시장보고서
상품코드
1806391

갈륨 시장 : 순도 등급별, 제품 유형별, 형태별, 용도별, 최종 이용 산업별, 유통 채널별 - 세계 예측(2025-2030년)

Gallium Market by Purity Grade, Product Type, Form, Application, End-Use Industry, Distribution Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

갈륨 시장은 2024년에는 4억 6,373만 달러로 평가되었습니다. 2025년에는 4억 9,665만 달러에 이르고, CAGR 7.27%로 성장하여 2030년까지 7억 679만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 4억 6,373만 달러
추정 연도 : 2025년 4억 9,665만 달러
예측 연도 : 2030년 7억 679만 달러
CAGR(%) 7.27%

갈륨을 첨단 전자, 광전자, 신흥 재생 에너지 혁신을 위한 중요한 원동력으로 자리매김

낮은 융점과 뛰어난 반도체 특성으로 각광받는 전이금속인 갈륨은 다양한 첨단 기술 분야에서 없어서는 안 될 존재로 자리 잡고 있습니다. 가전제품에서 갈륨비소(GaAs) 기판은 고주파 증폭과 고속 스위칭을 가능하게 하고, 질화갈륨(GaN) 화합물은 차세대 전력전자 및 광전자 장치를 지원합니다. 이러한 기존 영역을 넘어 에너지 효율과 재생에너지 발전으로의 산업 전반의 변화로 인해 태양전지와 자외선 광 검출기에서 갈륨의 역할은 계속 확대되고 있습니다.

갈륨의 세계 공급망 변화, 기술적 혁신, 신흥 시장 수요 동향 파악, 갈륨의 세계 공급망 혁신적 변화

갈륨 시장 상황은 재료 과학의 혁신, 공급망 프레임워크의 진화, 최종 시장 수요 급증으로 인해 변혁적인 변화를 겪고 있습니다. 최근 질화갈륨의 유기금속 화학 기상 성장법의 발전으로 파워 일렉트로닉스의 효율이 전례 없이 향상되어 전기자동차용 인버터와 재생에너지용 인버터에 대한 채용이 가속화되고 있습니다. 동시에 새로운 에피택셜 성장 기술은 갈륨비소 웨이퍼의 품질을 향상시켜 5G 통신의 고주파 반도체 소자의 성능과 신뢰성을 향상시켰습니다.

미국의 새로운 관세 조치가 갈륨 공급망과 시장 접근성에 미치는 누적 영향 평가 무역 역학 평가

2025년에 시행될 것으로 발표된 새로운 관세 조치는 갈륨의 무역 흐름, 가격 역학, 다운스트림 제조 비용에 누적 영향을 미칠 것입니다. 미국으로의 갈륨 수입이 관세 인상에 직면한 가운데, 국내 최종 사용자는 방위 시스템에서 가전제품에 이르기까지 각 분야에 파급되는 재료 비용 상승에 맞서 싸워야 합니다. 이에 따라 거래처 상표 제품 제조업체들은 인근 지역에서 대체 조달 경로를 모색하는 한편, 전략적 비축이 단기적인 완화책으로 떠오르고 있습니다.

순도 등급, 제품 유형, 형태, 용도, 최종 사용 산업, 유통 채널에 걸친 주요 세분화에 대한 통찰력

여러 부문을 동시에 고려하면 갈륨 수요 및 공급에 대한 미묘한 이해를 얻을 수 있습니다. 고순도 등급과 저순도 등급의 구분은 초 고감도 광전자 장치에 대한 갈륨의 적합성과 일반적인 합금 배합에 대한 갈륨의 적합성을 뒷받침합니다. 한편, 갈륨 합금, 갈륨 화합물, 갈륨 금속 간의 차이는 기계적 견고성, 열 안정성, 전자적 성능에 대한 최종 사용자의 요구를 반영합니다. 화합물 카테고리에서는 갈륨비소가 고주파 통신을 계속 지배하고 있는 반면, 질화갈륨은 전력 전자 및 차세대 LED 아키텍처에서 빠르게 부상하고 있습니다.

