시장보고서
상품코드
1806304

파력 및 조력 에너지 시장 : 기술 유형별, 구성요소 유형별, 설치 유형별, 최종 용도별, 최종사용자별 - 세계 예측(2025-2030년)

Wave & Tidal Energy Market by Technology Type, Component Type, Installation Type, End-Use Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

파력 및 조력 에너지 시장은 2024년에는 21억 3,000만 달러로 평가되었으며, 2025년에는 25억 4,000만 달러, CAGR 18.81%로 성장하여 2030년에는 60억 1,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 21억 3,000만 달러
추정 연도 2025년 25억 4,000만 달러
예측 연도 2030년 60억 1,000만 달러
CAGR(%) 18.81%

재생에너지 발전을 전 세계적으로 변화시키는 지속가능한 프론티어로서 파력 및 조력 에너지의 강력한 잠재력을 발견합니다.

전 세계적으로 청정에너지에 대한 관심이 높아지면서 해양의 거대한 힘을 활용하는 것에 대한 관심이 높아지고 있습니다. 파력 에너지와 조력 에너지는 가장 예측 가능하고 미개발된 재생 가능 자원으로 태양광과 풍력발전을 보완하는 귀중한 자원입니다. 각국이 전력시스템의 탈탄소화를 위해 노력하는 가운데, 해양에너지의 매력은 작은 외형적 발자국, 낮은 이산화탄소 배출량, 안정적인 기저부하 전력을 공급할 수 있다는 점에서 점점 더 커지고 있습니다. 이 소개에서는 에너지 안보를 강화하고 지속가능한 목표를 달성하기 위해 해양의 힘을 활용하는 것의 중요성을 설명합니다.

기술적, 전략적 발전이 가속화되는 가운데, 파력 및 조력 에너지 분야의 진화를 촉진하는 역동적인 힘을 밝힙니다.

해양 에너지의 상황은 밸류체인 전반에 걸친 기술적 혁신과 전략적 재편이 이루어짐에 따라 큰 변화를 겪고 있습니다. 장치의 모듈화가 핵심 설계 원칙이 되어 개발자가 구성요소를 빠르게 반복하고 리드 타임을 단축할 수 있게 되었습니다. 이러한 추세는 디지털 트윈 플랫폼에 의해 보완되어 실시간 데이터 분석을 활용하여 유지보수 일정을 개선하고 수중 기계의 가동 수명을 연장하는 데 도움이 되고 있습니다. 그 결과, 비용 동인은 프로토타입에서 예측 가능한 생산 주기와 간소화된 설치 프로세스로 이동하고 있습니다.

미국의 최근 관세 정책이 파력 및 조력 에너지 산업의 역동성과 투자 흐름에 미치는 원거리 영향 평가

2025년 초에 도입된 미국의 관세 조치는 해양 에너지 장비의 세계 공급망 전체에 파문을 일으키고 있습니다. 이 관세 조치는 국내 제조업체를 보호하기 위한 것이지만, 특수 부품에 의존하는 국제 개발 기업에게는 비용 압박 요인으로 작용하고 있습니다. 예를 들어, 동적 조력 발전 및 진동식 물기둥 장치 제조업체는 해외에서 계류 시스템을 조달하고 있지만, 공급업체가 새로운 규정 준수 요구 사항을 충족시키기 위해 리드 타임이 연장되었습니다.

해양 에너지 분야의 기술 유형, 구성요소, 설치 방법, 응용 분야, 최종사용자에 대한 중요한 세분화 관점을 밝힙니다.

다양한 세분화 측면에 대한 인사이트를 통해 프로젝트의 실현 가능성과 성과를 형성하는 미묘한 요인을 파악할 수 있습니다. 기술 유형이라는 렌즈를 통해 볼 때, 동적 조력 발전, 갯벌, 조간대, 조수간만, 조류 발전기와 같은 조력 에너지 접근 방식은 감쇠기, 점 흡수기, 진동수 기둥, 오버탑 장치, 회전 질량 시스템과 같은 진동체 컨버터를 포함한 파력 에너지 컨버터와 현저한 대조를 이룹니다. 대조적입니다. 예측 가능한 조류를 이용하는 것부터 표면파의 물결치는 움직임을 이용하는 것까지, 각각의 기술적 경로는 뚜렷한 장점과 엔지니어링 과제를 제공합니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양 지역의 해양 에너지 성장 궤도에 영향을 미치는 전략적 지역 역학 매핑

지역 정세는 해양에너지 개발의 다양한 기회와 도전과제를 보여주고 있습니다. 아메리카 대륙에서는 재생에너지의 다양화에 대한 강한 관심으로 인해 양 해안에 시범 도입이 이루어지고 있으며, 연방 정부의 연구 보조금을 통해 대학과 민간 기업이 온대 해역에서 조류 발전기를 테스트하고 있습니다. 현지 공급망은 이미 확립된 해상 풍력 제조의 혜택을 누리고 있으며, 부품 제조 및 선박 동원에 있어 시너지를 발휘할 수 있습니다.

