½ÃÀ庸°í¼­
»óǰÄÚµå
1806322

Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå : À¯Çü, Á¦°ø, ±â¼ú, ¿ëµµ, ¾÷°èº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Artificial Intelligence in Manufacturing Market by Types, Offering, Technology, Application, Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 59¾ï 1,000¸¸ ´Þ·¯·Î, 2025³â¿¡´Â 79¾ï 8,000¸¸ ´Þ·¯, CAGR 36.28%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 379¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 59¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 79¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 379¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 36.28%

Á¦Á¶ »ê¾÷¿¡¼­ AI ÅëÇÕÀÇ ±â¹ÝÀÌ µÇ´Â ÇÙ½É µ¿ÀÎÀ» ޱ¸Çϰí, ¿î¿µ ¿ì¼ö¼º°ú »ê¾÷ °æÀï·ÂÀ» ÀçÁ¤ÀÇ

ÀΰøÁö´ÉÀº ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¸¦ ºü¸£°Ô ÃÊ¿ùÇÏ¿© Çö´ë Á¦Á¶ ¿î¿µÀÇ ±âº» ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¿À´Ã³¯ÀÇ °æÀï ȯ°æ¿¡¼­ ÀÇ»ç°áÁ¤ÀÚµéÀº ±â¼ú Çõ½Å, Àη ÁøÈ­, °ø±Þ¸Á ÆÐ·¯´ÙÀÓ º¯È­ÀÇ ÇÕ·ùÁ¡À» Ž»öÇØ¾ß ÇÏ´Â °úÁ¦¸¦ ¾È°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ ¹ßÀüºÎÅÍ ¿§Áö ÄÄÇ»ÆÃÀÇ ´ëÁßÈ­±îÁö ÇÙ½É Ã˸ÅÁ¦¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº AI ±â´É°ú Àü·«Àû ±¸»óÀ» ¿¬°èÇÏ¿© »ý»ê¼º°ú ȸº¹·ÂÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

÷´Ü ÀΰøÁö´É Çõ½Å°ú µðÁöÅÐ ÄÁ¹öÀü½º Àü·«À» ÅëÇØ Çö´ë Á¦Á¶¾÷À» Çü¼ºÇÏ´Â ¸Å¿ì Áß¿äÇÑ º¯ÇõÀû º¯È­¸¦ ¹àÈü´Ï´Ù.

µðÁöÅÐ ÄÁ¹öÀü½º¿Í AI ±â¹Ý ÀÚµ¿È­°¡ »ý»ê °øÁ¤À» ÀçÁ¤ÀÇÇÏ´Â °¡¿îµ¥, Á¦Á¶¾÷Àº ÆÐ·¯´ÙÀÓÀÇ ÀüȯÀ» °æÇèÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¸Ó½ÅºñÀü ½Ã½ºÅÛÀº ¹Ì¼¼ÇÑ °áÇÔÀ» ½Ç½Ã°£À¸·Î °¨ÁöÇÒ ¼ö ÀÖÀ¸¸ç, ³¶ºñ¸¦ Å©°Ô ÁÙÀÌ°í ´õ ³ôÀº ǰÁú ±âÁØÀ» º¸ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ Ç÷§ÆûÀº ºÐ»êÇü µ¥ÀÌÅÍ Ã³¸®¸¦ ÅëÇØ Àåºñ°¡ Áö¿¬ ½Ã°£ ¾øÀÌ ±¹¼ÒÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Çϰí, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó´Â Àü·«Àû °èȹÀ» À§ÇÑ Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ Áý°è¸¦ ÃËÁøÇÕ´Ï´Ù.