북미, 유럽, 중동 및 아프리카, 아시아태평양의 지역별 갈륨 시장 성장 촉진요인 및 성장 기회 평가

지역별 분석은 미주, 유럽, 유럽, 중동 및 아프리카, 아시아태평양의 갈륨 시장 발전을 형성하는 명확한 촉진요인과 제약 요인을 밝힙니다. 북미와 남미에서는 탄탄한 다운스트림 산업과 첨단 제조업에 대한 정부 인센티브가 질화갈륨 연구센터와 파일럿 생산 라인에 대한 투자를 촉진하고 있습니다. 이 역동적인 에코시스템은 북미의 회랑을 따라 재료 정제업체와 반도체 주조공장을 연결하는 통합 공급망의 혜택을 누리고 있습니다.

시장 발전를 주도하는 주요 갈륨 생산자, 공급업체, 혁신가들의 전략적 경쟁 구도 매핑

주요 갈륨 제조업체와 공급업체들경쟁 구도를 살펴보면, 생산 능력 확대, 기술 제휴, 수직 통합 이니셔티브에 의해 정의되는 경쟁 구도를 확인할 수 있습니다. 업계 기존 기업들은 차세대 정제 장비에 대한 투자와 정제 프로토콜 강화를 통해 고순도 갈륨 생산 확대를 우선순위로 삼고 있습니다. 동시에, 전문 화학 제조업체는 화합물 전구체 능력을 향상시켜 갈륨 비소 및 질화 갈륨 장치 제조업체의 부상을 지원하고 있습니다.

갈륨 시장 변동에 대응하고 새로운 기술적 기회를 활용하기 위한 업계 리더들의 전략적 행동 제안

시장의 변동성을 극복하고 갈륨 부문의 새로운 비즈니스 기회를 활용하기 위해 업계 리더들은 다각적인 전략적 접근 방식을 채택해야 합니다. 첫째, 비 전통적 정제 파트너와의 제휴 및 2차 회수 경로 개척을 통한 공급원 다변화를 통해 지정학적 리스크와 물류 리스크를 줄일 수 있습니다. 둘째, 특히 질화갈륨과 새로운 합금 배합의 화합물 개발을 촉진하는 연구 이니셔티브에 투자함으로써 파워 일렉트로닉스 및 광전자 응용 분야에서 새로운 성능 임계값을 이끌어 낼 수 있습니다.

갈륨 시장 인사이트의 데이터 수집, 검증 절차, 분석 프레임워크를 상세하게 설명하는 종합적인 연구 방법론

본 분석을 뒷받침하는 조사 방법은 엄격한 1차 조사와 종합적인 2차 데이터 검토를 결합하여 견고성과 신뢰성을 보장합니다. 1차 조사에서는 재료 정제업체, 장치 제조업체, 최종 사용 고객을 포함한 갈륨 가치사슬 전반의 이해관계자들과의 구조화된 인터뷰가 진행되었습니다. 이 인터뷰를 통해 갈륨 조달의 과제, 기술적 요구 사항, 새로운 응용 동향에 대한 직접적인 견해를 얻을 수 있었습니다. 이와 함께, 학계 및 산업계 오피니언 리더들과의 전문가 협의를 통해 가설을 검증하고 조사 결과를 보다 광범위한 시장 시나리오 내에서 맥락화했습니다.

갈륨 가치사슬의 변화를 위한 이해관계자들의 지침이 될 수 있도록 주요 연구 결과와 미래 전망을 정리했습니다.

이번 Executive Summary는 여러 첨단 기술 분야에서 갈륨의 전략적 중요성, 공급망과 용도를 재정의하는 변혁적 변화, 새로운 무역 조치가 시장 접근성에 미치는 영향에 대해 강조했습니다. 상세한 세분화 분석을 통해 제품 유형, 화합물 유형, 최종 이용 산업이 어떻게 연계되어 수요 역학을 형성하는지를 밝히고, 지역 분석을 통해 정책 프레임워크와 투자 패턴의 지역적 뉘앙스를 강조했습니다. 또한, 경쟁 전략에 대한 평가를 통해 생산능력 확대, 기술 제휴, 디지털화가 지속 가능한 차별화에 있어 중요한 역할을 할 수 있음을 확인했습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 갈륨 시장 순도별

