦10Àå Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå : ¿ëµµº°

  • ÀÛ¹° °¨½Ã¿Í °Ç°­ ¸ð´ÏÅ͸µ
  • ¼öÈ® °èȹ
  • °ü°³ °ü¸®
    • Á¡Àû °ü°³ ÃÖÀûÈ­
    • ½ºÇÁ·¹ÀÌ °ü°³ °ü¸®
    • ½ºÇÁ¸µÅ¬·¯ °ü°³ Á¦¾î
  • ÇØÃæ ¹× Áúº´ ¹æÁ¦
  • Åä¾ç ¸ð´ÏÅ͸µ ¹× ºÐ¼®
  • ¼öÈ®·® °¨½Ã¿Í ¿¹Ãø

Á¦11Àå Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ´ë±Ô¸ð Æ÷µµ¿ø°ú »ó¾÷ ¿ÍÀ̳ʸ®
  • Áß±Ô¸ð ¹× ¼Ò±Ô¸ð Æ÷µµ¿ø
  • Á¶»ç±â°ü ¹× ³ó¾÷´Üü
  • Æ÷µµ Àç¹è Çùµ¿Á¶ÇÕ ¹× Çùȸ

Á¦12Àå Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå : Àü°³ ¹æ½Äº°

  • Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç
  • ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼Ç

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¤¹Ð Æ÷µµ Àç¹è ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • AGCO Corporation
    • AHA Viticulture
    • ATEKNEA SOLUTIONS CATALONIA S.L.
    • Atlas Vineyard Management, LLC
    • CNH Industrial N.V.
    • Coastal Vineyard Care Associates
    • Deere & Company
    • eVineyard
    • Groupe ICV
    • Hexagon AB
    • Kubota Corporation
    • Lallemand Inc
    • TeeJet Technologies
    • Trimble Inc.
    • Vinescapes Services Limited

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM 25.09.12

The Precision Viticulture Market was valued at USD 1.74 billion in 2024 and is projected to grow to USD 1.92 billion in 2025, with a CAGR of 10.98%, reaching USD 3.25 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.74 billion
Estimated Year [2025] USD 1.92 billion
Forecast Year [2030] USD 3.25 billion
CAGR (%) 10.98%

Exploring the Foundations of Precision Viticulture and Its Emerging Role in Modern Agricultural Excellence and Long-Term Sustainability Integration

Precision viticulture is reshaping the art and science of grape production by integrating advanced sensing technologies, data analytics, and automation. What was once reliant on manual observations and historical intuition has evolved into a data-driven discipline that empowers growers to optimize every phase of the viticultural process. By harnessing real-time insights on soil moisture, ambient conditions, and vine health indicators, vineyard managers can make informed interventions that enhance yield quality and resource efficiency.

This introduction examines how precision viticulture has transitioned from experimental field trials to commercial-scale deployments. Early adopters demonstrated the potential of sensor networks and variable rate technology, inspiring a wave of innovation that now spans hardware, software, and service ecosystems. As the industry matures, the focus has shifted from proof of concept to scalable solutions that seamlessly integrate with existing infrastructure.

Looking ahead, precision viticulture promises to address critical challenges such as water scarcity, labor constraints, and sustainability mandates. The ability to tailor inputs at the vine level not only improves economic performance but also underpins environmental stewardship, paving the way for the next generation of resilient vineyards.

Identifying the Critical Technological Advancements and Operational Shifts Revolutionizing the Precision Viticulture Landscape and Grower Operations

The landscape of precision viticulture has undergone transformative shifts driven by breakthroughs in sensor miniaturization, connectivity, and analytical capabilities. Initially, growers relied on isolated sensors to track individual parameters, but today's platforms offer integrated solutions that unify multiple data streams into cohesive management dashboards. This convergence has allowed for real-time monitoring of microclimates, disease hotspots, and irrigation needs at sub-vine granularity.

Moreover, the proliferation of cloud-based platforms and edge computing has accelerated the deployment of advanced predictive models, enabling growers to anticipate stress events before they manifest visibly. Artificial intelligence and machine learning algorithms have further enriched these capabilities, transforming raw data into actionable recommendations that guide pruning, fertilization, and harvest scheduling.