2025³â ¹Ì±¹ ¹«¿ª °ü¼¼ÀÇ ´©Àû ¹ßµ¿ÀÌ °ø±Þ¸Á ±â¼ú ÅõÀÚ¿Í ¼¼°è Á¦Á¶ °ü°è¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ºÐ¼®

¹Ì±¹ÀÌ 2025³â ¹«¿ª °ü¼¼ ÀλóÀ» µµÀÔÇÔ¿¡ µû¶ó Á¦Á¶ ±â¾÷Àº ¼¼°è Á¶´Þ Àü·«À» ÀçÆò°¡Çϰí ź·ÂÀûÀÎ °ø±Þ¸ÁÀ» À§ÇØ ÀÚº» ¹èºÐÀ» Á¶Á¤Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚ ºÎǰ ¹× ÀüÀÚ Àåºñ¿¡ ´ëÇÑ ¼öÀÔ °ü¼¼°¡ °­È­µÊ¿¡ µû¶ó Á¶´ÞÆÀÀº °ø±Þ¾÷ü ³×Æ®¿öÅ©¸¦ ´Ù¾çÈ­Çϰųª ÃÖÁ¾ ½ÃÀå°ú °¡±î¿î °÷¿¡¼­ »ý»êÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ±× °á°ú, ¸¹Àº ±â¾÷ÀÌ À¯¸®ÇÑ ¹«¿ªÇùÁ¤À» Ȱ¿ëÇÏ°í °ü¼¼ º¯µ¿¿¡ ´ëÇÑ ³ëÃâÀ» ÁÙÀÏ ¼ö ÀÖ´Â Áö¿ª ½Ã¼³¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

AI¸¦ Ȱ¿ëÇÑ Á¦Á¶¾÷ÀÇ ÀÎÅÚ¸®Àü½º À¯Çü, Á¦°ø ±â¼ú, ¿ëµµ, »ê¾÷º° ¼¼ºÐÈ­¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÀλçÀÌÆ® Á¦°ø

¿©·¯ ¼¼ºÐÈ­ ·»Á ÅëÇØ ½ÃÀåÀ» Á¶»çÇÏ¸é ±íÀº ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. Áö´ÉÀÇ À¯Çü¿¡ µû¸¥ ¼¼ºÐÈ­¸¦ ÅëÇØ º¸Á¶ Áö´ÉÀÌ ±â¹ÝÀÌ µÇ´Â ÇÑÆí, ¿£µåÅõ¿£µå ÇÁ·Î¼¼½º ¿ÀÄɽºÆ®·¹À̼ÇÀ» À§ÇØ ÀÚÀ² Áö´ÉÀÌ ÁÖ¸ñ¹Þ°í ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ¿Í ±×·¡ÇÈ ÇÁ·Î¼¼½Ì À¯´ÖÀº ½Ç½Ã°£ ºÐ¼®¿¡ ÇÊ¿äÇÑ ¿¬»ê ´É·ÂÀ» Á¦°øÇϰí, ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­ À¯´ÖÀº Á¦¾î °èÃþÀÇ Ä¿½ºÅ͸¶ÀÌ¡À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, µµÀÔ ¹× ÅëÇÕ¿¡¼­ Áö¿ø ¹× À¯Áöº¸¼ö¿¡ À̸£´Â ¼­ºñ½º´Â ¿øÈ°ÇÑ µµÀÔÀ» º¸ÀåÇϰí, ºÐ¼® Ç÷§Æû¿¡¼­ ÇÁ·Î¼¼½º ¸ð´ÏÅ͸µ ÀÎÅÍÆäÀ̽º¿¡ À̸£´Â ¼ÒÇÁÆ®¿þ¾î Á¦Ç°±ºÀº Áö¼ÓÀûÀÎ °³¼±¿¡ ÇʼöÀûÀÎ Åõ¸í¼ºÀ» Á¦°øÇÕ´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÁÖ¿ä Áö¿ª ¿ªÇÐÀ» ¸ÅÇÎÇÏ¿© Á¦Á¶¾÷ÀÇ AI µµÀÔ ÆÐÅÏÀ» ÆÄ¾Ç

Á¦Á¶¾÷ÀÇ AI µµÀÔ ±ËÀûÀ» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, Áö¿ªÀû ¿ªÇÐÀº °áÁ¤ÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì ´ë·úÀÇ ±âÁ¸ »ê¾÷ ÇãºêµéÀº ÅëÇÕµÈ °ø±Þ¸Á°ú °­·ÂÇÑ µðÁöÅÐ ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÏ¿©, ƯÈ÷ ÀÚµ¿Â÷ Á¶¸³ ¹× ÀǾàǰ ǰÁú º¸Áõ ȯ°æ¿¡¼­ AI ¼Ö·ç¼ÇÀ» ºü¸£°Ô ½Ã¹ü µµÀÔÇÏ°í ±Ô¸ð¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Áö¼Ó°¡´É¼º ±¸»óÀ» ÃßÁøÇϸ鼭 ¿î¿µ ºñ¿ë Àý°¨¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