진화하는 파력 및 조력 에너지 시장 상황에서 혁신적 경로와 협력적 노력을 형성하고 있는 저명한 업계 리더를 소개합니다.

주요 기업들은 진화하는 시장 수요에 맞춰 자체 기술 파이프라인을 조정함으로써 경쟁 우위를 점하고 있습니다. 조류발전기 전문 기업들은 에너지 포집량을 극대화하기 위해 로터 설계를 진행하고 있으며, 파력에너지 혁신 기업들은 탄력적인 소재와 적응형 계류 시스템을 통해 장비의 생존성을 높이는 데 주력하고 있습니다. 장비 제조업체와 해양 서비스 제공업체와의 전략적 제휴를 통해 설치 및 유지보수 작업을 간소화하고 선박의 소요 시간과 운영 비용을 절감할 수 있습니다.

파력 및 조력 에너지 생태계의 지속가능한 발전을 가속화하기 위해 이해 관계자에게 구체적인 전략과 적극적인 조치를 제공합니다.

업계 리더들은 관세 변동과 물류 중단에 대한 리스크를 줄이기 위해 부품 공급처를 다양화하고 현지 제조 파트너십을 육성하여 공급망 복원력을 우선시해야 합니다. 계류 시스템 및 전기 인프라의 지역 제조 허브를 구축함으로써 조직은 납품 일정을 유지하고 동시에 인력 개발 이니셔티브를 지원할 수 있습니다.

해양 에너지 시장 조사를 위한 정성적 인사이트 정량적 분석과 엄격한 검증을 통합한 종합적인 조사 접근법의 개요입니다.

본 조사는 파력 및 조력 에너지 기술의 진화를 매핑하기 위해 기술 문헌, 특허 출원, 정책 백서, 학술 간행물을 조사하는 광범위한 탁상 조사에서 시작하여 다층적인 접근 방식을 통합하고 있습니다. 이러한 인사이트는 장비 설계자, 해양 생태학자, 항만 운영자, 금융 전문가 등 각 분야의 전문가들과의 1차 인터뷰를 통해 보완되어 공학적인 타당성과 상업적 타당성 모두에 대한 균형 잡힌 관점을 확보할 수 있었습니다.

파력 및 조력 에너지 부문의 지속가능성 및 동반성장 강화를 위한 핵심 요점 및 장기적 비전 요약

파력 및 조력 에너지는 예측 가능하고 환경 친화적인 전력 솔루션을 제공함으로써 기존 재생에너지 포트폴리오를 보완할 준비가 되어 있습니다. 장비 설계, 디지털 모니터링, 자금 조달 메커니즘의 종합적인 발전은 진입 장벽을 낮추고 프로젝트의 신뢰성을 향상시키고 있습니다. 그럼에도 불구하고 부품 공급망 최적화, 규제 프레임워크의 조화, 다양한 해양 조건에서의 대규모 실증 검증 등 과제가 산적해 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 파력 및 조력 에너지 시장 : 기술 유형별

  • 조력 에너지 기술
    • 동적 조력발전
    • 조석 댐
    • 조석 라군
    • 조류 발생기
  • 파력 에너지 기술
    • 진동체 컨버터
      • 감쇠기
      • 포인트 업소버
    • 진동수주(OWC)
    • 월류 장비
    • 회전 질량 시스템