These operational shifts have also reshaped service delivery, with agritech providers offering end-to-end consulting, integration, and maintenance programs. As a result, precision viticulture has transitioned from a niche offering into an essential component of strategic vineyard management, driving continuous innovation across the value chain.

Analyzing the Comprehensive Effects of United States Tariff Measures Announced for 2025 on Input Costs and Export Dynamics in Viticulture

The introduction of new tariff measures by the United States in 2025 presents significant implications for importers of viticulture equipment and exporters of grape-derived products. Elevated duties on hardware components such as imaging devices and communication modules are expected to influence capital expenditure decisions, prompting some growers to explore local manufacturing partnerships or alternative suppliers. Concurrently, service providers may adjust pricing models to absorb cost increases while preserving value propositions for end users.

Exporters of premium wines and bulk grape commodities will need to navigate altered competitive dynamics in key overseas markets. As export duties adjust trade flows, producers may reevaluate their distribution networks and consider strategic alliances to offset potential margin compression. Transitional support programs and tariff exclusion requests could provide temporary relief, but long-term planning will be essential to maintain profitability.

In response, industry stakeholders are exploring cross-border collaborations to diversify supply chains and mitigate exposure to single-market dependencies. By adopting flexible sourcing strategies and negotiating collaborative R&D initiatives, viticulture enterprises can adapt to the evolving tariff environment and sustain growth trajectories despite shifting trade regulations.

Unveiling Deep-Dive Multidimensional Segmentation Insights That Illuminate Component Technology Application End User and Deployment Mode Trends

A nuanced examination of market segmentation reveals interdependent layers shaping precision viticulture adoption. Component analysis uncovers a landscape where hardware elements, including actuators, communication modules, imaging devices and a spectrum of sensors spanning humidity, pH, soil moisture and temperature, are complemented by service offerings in consulting, integration & testing and ongoing maintenance & support. This hardware-services synergy is bolstered by sophisticated software suites delivering farm management information systems, mapping & visualization tools and predictive analytics & simulation engines.

Technology segmentation further highlights the critical roles of data management software, GIS and GPS solutions-underpinned by geospatial analysis and vineyard mapping-alongside remote sensing and sensor technologies. Variable rate technology, encompassing precision fertilization, irrigation and pesticide application, emerges as a pivotal enabler of resource optimization.

Application-based insights underscore the importance of crop scouting and health monitoring, harvest planning, irrigation management through drip, spray and sprinkler control, pest and disease management, soil monitoring and yield forecasting. End users range from large-scale vineyards and commercial wineries to medium and small-scale operations, research institutions and viticulture cooperatives, all of which can choose between cloud-based and on-premise deployment models to suit operational needs.

Revealing Key Regional Dynamics Shaping Precision Viticulture Adoption Across the Americas Europe Middle East Africa and Asia Pacific Markets

Regional dynamics play a decisive role in the adoption and diffusion of precision viticulture technologies. In the Americas, robust research and development funding, supportive policy frameworks and a strong culture of agricultural innovation have fueled rapid deployment of sensor networks and integrated data platforms. Producers in North, Central and South America are leveraging these advancements to address water management challenges and boost yield consistency.

Across Europe, the Middle East and Africa, long-established viticultural traditions intersect with stringent sustainability regulations, prompting a focus on low-impact interventions and traceability solutions. Heritage vineyards in Europe are integrating precision tools to preserve terroir authenticity while meeting evolving consumer demands for environmental stewardship.

In the Asia-Pacific region, emerging digital ecosystems and concerted government modernization drives are accelerating technology adoption. From Australia's pioneering trials in vineyard automation to Southeast Asia's pilot programs in remote sensing, this region is emerging as a hotbed for innovative viticultural practices driven by evolving climate resilience requirements.