  • 고순도
  • 저순도

제9장 갈륨 시장 : 제품 유형별

  • 갈륨 합금
  • 갈륨 화합물
    • 갈륨 비소(GaAs)
    • 갈륨 질화물(GaN)
  • 갈륨 금속

제10장 갈륨 시장 : 형태별

  • 액체
  • 고체

제11장 갈륨 시장 : 용도별

  • LED 조명
  • 옵토일렉트로닉스
    • 레이저 다이오드
    • 광학 센서
    • 광 검출기
  • 태양광발전 셀
    • 집광형 전지
    • 박막 전지
  • 반도체
    • 디스크리트 디바이스
    • 집적회로
    • 파워 일렉트로닉스
      • 파워트랜지스터
      • RF 디바이스

제12장 갈륨 시장 : 최종 이용 산업별

  • 항공우주 및 방위
  • 자동차
  • 소비자 일렉트로닉스
  • 헬스케어 및 의료
  • 통신

제13장 갈륨 시장 : 유통 채널별

  • 오프라인
  • 온라인

제14장 아메리카의 갈륨 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 갈륨 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 갈륨 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Thermo Fisher Scientific Inc.
    • Merck KGaA
    • ALB Materials Inc.
    • Aldon Corporation
    • Aluminum Corporation of China Limited
    • American Elements, Inc.
    • AXT, Inc.
    • BELMONT METALS INC.
    • Cathay Advanced Materials Limited
    • Chengdu Fufu Technology Co., Ltd.
    • Dowa Holdings Co., Ltd.
    • ESPI Metals
    • Furukawa Co., Ltd.
    • Gelest Inc.
    • Indium Corporation
    • IQE PLC
    • Mitsubishi Chemical Corp
    • Nanoshel LLC
    • Neo Performance Materials
    • Noah Chemicals
    • Otto Chemie Pvt. Ltd.
    • RusAL
    • Shin-Etsu Chemical Co., Ltd.
    • Sumitomo Electric Industries, Ltd.
    • Umicore SA
    • Vital Materials Co., Limited
    • Vizag chemical international
    • Zhuzhou Keneng New Material Co., Ltd.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.17

The Gallium Market was valued at USD 463.73 million in 2024 and is projected to grow to USD 496.65 million in 2025, with a CAGR of 7.27%, reaching USD 706.79 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 463.73 million
Estimated Year [2025] USD 496.65 million
Forecast Year [2030] USD 706.79 million
CAGR (%) 7.27%

Positioning Gallium as a Critical Enabler for Advanced Electronics, Optoelectronics, and Emerging Renewable Energy Innovations

Gallium, a post-transition metal prized for its low melting point and exceptional semiconducting properties, has become indispensable to a range of high-technology sectors. In consumer electronics, gallium arsenide (GaAs) substrates enable high-frequency amplification and fast switching, while gallium nitride (GaN) compounds power next-generation power electronics and optoelectronic devices. Beyond these established domains, gallium's role in photovoltaic cells and ultraviolet photodetectors continues to expand, driven by industry-wide shifts toward energy efficiency and renewable power generation.

Driven by evolving demand dynamics, the gallium supply chain has grown increasingly complex. Primary extraction from bauxite residues and secondary recovery from aluminum processing residues now coexist alongside emerging recycling initiatives that seek to capture gallium from end-of-life electronics. Consequently, the geographic concentration of production-historically centered in a handful of major refining hubs-faces pressure from both sustainability mandates and geopolitical considerations. As a result, stakeholders across the value chain are actively pursuing supply diversification strategies and forging partnerships to secure access to high-reliability sources.

Moving forward, market participants must reconcile growth ambitions with resource stewardship. In this context, gallium's criticality underscores the need for transparent sourcing practices, robust innovation pipelines for compound development, and an agile approach to shifting regulatory landscapes. Together, these factors position gallium not merely as a specialty metal but as a strategic enabler of broader digitalization and decarbonization trends.

Identifying Transformative Shifts in Gallium's Global Supply Chain, Technological Breakthroughs, and Emerging Market Demand Trajectories

The gallium market landscape has undergone transformative shifts driven by breakthroughs in material science, evolving supply chain frameworks, and surging end-market demand. Over recent years, advancements in metal-organic chemical vapor deposition for gallium nitride have unlocked unprecedented efficiencies in power electronics, catalyzing adoption across electric vehicle inverters and renewable energy inverters. Simultaneously, novel epitaxial growth techniques have refined the quality of gallium arsenide wafers, enhancing the performance and reliability of high-frequency semiconductor devices in 5G communications.