Á¦Á¶¾÷¿¡¼­ AI¸¦ Ȱ¿ëÇÑ Çõ½ÅÀ» ÁÖµµÇϴ ÷´Ü ±â¾÷ÀÇ Àü·«Àû ÇÁ·ÎÆÄÀϰú Çõ½ÅÀÇ ±ËÀûÀ» »ìÆìº¾´Ï´Ù.

Á¦Á¶ AI »ýŰèÀÇ ÁÖ¿ä ±â¾÷Àº Àü·«Àû ÆÄÆ®³Ê½Ê, µ¶ÀÚÀûÀÎ ±â¼ú °³¹ß, Ç¥ÀûÈ­µÈ Àμö¸¦ ÅëÇØ ½ÃÀåÀÇ ±Ëµµ¸¦ Á¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­ Á᫐ ±â¾÷Àº µö·¯´× ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ Àü¿ë ÇÁ·Î¼¼½Ì À¯´ÖÀ¸·Î Çϵå¿þ¾î Æ÷Æ®Æú¸®¿À¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¼ÒÇÁÆ®¿þ¾î ÇÁ·Î¹ÙÀÌ´õ´Â ±âÁ¸ ±â¾÷ ÀÚ¿ø °èȹ Ç÷§Æû¿¡ °í±Þ ºÐ¼® ¸ðµâÀ» ÅëÇÕÇÏ¿© Á¦Á¶ ÇöÀå¿¡¼­ °æ¿µÁøÀÇ ´ë½Ãº¸µå±îÁö ¿øÈ°ÇÑ °¡½Ã¼ºÀ» È®º¸ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

Á¦Á¶¾÷°è ¸®´õµéÀÌ ÀΰøÁö´ÉÀ» Ȱ¿ëÇÏ¿© ¿î¿µÀÇ È¸º¹·Â°ú ¼ºÀåÀ» °­È­ÇÒ ¼ö ÀÖµµ·Ï ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾ÈÀ» Á¦°ø

AIÀÇ ÀáÀç·ÂÀ» Ȱ¿ëÇϱâ À§ÇØ Á¦Á¶¾÷ ¸®´õµéÀº ¾÷¹« ³ëÇÏ¿ì¿Í µ¥ÀÌÅÍ »çÀ̾𽺠¼÷·Ãµµ¸¦ °áÇÕÇÑ ´ÙÇÐÁ¦Àû ÆÀ °³¹ß¿¡ ¿ì¼±¼øÀ§¸¦ µÎ¾î¾ß ÇÕ´Ï´Ù. ¿¹Áöº¸Àü, ÀÚµ¿ ǰÁú °Ë»ç µîÀÇ ºÐ¾ß¿¡ ÃÊÁ¡À» ¸ÂÃá ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¸¦ ½ÃÀÛÇÔÀ¸·Î½á ´Ü±â°£¿¡ ÀÔÁõ °¡´ÉÇÑ °¡Ä¡¸¦ ¾òÀ» ¼ö ÀÖÀ¸¸ç, ÀÌ´Â º¸´Ù ±¤¹üÀ§ÇÑ È®Àå ³ë·ÂÀÇ Ã»»çÁøÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Á÷¿ø Àç±³À° ÇÁ·Î±×·¥¿¡ ÅõÀÚÇÏ´Â °ÍÀº ºÎ¼­ °£ Çù¾÷À» À̲ø°í Çõ½ÅÀÇ ¸ð¸àÅÒÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â »ç³» èÇǾðÀ» À°¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

Á¦Á¶ ÇöÀåÀÇ ÀΰøÁö´É µµÀÔ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Áö¿øÇÏ´Â ¾ö°ÝÇÑ ¹æ¹ý·ÐÀû ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ë.