Highlighting the Strategic Postures Breakthrough Innovations and Competitive Collaborations of Leading Players Steering the Precision Viticulture Market Forward

The competitive arena of precision viticulture is characterized by a blend of established agricultural equipment manufacturers, technology titans and agile startups. Leading vendors have introduced integrated IoT sensor arrays, high-resolution imaging devices and adaptive AI-driven analytics platforms that deliver real-time vineyard intelligence. Collaborative partnerships between hardware producers and software developers have spawned end-to-end solutions, enhancing data interoperability and user experience.

Service specialists are differentiating through comprehensive consulting and integration offerings, providing customized installation, calibration and training to ensure seamless technology adoption. In parallel, major acquisitions are reshaping the landscape as global players seek to augment their portfolios, while regional innovators strive to expand distribution channels and local support networks.

Emerging challengers are making waves with niche product lines centered on remote sensing drones and machine learning-powered yield forecasting modules, underscoring the dynamic innovation ecosystem driving the sector forward. As these competitive forces converge, partnerships and alliances are expected to accelerate, fostering cross-disciplinary synergies across viticulture technology, agronomy research and digital agriculture.

Crafting Actionable Strategic Recommendations Empowering Industry Leaders to Capitalize on Emerging Opportunities and Mitigate Risks in Precision Viticulture

To capitalize on the evolving precision viticulture landscape, industry leaders should prioritize the development of modular data integration architectures that enable seamless connectivity among sensors, platforms and enterprise resource systems. Establishing strategic partnerships with sensor technology innovators will accelerate the rollout of next-generation monitoring devices, while targeted investment in end-user training programs will drive adoption and maximize return on investment.

A flexible deployment strategy that balances the scalability of cloud-based solutions with the security assurances of on-premise installations can address the diverse operational contexts found across global wine regions. Proactive engagement with regulatory bodies is also essential to streamline approvals for novel sensor and analytics applications, ensuring timely market entry.

Furthermore, fostering collaborative research initiatives with academic and cooperative institutions will catalyze the development of advanced predictive models and decision-support tools. Embracing pilot programs in different climate zones allows for rigorous validation of technology efficacy, while a disciplined approach to mergers and acquisitions can fill capability gaps and broaden geographic reach.

Outlining the Rigorous Research Methodology Employed to Ensure Robust Data Collection Analysis Rigor and Insightful Findings in Precision Viticulture Study

This research employs a multi-stage methodology designed to deliver robust, accurate insights. The study began with an exhaustive review of secondary sources, including academic publications, regulatory frameworks and industry whitepapers, to establish a comprehensive foundation. Building on this, primary interviews were conducted with vineyard managers, agronomists, technology providers and agritech experts to validate emerging trends and uncover operational challenges.

Quantitative data collection was achieved by triangulating manufacturer specifications, pilot study outcomes and observational data from live vineyard installations. All findings underwent a rigorous peer review process by a panel of precision agriculture specialists to ensure analytical integrity and impartiality. Advanced data synthesis techniques were then applied to distill core trends and strategic imperatives.

Finally, periodic consultations with an industry advisory board refined the study deliverables, ensuring that the insights remain relevant, actionable and aligned with the evolving needs of vineyard operators and technology stakeholders.

Concluding the Executive Summary with Key Takeaways and Insightful Reflections on the Future Outlook of Precision Viticulture Advancements

The evolution of precision viticulture represents a paradigm shift in how vineyards are managed, with data-driven insights supplanting traditional observational methods. Emerging tariff dynamics underscore the need for proactive supply chain strategies and diversified sourcing to mitigate cost volatility. Multidimensional segmentation analysis highlights the interdependence of hardware, software and service solutions, each playing a critical role in the digital transformation journey.

Regional variances emphasize the importance of tailored deployment strategies that account for local traditions, regulatory landscapes and infrastructure capabilities. Competitive intelligence reveals a vibrant ecosystem of established players and nimble innovators, with collaboration serving as a key driver of sustained advancement.