Moreover, non-traditional sources such as recycled gallium from electronic waste are gaining traction, supported by stringent sustainability mandates. This movement toward circular economy approaches has prompted original equipment manufacturers and material suppliers to explore closed-loop partnerships, ensuring traceability and reducing environmental impact. Consequently, traditional refining hubs are reassessing capital allocation to incorporate green recovery facilities and advanced purification platforms.

Furthermore, strategic collaborations between technology incumbents and materials innovators are redefining competition. Joint ventures focused on GaN-on-diamond substrates and hybrid composite alloys are emerging, blending the unique thermal conductivity of novel backing materials with gallium's semiconducting advantages. As a result, the market is evolving from a supply-driven environment to a more integrated ecosystem where research institutions, equipment makers, and device integrators play interdependent roles. Looking ahead, these transformative forces will continue to reshape cost structures, accelerate product development cycles, and expand application horizons for gallium.

Assessing the Cumulative Impact of New United States Tariff Measures on Gallium Supply Chains and Market Accessibility Trade Dynamics

New tariff measures announced for implementation in 2025 are set to exert a cumulative impact on gallium trade flows, pricing dynamics, and downstream manufacturing costs. As gallium imports into the United States face incremental duties, domestic end-users must contend with elevated material costs that ripple across sectors from defense systems to consumer electronics. Consequently, original equipment manufacturers are exploring alternative sourcing corridors in neighboring regions, while strategic stockpiling has emerged as a short-term mitigation tactic.

Transitional adjustments in contractual terms are already observable, with procurement teams negotiating flexible terms that incorporate price-adjustment clauses and destination-based duties. However, these adaptations are not without their challenges. Supply chain fragmentation introduces lead-time volatility, prompting device assemblers to adopt modular production approaches that can withstand material shortages. In parallel, some chemical producers are evaluating vertical integration scenarios to alleviate import dependencies and gain greater control over critical purification workflows.

In addition, the imposition of duties has spurred advancements in domestic value-added processes. Firms are investing in enhanced refining technologies that improve yield and reduce contamination risks, thereby offsetting some tariff burdens. Yet, the overall landscape remains fluid, shaped by ongoing trade negotiations and reciprocal measures from exporting economies. As a result, stakeholders must continuously update scenario analyses and maintain agile procurement frameworks to navigate the evolving tariff environment and its implications for gallium market accessibility and competitiveness.

Uncovering Key Segmentation Insights Across Purity Grades, Product Types, Forms, Applications, End-Use Industries, and Distribution Channels

A nuanced understanding of gallium demand and supply emerges when examining multiple segmentation dimensions simultaneously. The distinction between high purity and low purity grades underpins the suitability of gallium for ultra-sensitive optoelectronic devices versus more generalized alloy formulations. Meanwhile, divergences between gallium alloys, gallium compounds, and gallium metal reflect end-user requirements for mechanical robustness, thermal stability, or electronic performance. Within the compounds category, gallium arsenide continues to dominate high-frequency communications, whereas gallium nitride is rapidly gaining ground in power electronics and next-generation LED architecture.

Beyond product classifications, the choice between liquid and solid forms of gallium influences handling protocols, transportation logistics, and processing methods. Liquid gallium is prized in additive manufacturing and advanced solder applications, while solid ingots and pellets are preferred for wafer growth and metallurgical blending. Furthermore, application categories reveal distinct growth patterns: LED lighting demonstrates steady expansion driven by energy regulations; optoelectronics-including laser diodes, optical sensors, and photodetectors-experiences accelerating uptake in biomedical instrumentation and industrial automation; photovoltaic cells, such as concentrator and thin-film variants, benefit from gallium's bandgap tuning; and semiconductors-ranging from discrete devices and integrated circuits to power electronics comprised of power transistors and RF devices-leverage tailored gallium substrates for enhanced efficiency.

End-use industries further refine this landscape. Aerospace & defense demands gallium alloys for radar and communication systems; automotive relies on gallium nitride for electric vehicle inverters; consumer electronics incorporates gallium arsenide in smartphone components; healthcare & medical utilizes optoelectronic modules in imaging and diagnostics; and telecommunications infrastructure increasingly depends on gallium-based transceivers for high-speed data links. The distribution channel mix between offline networks and online portals dictates procurement responsiveness and inventory strategies, shaping how manufacturers and distributors align their go-to-market models.