ÀÌ ºÐ¼®Àº Á¤¼ºÀû ¹× Á¤·®Àû Á¶»ç ¹æ¹ýÀ» ÅëÇÕÇÑ Á¾ÇÕÀûÀÎ ¹æ¹ý·ÐÀû ÇÁ·¹ÀÓ¿öÅ©¸¦ ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â ÁÖ¿ä Á¦Á¶¾÷°èÀÇ °æ¿µÁø, ¿£Áö´Ï¾î, µ¥ÀÌÅÍ »çÀ̾ð½ºÀÚ¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺä¿Í ¿öÅ©¼óÀ» ÁøÇàÇß½À´Ï´Ù. 2Â÷ Á¶»ç ÀÚ·á´Â ÇмúÁö, ¹é¼­, ¾÷°è º¸°í¼­, ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâÇÏ´Â ¼­·ù µî ´Ù¾çÇÑ Ãâó¸¦ ÅëÇØ ¸Æ¶ô ÀÌÇØÀÇ Æø°ú ±íÀ̸¦ º¸ÀåÇÕ´Ï´Ù.

Áß¿äÇÑ ¿¬±¸ °á°ú¸¦ ÅëÇÕÇϰí, ÀΰøÁö´ÉÀÇ ¹ßÀüÀÌ Á¦Á¶¾÷ÀÇ ¿ì¼ö¼ºÀÇ ¹Ì·¡¿¡ ¹ÌÄ¡´Â Á¾ÇÕÀûÀÎ Àǹ̸¦ °­Á¶

Çõ½ÅÀû ±â¼ú, ±ÔÁ¦ º¯È­, ¼¼ºÐÈ­ÀÇ ¿ªÇÐÀ» ÅëÇØ ÀΰøÁö´ÉÀ» Àü·«ÀûÀ¸·Î µµÀÔÇÏ´Â Á¶Á÷ÀÌ Áö¼Ó°¡´ÉÇÑ °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖ´Ù´Â ºÐ¸íÇÑ ¸íÁ¦°¡ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀ» Àü·«ÀûÀ¸·Î µµÀÔÇÏ´Â Á¶Á÷Àº Áö¼Ó°¡´ÉÇÑ °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¿ªÀû Â÷ÀÌ¿¡¼­ ¾òÀº ÀλçÀÌÆ®´Â ÀÎÇÁ¶ó, Àη °³¹ß, ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ Á¢±Ù ¹æ½ÄÀÌ ´Ù¾çÇÑ Á¦Á¶ »ê¾÷¿¡¼­ ¼º°øÀûÀÎ µµÀÔ¿¡ ÇʼöÀûÀ̶ó´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå : À¯Çüº°

  • Áö¿øÇü Áö´É
  • Áõ°­ Áö´É
  • ÀÚµ¿È­
  • ÀÚÀ²Çü Áö´É

Á¦9Àå Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå : Á¦°øº°

  • Çϵå¿þ¾î
    • Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)
    • ±×·¡ÇȽº ÇÁ·Î¼¼½Ì À¯´Ö(GPUS)
    • ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­ À¯´Ö(MPUS)
  • ¼­ºñ½º
    • ¹èÆ÷¿Í ÅëÇÕ
    • Áö¿ø°ú Á¤ºñ
  • ¼ÒÇÁÆ®¿þ¾î
    • ºÐ¼® ¼ÒÇÁÆ®¿þ¾î
    • ÇÁ·Î¼¼½º °¨½Ã ÀÎÅÍÆäÀ̽º

Á¦10Àå Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå : ±â¼úº°

  • ¾î¿þ¾î ÄÄÇ»ÆÃ
  • ÄÄÇ»ÅÍ ºñÀü
  • ±â°èÇнÀ
  • ÀÚ¿¬¾ð¾îó¸®

Á¦11Àå Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå : ¿ëµµº°

  • Àç°í °ü¸®
    • ¼ö¿ä ¿¹Ãø
    • â°í ÀÚµ¿È­
  • ¿¹Áöº¸Àü
    • ±â±â °íÀå ¿¹Ãø
    • ½Ç½Ã°£ °¨½Ã
  • »ý»ê°èȹ°ú ½ºÄÉÁÙ¸µ
    • ¸®¼Ò½º ÇÒ´ç
    • ¿öÅ©Ç÷οì ÃÖÀûÈ­
  • ǰÁú°ü¸®
    • ÀÚµ¿ ºñÀü ½Ã½ºÅÛ
    • °áÇÔ Å½Áö