Ultimately, the future of viticulture hinges on the seamless integration of sensor networks, predictive analytics and adaptive management practices. By aligning technological capabilities with agronomic expertise, growers can achieve enhanced resource efficiency, superior fruit quality and resilient operations in the face of climatic uncertainties.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. AI-driven yield prediction models optimize grape production under variable climate conditions
  • 5.2. Drone-based hyperspectral imaging coupled with machine learning for vineyard disease detection and management
  • 5.3. Integration of soil moisture sensor networks and weather forecasting for precision irrigation scheduling across vineyard blocks
  • 5.4. Deployment of autonomous vineyard robots for targeted weeding, harvesting and canopy management to reduce labor costs
  • 5.5. Blockchain-enabled traceability platforms ensuring end-to-end provenance and quality assurance for premium wine consumers
  • 5.6. Real-time remote sensing via satellite and UAV data fusion to monitor vine health and optimize harvest timing
  • 5.7. Implementation of digital twin technology to simulate vineyard performance under varying environmental and management scenarios
  • 5.8. Implementation of variable-rate irrigation powered by soil moisture sensor networks
  • 5.9. Deployment of autonomous ground vehicles for canopy management and targeted spraying
  • 5.10. Development of predictive analytics platforms for harvest timing optimization in vineyards

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Precision Viticulture Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Actuators
    • 8.2.2. Communication Modules
    • 8.2.3. Imaging Devices
    • 8.2.4. Sensors
      • 8.2.4.1. Humidity Sensors
      • 8.2.4.2. PH Sensors
      • 8.2.4.3. Soil Moisture Sensors
      • 8.2.4.4. Temperature Sensors
  • 8.3. Services
    • 8.3.1. Consulting
    • 8.3.2. Integration & Testing
    • 8.3.3. Maintenance & Support
  • 8.4. Software
    • 8.4.1. Farm Management Information Systems (FMIS)
    • 8.4.2. Mapping & Visualization
    • 8.4.3. Predictive Analytics & Simulation

9. Precision Viticulture Market, by Technology

  • 9.1. Introduction
  • 9.2. Data Management Software
  • 9.3. GIS and GPS
    • 9.3.1. Geospatial Analysis
    • 9.3.2. Vineyard Mapping
  • 9.4. Remote Sensing
  • 9.5. Sensor Technology
  • 9.6. Variable Rate Technology (VRT)
    • 9.6.1. Variable Rate Fertilization
    • 9.6.2. Variable Rate Irrigation
    • 9.6.3. Variable Rate Pesticide Application

10. Precision Viticulture Market, by Application

  • 10.1. Introduction
  • 10.2. Crop Scouting and Health Monitoring
  • 10.3. Harvest Planning
  • 10.4. Irrigation Management
    • 10.4.1. Drip Irrigation Optimization
    • 10.4.2. Spray Irrigation Management
    • 10.4.3. Sprinkler Irrigation Control
  • 10.5. Pest and Disease Control
  • 10.6. Soil Monitoring and Analysis
  • 10.7. Yield Monitoring and Forecasting

11. Precision Viticulture Market, by End User

  • 11.1. Introduction
  • 11.2. Large-Scale Vineyards & Commercial Wineries
  • 11.3. Medium & Small-Scale Vineyards
  • 11.4. Research Institutions & Agricultural Bodies
  • 11.5. Viticulture Cooperatives & Associations

12. Precision Viticulture Market, by Deployment Mode

  • 12.1. Introduction
  • 12.2. Cloud-Based Solutions
  • 12.3. On-Premise Solutions

13. Americas Precision Viticulture Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Precision Viticulture Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Precision Viticulture Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. AGCO Corporation
    • 16.3.2. AHA Viticulture
    • 16.3.3. ATEKNEA SOLUTIONS CATALONIA S.L.
    • 16.3.4. Atlas Vineyard Management, LLC
    • 16.3.5. CNH Industrial N.V.
    • 16.3.6. Coastal Vineyard Care Associates
    • 16.3.7. Deere & Company
    • 16.3.8. eVineyard
    • 16.3.9. Groupe ICV
    • 16.3.10. Hexagon AB
    • 16.3.11. Kubota Corporation
    • 16.3.12. Lallemand Inc
    • 16.3.13. TeeJet Technologies
    • 16.3.14. Trimble Inc.
    • 16.3.15. Vinescapes Services Limited

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