Evaluating Regional Gallium Market Drivers and Growth Opportunities Across Americas, Europe, Middle East & Africa, and Asia-Pacific Trends

Regional analysis highlights distinct drivers and constraints shaping gallium market evolution across the Americas, Europe, Middle East & Africa, and Asia-Pacific territories. In the Americas, robust downstream industries and government incentives for advanced manufacturing have catalyzed investments in gallium nitride research centers and pilot production lines. This dynamic ecosystem benefits from integrated supply chains that link material refiners with semiconductor foundries along the North American corridor.

By contrast, Europe, Middle East & Africa exhibits a dual character: established optoelectronics hubs in Western Europe coexist with rapid deployment of renewable energy projects in the Gulf region. Policy frameworks emphasizing critical raw material resilience have driven public-private initiatives to secure localized gallium refining capacity and to foster cooperation among research institutes. At the same time, geopolitical tensions and logistical complexities introduce variables that companies must rigorously model.

Meanwhile, Asia-Pacific remains the epicenter of gallium demand, propelled by large-scale LED lighting manufacturing, semiconductor wafer fabrication, and solar cell production clusters. Southeast Asian nations are emerging as secondary processing centers, leveraging lower labor costs and favorable trade agreements, whereas East Asia continues to innovate in compound and device integration. Across all regions, harmonizing regulatory compliance, environmental stewardship, and supply chain visibility remains paramount to sustain growth and foster resilience.

Mapping the Strategic Competitive Landscape of Leading Gallium Producers, Suppliers, and Innovators Driving Market Evolution

A competitive examination of leading gallium producers and suppliers reveals a landscape defined by capacity expansions, technology partnerships, and vertical integration initiatives. Industry incumbents have prioritized scaling high-purity gallium production through investments in next-generation refining units and enhanced purification protocols. At the same time, specialist chemical manufacturers have advanced their capabilities in compound precursors, supporting the rise of gallium arsenide and gallium nitride device fabricators.

Strategic alliances with semiconductor foundries and equipment vendors are another hallmark of this segment. Collaborative research agreements focus on developing innovative substrate materials, composite structures, and additive synthesis routes, thereby accelerating time-to-market for new device architectures. Meanwhile, supply chain transparency programs have become a differentiator, as buyers increasingly assess providers on traceability metrics, environmental impact, and regulatory compliance standards.

In addition, select players are deploying digital transformation efforts-leveraging predictive analytics, blockchain-based tracking, and AI-driven yield optimization-to enhance operational efficiency and reduce downtime. These forward-looking strategies underscore how competition extends beyond raw material supply to encompass integrated service offerings, technical support frameworks, and tailored financing models. As such, companies that can demonstrate end-to-end value propositions are best positioned to capture market share and foster long-term customer loyalty.

Strategic Actionable Recommendations for Industry Leaders to Navigate Gallium Market Volatility and Capitalize on Emerging Technological Opportunities

To navigate market volatility and harness emerging opportunities in the gallium sector, industry leaders should adopt a multi-pronged strategic approach. First, diversifying supply sources by forging alliances with non-traditional refining partners and exploring secondary recovery channels can mitigate geopolitical and logistical risks. Second, investing in research initiatives that advance compound development-particularly in gallium nitride and novel alloy formulations-will unlock new performance thresholds for power electronics and optoelectronic applications.

Moreover, establishing flexible procurement frameworks with adaptive pricing clauses and buffer inventory mechanisms will enable organizations to respond nimbly to tariff fluctuations and raw material shortages. Concurrently, pursuing collaborative ventures with equipment manufacturers and design houses can accelerate co-development of custom substrates and turnkey solutions, reinforcing competitive moats. In parallel, digitalization of the value chain through supply chain analytics, real-time traceability, and predictive yield modeling will enhance decision-making and reduce operational costs.

Finally, embedding sustainability principles in gallium sourcing-including closed-loop recycling partnerships, lifecycle assessment protocols, and environmental management systems-will not only satisfy regulatory requirements but also bolster corporate reputation among end-users. By integrating these actionable levers into strategic roadmaps, industry leaders can position themselves to capitalize on gallium's pivotal role in electrification, digitalization, and decarbonization transitions.