Á¦12Àå Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå : ¾÷°èº°

  • ÀÚµ¿Â÷
    • Á¶¸³ ¶óÀÎ ÀÚµ¿È­
    • ÀÛ¾÷Àû¼º °Ë»ç
  • ¿¡³ÊÁö¿Í Àü·Â
  • ½Äǰ ¹× À½·á
    • ½Äǰ ¾ÈÀü °¨½Ã
    • Æ÷Àå ÀÚµ¿È­
  • ±Ý¼Ó ¹× Áß±â
  • ÀǾàǰ
    • ÀǾàǰ Á¦Á¶ ÇÁ·Î¼¼½º
    • ǰÁú º¸Áõ
  • ¹ÝµµÃ¼ ¹× ÀÏ·ºÆ®·Î´Ð½º
    • ÄÄÆ÷³ÍÆ® ¾î¼Àºí¸®
    • Å×½ºÆ®¿Í °ËÁõ

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Á¦Á¶ ¾÷¿ë ÀΰøÁö´É ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¦Á¶¾÷¿ë ÀΰøÁö´É ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Nvidia Corporation
    • Siemens AG
    • ABB Ltd.
    • Advanced Micro Devices, Inc.
    • AIBrain Inc.
    • Bright Machines, Inc.
    • Cisco Systems, Inc.
    • Cognex Corporation
    • Dassault Systemes SE
    • Emerson Electric Co.
    • Fanuc Corporation
    • ForwardX Technology Co., Ltd.
    • General Electric Company
    • General Vision Inc.
    • Google, LLC by Alphabet Inc.
    • Graphcore Limited
    • Hewlett Packard Enterprise Company
    • Hitachi, Ltd.
    • Honeywell International Inc.
    • Intel Corporation
    • International Business Machines Corporation
    • Keyence Corporation
    • Landing AI
    • Medtronic PLC
    • Micron Technology Inc.
    • Microsoft Corporation
    • Mitsubishi Electric Corporation
    • Novartis International AG
    • Oracle Corporation
    • Path Robotics
    • Progress Software Corporation
    • Rockwell Automation Inc.
    • SAP SE
    • SparkCognition, Inc.
    • UBTECH Robotics, Inc.
    • Yaskawa Electric Corporation

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSA 25.09.17

The Artificial Intelligence in Manufacturing Market was valued at USD 5.91 billion in 2024 and is projected to grow to USD 7.98 billion in 2025, with a CAGR of 36.28%, reaching USD 37.92 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.91 billion
Estimated Year [2025] USD 7.98 billion
Forecast Year [2030] USD 37.92 billion
CAGR (%) 36.28%

Exploring the Critical Drivers That Set the Stage for AI Integration in Manufacturing to Redefine Operational Excellence and Industry Competitiveness

Artificial intelligence is rapidly transcending pilot projects to become a foundational element in modern manufacturing operations. In today's competitive environment, decision makers are challenged to navigate a confluence of technological breakthroughs, workforce evolution, and shifting supply chain paradigms. By understanding the core catalysts-ranging from advancements in machine learning algorithms to the proliferation of edge computing-businesses can align strategic initiatives with AI capabilities that drive enhanced productivity and resilience.

As the manufacturing landscape moves toward increasingly autonomous and interconnected systems, the adoption of AI-driven solutions for quality control, predictive maintenance, and resource optimization is reshaping traditional workflows. This introductory overview sets the context for a deep exploration of transformative shifts, regulatory influences, segmentation dynamics, and regional variations. Through a structured examination, you will gain a comprehensive perspective on how artificial intelligence is redefining operational excellence and positioning manufacturers for sustainable competitive advantage.

Uncovering the Pivotal Transformative Shifts Reshaping Modern Manufacturing Through Advanced Artificial Intelligence Innovation and Digital Convergence Strategies

The manufacturing sector is experiencing a paradigm shift as digital convergence and AI-driven automation redefine production processes. Advanced machine vision systems are now capable of detecting minute defects in real time, substantially reducing waste and ensuring higher quality standards. Edge computing platforms enable decentralized data processing, allowing equipment to make localized decisions without latency, while cloud infrastructures facilitate comprehensive data aggregation for strategic planning.