제9장 파력 및 조력 에너지 시장 : 구성요소 유형별

  • 케이블과 접속
  • 전기 인프라
  • 제너레이터
  • 계류와 기초
  • 파워 테이크 오프 시스템

제10장 파력 및 조력 에너지 시장 : 설치 유형별

  • 고정 구조
  • 플로팅 플랫폼
  • 해저 유닛

제11장 파력 및 조력 에너지 시장 : 최종 용도별

  • 담수화
  • 발전
  • 연구개발
  • 물 펌핑

제12장 파력 및 조력 에너지 시장 : 최종사용자별

  • 상업용
  • 산업
  • 주거용
  • 유틸리티

제13장 아메리카의 파력 및 조력 에너지 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 파력 및 조력 에너지 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 파력 및 조력 에너지 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Aqua Energy Group Ltd
    • AW-Energy Oy
    • Blue Energy Canada Inc.
    • Bombora Wave Power Pty Ltd
    • Carnegie Clean Energy Limited
    • CorPower Ocean AB
    • Eco Wave Power Global AB
    • EDP Renovaveis, S.A.
    • GE Vernova
    • HydroQuest SAS
    • Irish Hydro
    • Minesto AB
    • Mocean Energy Limited
    • NEMOS GmbH
    • Nova Innovation Ltd
    • Ocean Power Technologies, Inc.
    • Ocean Renewable Power Company, LLC
    • Oscilla Power Inc.
    • Seabased AB
    • SIMEC Atlantis Energy Limited
    • Tocardo International BV
    • Verdant Power, Inc.
    • Verlume Limited
    • Wave Swell Energy Ltd

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

KSM 25.09.12

The Wave & Tidal Energy Market was valued at USD 2.13 billion in 2024 and is projected to grow to USD 2.54 billion in 2025, with a CAGR of 18.81%, reaching USD 6.01 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.13 billion
Estimated Year [2025] USD 2.54 billion
Forecast Year [2030] USD 6.01 billion
CAGR (%) 18.81%

Discovering the Powerful Potential of Wave and Tidal Energy as a Sustainable Frontier Transforming Renewable Power Generation Globally

The global pursuit of clean energy solutions has intensified interest in harnessing the immense power of the ocean. Wave and tidal energy represent two of the most predictable and underexploited renewable resources, offering a valuable complement to solar and wind generation. As nations strive to decarbonize their power systems, the appeal of marine energy has grown, driven by its minimal visual footprint, low carbon lifecycle emissions, and capacity to deliver consistent baseload power. This introduction frames the significance of tapping ocean forces to bolster energy security and achieve sustainability goals.

Recent advances in hydrodynamic simulation, materials science, and sensor technologies have spurred a wave of innovation in device design. Beyond proof-of-concept prototypes, commercial-scale projects are beginning to demonstrate viable returns under supportive policy regimes. Meanwhile, collaborative efforts across academia, industry, and government have accelerated knowledge transfer, enhancing resource assessment methodologies and optimizing deployment strategies. These factors collectively underscore the transformational potential of wave and tidal technologies and set the stage for deeper analysis.

Moreover, growing public awareness of climate risks and mounting pressure to adhere to international emission targets have intensified investments in next-generation renewables. Governments are enacting incentive programs, streamlining permitting frameworks, and fostering public-private partnerships. As you explore this report, consider how these evolving conditions create momentum for wave and tidal energy to emerge from niche experimentation into mainstream energy portfolios.

Unveiling the Dynamic Forces Driving Evolution in the Wave and Tidal Energy Sector Amidst Accelerated Technological and Strategic Progress

The marine energy landscape is undergoing a profound transformation, driven by converging technological breakthroughs and strategic realignments across the value chain. Device modularity has become a central design philosophy, allowing developers to iterate components rapidly and reduce lead times. This trend is complemented by digital twin platforms that leverage real-time data analytics to refine maintenance schedules and extend operational lifespans of submerged machinery. Consequently, cost drivers are shifting from prototypes toward predictable production cycles and streamlined installation processes.

Furthermore, financing mechanisms have evolved to de-risk large-scale deployments. Green bonds and sustainability-linked loans are increasingly underwriting wave and tidal ventures, reflecting investor confidence in predictable revenue streams. Policy shifts have also played a pivotal role, with emerging market frameworks embedding marine energy targets into national decarbonization roadmaps. These regulatory developments have enhanced bilateral collaborations, enabling regional hubs to share best practices and accelerate technology transfer.

Importantly, ecosystem integration is gaining traction as developers explore co-location with offshore wind farms and aquaculture operations. Such synergies enhance grid connectivity and maximize returns on marine infrastructure investments. In parallel, community engagement initiatives are setting new standards for environmental monitoring, ensuring that biodiversity considerations remain central to project execution. Taken together, these transformative shifts signal a maturation of wave and tidal energy from experimental ventures to scalable, resilient power solutions.