Generative AI models are increasingly used to simulate production scenarios, optimizing material flows and resource allocation before physical implementation. Collaborative robotics, or cobots, are evolving to work alongside human operators, accelerating cycle times and enhancing safety. These transformative shifts underscore a trajectory where intelligent systems not only automate repetitive tasks but also augment human expertise to foster innovation and agility across manufacturing ecosystems.

Analyzing How the Cumulative Imposition of United States Trade Tariffs in 2025 Influences Supply Chains Technological Investments and Global Manufacturing Relationships

The introduction of escalated trade tariffs by the United States in 2025 is prompting manufacturing organizations to reevaluate global sourcing strategies and adjust capital allocation toward resilient supply chains. As import duties on electronic components and equipment intensify, procurement teams face pressure to diversify supplier networks or bring production closer to end markets. Consequently, many firms are investing in regional facilities that can leverage favorable trade agreements and mitigate exposure to tariff fluctuations.

This environment has stimulated a rebalancing of technology investments, with decision makers prioritizing modular production lines that can adapt swiftly to changes in input costs. Strategic alliances and joint ventures are also emerging to pool resources and share tariff risks. Collectively, these adaptations are shaping a more agile and regionally diversified manufacturing landscape, where cost optimization and regulatory compliance drive technology deployment decisions.

Revealing Nuanced Segmentation Insights Across Intelligence Types Offerings Technologies Applications and Industry Verticals in AI Driven Manufacturing Contexts

Deep insights emerge when examining the market through multiple segmentation lenses. Segmentation based on intelligence typologies reveals that while assisted intelligence is foundational, autonomous intelligence is capturing growing interest for end-to-end process orchestration. Insights by offering highlight the critical role of hardware, with field programmable gate arrays and graphics processing units delivering the computational power needed for real-time analytics, and microprocessor units enabling control layer customization. Meanwhile, services spanning deployment and integration through support and maintenance ensure seamless implementation, and software suites from analytics platforms to process monitoring interfaces provide the transparency essential for continuous improvement.

When exploring technology segmentation, the convergence of aware computing with machine learning and computer vision is creating adaptive systems that sense and respond to environmental variables, while natural language processing enhances human-machine interactions. Application segmentation shows that strategic adoption in inventory management through demand forecasting and warehouse automation streamlines logistics, and predictive maintenance via equipment failure prediction and real-time monitoring minimizes downtime. Resource allocation and workflow optimization in production planning and scheduling are unlocking higher throughput, and automated vision systems for quality control are elevating product consistency. Industry segmentation underscores unique use cases across automotive assembly line automation, energy and power grid management, food safety monitoring and packaging automation, metals and heavy machinery workflows, pharmaceutical drug production processes, and semiconductor component assembly and testing and validation.

Mapping Key Regional Dynamics Across the Americas Europe Middle East Africa and Asia Pacific to Illuminate AI Adoption Patterns in Manufacturing

Regional dynamics play a decisive role in shaping the trajectory of AI adoption in manufacturing. In the Americas, established industrial hubs are leveraging integrated supply chains and robust digital infrastructure to pilot and scale AI solutions rapidly, particularly in automotive assembly and pharmaceutical quality assurance environments. This region places strong emphasis on reducing operational costs while driving sustainability initiatives.

The Europe, Middle East and Africa corridor is characterized by a diverse regulatory landscape, where manufacturers navigate stringent compliance standards alongside incentives for Industry 4.0 investments. In Western Europe, there is an accelerated focus on energy efficiency and smart grid integration, whereas emerging economies in the Middle East and Africa are prioritizing capacity building and technology transfer to elevate domestic manufacturing capabilities.

Asia-Pacific remains at the forefront of AI-enabled manufacturing, fueled by advanced semiconductor production, extensive robotics supply chains, and government-led innovation programs. Countries across this region are intensifying efforts in predictive maintenance for heavy machinery and scaling automated vision systems in electronics manufacturing, signaling a commitment to leading the next wave of industrial digitization.

Examining Strategic Profiles and Innovation Trajectories of Leading Enterprises Driving AI Enabled Transformation in the Manufacturing Sector

Leading companies in the manufacturing AI ecosystem are defining market trajectories through strategic partnerships, proprietary technology development, and targeted acquisitions. Automation-centric enterprises are enhancing their hardware portfolios with specialized processing units optimized for deep learning workloads. At the same time, software providers are integrating advanced analytics modules into existing enterprise resource planning platforms, enabling seamless visibility from the shop floor to executive dashboards.

Service integrators are building hybrid teams that combine domain expertise in manufacturing operations with data science capabilities, facilitating end-to-end deployment of intelligent solutions. Collaborative arrangements between global technology firms and niche system integrators are accelerating market entry for innovative applications such as autonomous vehicle assembly and pharmaceutical batch quality monitoring. These efforts underscore a competitive landscape where agility, breadth of offering, and domain specialization determine the pace of AI adoption across manufacturing sectors.

Delivering Actionable Strategic Recommendations for Manufacturing Leaders to Harness Artificial Intelligence for Enhanced Operational Resilience and Growth

To capitalize on AI's potential, manufacturing leaders should prioritize the development of multidisciplinary teams that blend operational know-how with data science proficiency. Embarking on targeted pilot projects in areas such as predictive maintenance or automated quality inspection can yield rapid demonstrable value and serve as a blueprint for broader scaling efforts. Concurrently, investing in workforce reskilling programs is essential to cultivate internal champions who can guide cross-functional collaboration and sustain innovation momentum.

Strategic alliances with technology partners and academic institutions can accelerate the discovery of advanced algorithms tailored to complex manufacturing processes. Organizations must also establish robust governance frameworks addressing data integrity, cybersecurity and ethical AI deployment to build stakeholder trust. By adopting a phased approach that balances quick wins with long-term capability building, industry leaders can create an adaptable operational environment primed for continuous learning and improvement.

Detailing a Rigorous Methodological Framework That Underpins the Comprehensive Analysis of Artificial Intelligence Adoption in the Manufacturing Landscape

This analysis is grounded in a comprehensive methodological framework incorporating both qualitative and quantitative research techniques. Primary research involved structured interviews and workshops with senior executives, engineers and data scientists across leading manufacturing organizations. Secondary research sources ranged from academic journals and white papers to industry reports and regulatory filings, ensuring breadth and depth of contextual understanding.

Rigorous data validation processes were applied to triangulate insights from multiple vantage points, including cross-referencing company disclosures, patent filings and pilot project case studies. The segmentation and regional analyses were developed through systematic categorization of solution types, technology stacks and application domains. By integrating iterative feedback loops with subject-matter experts, the study delivers granular intelligence that supports strategic decision making and operational planning.

Synthesizing Critical Findings to Highlight the Overarching Implications of Artificial Intelligence Advancement for the Future of Manufacturing Excellence

The journey through transformative technologies, regulatory shifts and segmentation dynamics highlights a clear imperative: organizations that embrace artificial intelligence strategically will unlock sustainable competitive advantages. Insights gleaned from regional variations demonstrate that nuanced approaches to infrastructure, talent development and regulatory compliance are critical for successful implementation across diverse manufacturing contexts.

Looking ahead, the maturation of AI capabilities will continue to drive unprecedented levels of operational efficiency, product quality and supply chain resilience. Manufacturers that integrate AI as a core element of their strategic vision will be best positioned to adapt to evolving market demands, navigate geopolitical uncertainties and lead the next era of industrial innovation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of generative AI for predictive maintenance modeling and anomaly detection across industrial equipment
  • 5.2. Adoption of digital twin platforms powered by machine learning for virtual commissioning and process optimization
  • 5.3. Deployment of AI driven vision systems for automated defect inspection and yield improvement in semiconductor fabrication
  • 5.4. Utilization of reinforcement learning algorithms to optimize multi stage production scheduling and resource allocation
  • 5.5. Implementation of explainable AI frameworks to ensure transparency and regulatory compliance in manufacturing operations
  • 5.6. Integration of collaborative robots with AI based adaptive control for safe human robot interaction on shop floors
  • 5.7. Expansion of AI driven supply chain risk management tools leveraging real time data and predictive analytics
  • 5.8. Advancement of generative design algorithms to automate component creation and material efficiency in mechanical engineering

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Manufacturing Market, by Types