Assessing the Far-Reaching Consequences of Recent United States Tariff Policies on Wave and Tidal Energy Industry Dynamics and Investment Flows

United States tariff measures introduced in early 2025 have created ripples throughout the global supply chain for marine energy equipment. While intended to protect domestic manufacturers, these duties have introduced cost pressures for international developers reliant on specialized components. For instance, dynamic tidal power and oscillating water column device producers sourcing mooring systems from overseas have faced extended lead times as suppliers navigate new compliance requirements.

In response, several manufacturers have begun localizing critical subassembly lines for cables, electrical infrastructure enclosures, and power take-off systems. This repatriation of production mitigates exposure to tariff fluctuations but often entails significant capital outlays and workforce training programs. Simultaneously, some technology licensors are renegotiating licensing agreements to accommodate joint-venture models that qualify for tariff exemptions under specific trade agreements.

Looking ahead, adaptation strategies are emerging across the industry. Developers are exploring hybrid procurement models, mixing imported turbine blades with domestically fabricated generators to optimize cost structures and maintain project timelines. At the same time, policymakers are evaluating tariff reviews and targeted waivers to preserve momentum in marine energy adoption. Although short-term disruptions persist, these collective adjustments underscore the industry's agility in navigating evolving trade landscapes while safeguarding progress toward decarbonization objectives.

Revealing Critical Segmentation Perspectives Across Technology Types Components Installation Methods Applications and End Users in the Marine Energy Sector

Insights across varied segmentation dimensions reveal nuanced drivers shaping project feasibility and performance. When viewed through the lens of technology type, tidal energy approaches such as dynamic tidal power, tidal barrages, tidal lagoons, and tidal stream generators contrast markedly with wave energy converters including oscillating body converters in the form of attenuators and point absorbers, oscillating water columns, overtopping devices, and rotating mass systems. Each technological pathway offers distinct benefits and engineering challenges, from harnessing predictable tidal currents to capturing the undulating motion of surface waves.

Component type analysis underscores the vital roles of cables and connections linking seabed turbines to onshore substations, robust electrical infrastructure housing grid-interface equipment, and power take-off systems that convert kinetic forces into controllable electricity. Generators and mooring and foundation assemblies demand precise materials selection to withstand corrosive marine environments while minimizing installation complexity. Installation type segmentation further deepens understanding by comparing fixed structures anchored to the seabed against floating platforms designed for deeper waters and subsea units optimized for minimal surface footprint.

End-use applications span desalination projects producing freshwater for coastal communities, utility-scale power generation feeding national grids, research and development facilities validating next-generation devices, and water pumping systems supporting remote operations. Across this spectrum, end users ranging from commercial enterprises and industrial operators to residential microgrid integrators and public utilities define distinct procurement criteria, risk tolerances, and operational benchmarks. As evidenced, segmentation analysis illuminates strategic entry points and guides targeted technology roadmaps.

Mapping Strategic Regional Dynamics Impacting the Growth Trajectory of Marine Energy Across the Americas Europe Middle East Africa and Asia Pacific Regions

Regional landscapes present diverse opportunities and challenges for marine energy development. In the Americas, strong interest in renewable diversification has led to pilot deployments along both coasts, with federal research grants fostering universities and private firms to test tidal stream generators in temperate waters. Local supply chains benefit from established offshore wind manufacturing, enabling synergies in component fabrication and vessel mobilization.

Over in Europe, Middle East and Africa, regulatory support frameworks are among the most advanced globally, with several coastal nations instituting quotas and feed-in tariffs for wave and tidal systems. Demonstration zones in the North Sea and Atlantic have attracted multinational collaborations, showcasing scalable dynamic tidal power prototypes and pioneering energy-transfer hubs. In certain Mediterranean and African coastal regions, desalination partnerships illustrate how marine energy underpins critical water management solutions.

Meanwhile, Asia-Pacific economies are rapidly emerging as influential players. Governments in nations with extensive coastlines are channeling infrastructure funds into floating platform innovations, leveraging domestic shipbuilding expertise. Collaborative research programs between academic institutes and local utilities are accelerating oscillating water column projects in temperate and tropical zones. This regional momentum, coupled with competitive manufacturing capacities, positions the Asia-Pacific to drive down technology costs and catalyze broader global adoption.