  • 8.1. Introduction
  • 8.2. Assisted intelligence
  • 8.3. Augmented intelligence
  • 8.4. Automation
  • 8.5. Autonomous intelligence

9. Artificial Intelligence in Manufacturing Market, by Offering

  • 9.1. Introduction
  • 9.2. Hardware
    • 9.2.1. Field Programmable Gate Array (FPGA)
    • 9.2.2. Graphics Processing Units (GPUS)
    • 9.2.3. Microprocessor Units (MPUS)
  • 9.3. Services
    • 9.3.1. Deployment & Integration
    • 9.3.2. Support & Maintenance
  • 9.4. Software
    • 9.4.1. Analytics Software
    • 9.4.2. Process Monitoring Interfaces

10. Artificial Intelligence in Manufacturing Market, by Technology

  • 10.1. Introduction
  • 10.2. Aware Computing
  • 10.3. Computer Vision
  • 10.4. Machine Learning
  • 10.5. Natural Language Processing

11. Artificial Intelligence in Manufacturing Market, by Application

  • 11.1. Introduction
  • 11.2. Inventory Management
    • 11.2.1. Demand Forecasting
    • 11.2.2. Warehouse Automation
  • 11.3. Predictive Maintenance
    • 11.3.1. Equipment Failure Prediction
    • 11.3.2. Real-Time Monitoring
  • 11.4. Production Planning & Scheduling
    • 11.4.1. Resource Allocation
    • 11.4.2. Workflow Optimization
  • 11.5. Quality Control
    • 11.5.1. Automated Vision Systems
    • 11.5.2. Defect Detection

12. Artificial Intelligence in Manufacturing Market, by Industry

  • 12.1. Introduction
  • 12.2. Automotive
    • 12.2.1. Assembly Line Automation
    • 12.2.2. Performance Testing
  • 12.3. Energy & Power
  • 12.4. Food & Beverages
    • 12.4.1. Food Safety Monitoring
    • 12.4.2. Packaging Automation
  • 12.5. Metals & Heavy Machinery
  • 12.6. Pharmaceuticals
    • 12.6.1. Drug Production Processes
    • 12.6.2. Quality Assurance
  • 12.7. Semiconductor & Electronics
    • 12.7.1. Component Assembly
    • 12.7.2. Testing & Validation

13. Americas Artificial Intelligence in Manufacturing Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Artificial Intelligence in Manufacturing Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Artificial Intelligence in Manufacturing Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Nvidia Corporation
    • 16.3.2. Siemens AG
    • 16.3.3. ABB Ltd.
    • 16.3.4. Advanced Micro Devices, Inc.
    • 16.3.5. AIBrain Inc.
    • 16.3.6. Bright Machines, Inc.
    • 16.3.7. Cisco Systems, Inc.
    • 16.3.8. Cognex Corporation
    • 16.3.9. Dassault Systemes SE
    • 16.3.10. Emerson Electric Co.
    • 16.3.11. Fanuc Corporation
    • 16.3.12. ForwardX Technology Co., Ltd.
    • 16.3.13. General Electric Company
    • 16.3.14. General Vision Inc.
    • 16.3.15. Google, LLC by Alphabet Inc.
    • 16.3.16. Graphcore Limited
    • 16.3.17. Hewlett Packard Enterprise Company
    • 16.3.18. Hitachi, Ltd.
    • 16.3.19. Honeywell International Inc.
    • 16.3.20. Intel Corporation
    • 16.3.21. International Business Machines Corporation
    • 16.3.22. Keyence Corporation
    • 16.3.23. Landing AI
    • 16.3.24. Medtronic PLC
    • 16.3.25. Micron Technology Inc.
    • 16.3.26. Microsoft Corporation
    • 16.3.27. Mitsubishi Electric Corporation
    • 16.3.28. Novartis International AG
    • 16.3.29. Oracle Corporation
    • 16.3.30. Path Robotics
    • 16.3.31. Progress Software Corporation
    • 16.3.32. Rockwell Automation Inc.
    • 16.3.33. SAP SE
    • 16.3.34. SparkCognition, Inc.
    • 16.3.35. UBTECH Robotics, Inc.
    • 16.3.36. Yaskawa Electric Corporation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