Highlighting Prominent Industry Leaders Shaping Innovative Pathways and Collaborative Endeavors within the Evolving Wave and Tidal Energy Market Landscape

Leading companies are carving out competitive advantages by aligning proprietary technology pipelines with evolving market demands. Firms specializing in tidal stream generators are advancing rotor designs to maximize energy capture, while wave energy innovators focus on enhancing device survivability through resilient materials and adaptive mooring systems. Strategic alliances between equipment manufacturers and offshore service providers are streamlining installation and maintenance operations, reducing vessel time and operational expenditure.

Several players have embraced open-architecture platforms, enabling third-party developers to integrate custom control systems and data analytics modules. This interoperability fosters ecosystem growth by lowering barriers to entry and promoting collaborative testing of new subsystems under real-world conditions. At the same time, vertically integrated enterprises are optimizing end-to-end workflows, from site assessment and consent acquisition to grid connection planning and asset management.

Moreover, forward-looking companies are investing in digital infrastructure that underpins predictive maintenance and lifecycle cost modeling. By deploying underwater sensor networks and remote monitoring consoles, these organizations are transforming service delivery from reactive to proactive, ensuring higher availability rates and extended operational horizons. Together, these strategic orientations illustrate how leading industry actors are orchestrating technological, commercial, and operational innovations to define the next chapter of marine energy evolution.

Delivering Concrete Strategies and Proactive Measures for Stakeholders to Accelerate Sustainable Advancements in the Wave and Tidal Energy Ecosystem

Industry leaders should prioritize supply chain resilience by diversifying component sources and fostering local manufacturing partnerships to mitigate exposure to tariff volatility and logistics disruptions. By establishing regional fabrication hubs for mooring systems and electrical infrastructure, organizations can maintain delivery schedules and support workforce development initiatives simultaneously.

Next, cultivating cross-sector collaborations with offshore wind, aquaculture, and desalination stakeholders can unlock shared infrastructure benefits. Integrating wave and tidal energy devices alongside existing marine operations reduces capital intensity and accelerates permitting processes. Additionally, co-location strategies enhance stakeholder value by distributing fixed costs and expanding revenue streams through service bundling.

Investments in pilot scale-ups and demonstration clusters are essential to validate emerging device configurations under diverse environmental conditions. Engaging with port authorities and research institutions ensures robust environmental monitoring and social acceptance. Through iterative testing, firms can refine installation methodologies and validate maintenance protocols, driving down operations and maintenance costs over successive deployments.

Finally, active policy engagement is critical to establish stable incentive frameworks and harmonize standards across jurisdictions. Thought leadership in regulatory forums and technical committees can influence grid connection policies, consenting processes, and eligibility criteria for sustainability financing. By shaping conducive market environments, industry stakeholders will accelerate the transition from demonstration projects to commercial-scale deployments.

Outlining the Comprehensive Research Approach Integrating Qualitative Insights Quantitative Analyses and Rigorous Validation for Marine Energy Market Study

This research integrates a multi-layered approach, commencing with extensive desk research that surveyed technical literature, patent filings, policy white papers, and academic publications to map the evolution of wave and tidal energy technologies. These insights were complemented by primary interviews with domain experts spanning device designers, marine ecologists, port operators, and finance professionals, ensuring a balanced perspective on both engineering feasibility and commercial viability.

Quantitative analyses employed process-based modeling to assess energy yield projections and cost drivers for different technology configurations. Sensitivity scenarios were developed to explore the impact of key variables such as resource variability, component costs, and tariff regimes on project economics. These models were cross-validated through industry workshops, where participants reviewed assumptions and provided real-world feedback on emerging trends.

To guarantee rigor, the methodology incorporated third-party data sources for environmental conditions and grid integration constraints. Advisory panels facilitated peer review and challenged hypotheses, resulting in refined conclusions grounded in robust evidence. Throughout the study, a continuous feedback loop ensured that evolving policy announcements and technological breakthroughs were incorporated up to final publication, delivering a reliable and forward-looking analysis of the marine energy landscape.

Summarizing Core Takeaways and Long-Term Vision to Propel the Wave and Tidal Energy Sector toward Enhanced Sustainability and Collaborative Growth

Wave and tidal energy are poised to complement existing renewable portfolios by delivering predictable and environmentally compatible power solutions. The collective advancements in device design, digital monitoring, and financing mechanisms have lowered entry barriers and improved project reliability. Nonetheless, challenges persist in optimizing component supply chains, harmonizing regulatory frameworks, and validating large-scale demonstrations under diverse oceanographic conditions.

Strategic segmentation reveals clear pathways for targeted deployment, whether through dynamic tidal power in high-flow estuaries, oscillating body converters in energetic wave climates, or fixed and floating platforms adapted to local seabed characteristics. Regional analyses further illustrate how government support, local manufacturing capabilities, and cross-sector synergies drive adoption in the Americas, EMEA, and Asia-Pacific arenas. Meanwhile, leading companies are setting benchmarks for collaboration, interoperability, and proactive maintenance strategies.

As the industry evolves, actionable recommendations underscore the importance of robust partnerships, localized production, and active policy engagement. By aligning strategic initiatives with technological readiness and environmental stewardship, stakeholders can accelerate the shift from pilot projects to commercially sustainable operations. Ultimately, a cohesive market development strategy will be instrumental in unlocking the full promise of marine energy as a cornerstone of the global clean energy transition.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advancements in floating tidal turbine technology reducing maintenance costs
  • 5.2. Integration of wave energy converters into existing offshore wind farms
  • 5.3. Government incentives driving accelerated deployment of marine energy projects
  • 5.4. Enhanced grid connectivity solutions for stable wave and tidal power supply
  • 5.5. Use of artificial intelligence for real-time performance monitoring of tidal arrays
  • 5.6. Development of hybrid renewable platforms combining solar, wind, and marine energy
  • 5.7. Increased private sector investments fueling large-scale wave energy farms
  • 5.8. Environmental impact assessments shaping sustainable marine energy development
  • 5.9. Standardization efforts reducing certification barriers for tidal energy devices
  • 5.10. Collaborative research initiatives targeting high-efficiency wave energy harvesting

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Wave & Tidal Energy Market, by Technology Type

  • 8.1. Introduction
  • 8.2. Tidal Energy Technology
    • 8.2.1. Dynamic Tidal Power
    • 8.2.2. Tidal Barrages
    • 8.2.3. Tidal Lagoons
    • 8.2.4. Tidal Stream Generators
  • 8.3. Wave Energy Technology
    • 8.3.1. Oscillating Body Converters
      • 8.3.1.1. Attenuators
      • 8.3.1.2. Point Absorbers
    • 8.3.2. Oscillating Water Column (OWC)
    • 8.3.3. Overtopping Devices
    • 8.3.4. Rotating Mass Systems

9. Wave & Tidal Energy Market, by Component Type

  • 9.1. Introduction
  • 9.2. Cables & Connections
  • 9.3. Electrical Infrastructure
  • 9.4. Generator
  • 9.5. Mooring & Foundation
  • 9.6. Power Take-Off System

10. Wave & Tidal Energy Market, by Installation Type

  • 10.1. Introduction
  • 10.2. Fixed Structure
  • 10.3. Floating Platform
  • 10.4. Subsea Unit

11. Wave & Tidal Energy Market, by End-Use Application

  • 11.1. Introduction
  • 11.2. Desalination
  • 11.3. Power Generation
  • 11.4. Research & Development
  • 11.5. Water Pumping

12. Wave & Tidal Energy Market, by End User

  • 12.1. Introduction
  • 12.2. Commercial
  • 12.3. Industrial
  • 12.4. Residential
  • 12.5. Utilities

13. Americas Wave & Tidal Energy Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Wave & Tidal Energy Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Wave & Tidal Energy Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Aqua Energy Group Ltd
    • 16.3.2. AW-Energy Oy
    • 16.3.3. Blue Energy Canada Inc.
    • 16.3.4. Bombora Wave Power Pty Ltd
    • 16.3.5. Carnegie Clean Energy Limited
    • 16.3.6. CorPower Ocean AB
    • 16.3.7. Eco Wave Power Global AB
    • 16.3.8. EDP Renovaveis, S.A.
    • 16.3.9. GE Vernova
    • 16.3.10. HydroQuest SAS
    • 16.3.11. Irish Hydro
    • 16.3.12. Minesto AB
    • 16.3.13. Mocean Energy Limited
    • 16.3.14. NEMOS GmbH
    • 16.3.15. Nova Innovation Ltd
    • 16.3.16. Ocean Power Technologies, Inc.
    • 16.3.17. Ocean Renewable Power Company, LLC
    • 16.3.18. Oscilla Power Inc.
    • 16.3.19. Seabased AB
    • 16.3.20. SIMEC Atlantis Energy Limited
    • 16.3.21. Tocardo International BV
    • 16.3.22. Verdant Power, Inc.
    • 16.3.23. Verlume Limited
    • 16.3.24. Wave Swell Energy Ltd

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제