Comprehensive Research Methodology Detailing Data Collection, Validation Procedures, and Analytical Framework for Gallium Market Insights

The research methodology underpinning this analysis combines rigorous primary research with comprehensive secondary data review to ensure robustness and reliability. Primary research involved structured interviews with stakeholders across the gallium value chain, including material refiners, device manufacturers, and end-use customers. These engagements provided firsthand perspectives on sourcing challenges, technological requirements, and emerging application trends. In parallel, expert consultations with academic and industry thought leaders validated assumptions and contextualized findings within broader market narratives.

Secondary research encompassed a systematic examination of publicly available data sources, regulatory filings, patents databases, technical journals, and industry white papers. Quantitative triangulation techniques were applied to reconcile disparate data points-such as trade statistics, capacity utilization rates, and end-market production volumes-thereby enhancing the precision of segmentation analyses. Additionally, proprietary modeling tools facilitated scenario simulations that reflect evolving tariff regimes, geopolitical developments, and technology adoption curves.

Quality assurance processes included cross-verification of interview inputs, iterative hypothesis testing, and peer reviews by subject-matter experts. This layered approach ensures that insights presented herein are underpinned by verifiable evidence, robust analytical frameworks, and transparent documentation of data sources. The result is a comprehensive methodological foundation that supports actionable strategic decision-making in the gallium market.

Synthesizing Key Findings and Forward-Looking Perspectives to Guide Stakeholders in the Gallium Value Chain Transformation

This executive summary has highlighted the strategic importance of gallium across multiple high-technology sectors, the transformative shifts redefining its supply chain and applications, and the implications of new trade measures on market accessibility. Detailed segmentation analysis has illuminated how product forms, compound types, and end-use industries interlink to shape demand dynamics, while regional insights have underscored geographic nuances in policy frameworks and investment patterns. Furthermore, an assessment of competitive strategies reveals the critical role of capacity expansion, technology partnerships, and digitalization in forging sustainable differentiation.

Looking forward, stakeholders must adopt an agile posture-balancing near-term operational resilience with long-term innovation pipelines. As gallium continues to underpin advancements in renewable energy, electrification, and next-generation communications, industry actors that integrate sustainability, strategic diversification, and collaborative development into their core roadmaps will secure competitive advantages. Ultimately, the evolving gallium landscape demands a holistic view-one that aligns material supply, technology progress, and regulatory trajectories to drive value creation across the entire ecosystem.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for gallium nitride semiconductors in 5G infrastructure deployments in Asia Pacific region
  • 5.2. Strategic partnerships between gallium suppliers and LED manufacturers for advanced solid-state lighting applications
  • 5.3. Impact of geopolitical tensions on gallium supply chain diversification strategies among tech companies
  • 5.4. Growth of electric vehicle power electronics driving gallium nitride adoption in North America
  • 5.5. Increasing recycling initiatives and secondary gallium sourcing to mitigate raw material scarcity risks in Europe

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Gallium Market, by Purity Grade

  • 8.1. Introduction
  • 8.2. High Purity
  • 8.3. Low Purity

9. Gallium Market, by Product Type

  • 9.1. Introduction
  • 9.2. Gallium Alloys
  • 9.3. Gallium Compounds
    • 9.3.1. Gallium Arsenide (GaAs)
    • 9.3.2. Gallium Nitride (GaN)
  • 9.4. Gallium Metal

10. Gallium Market, by Form

  • 10.1. Introduction
  • 10.2. Liquid
  • 10.3. Solid

11. Gallium Market, by Application

  • 11.1. Introduction
  • 11.2. Led Lighting
  • 11.3. Optoelectronics
    • 11.3.1. Laser Diodes
    • 11.3.2. Optical Sensors
    • 11.3.3. Photodetectors
  • 11.4. Photovoltaic Cells
    • 11.4.1. Concentrator Cells
    • 11.4.2. Thin Film Cells
  • 11.5. Semiconductors
    • 11.5.1. Discrete Devices
    • 11.5.2. Integrated Circuits
    • 11.5.3. Power Electronics
      • 11.5.3.1. Power Transistors
      • 11.5.3.2. RF Devices

12. Gallium Market, by End-Use Industry

  • 12.1. Introduction
  • 12.2. Aerospace & Defense
  • 12.3. Automotive
  • 12.4. Consumer Electronics
  • 12.5. Healthcare & Medical
  • 12.6. Telecommunications

13. Gallium Market, by Distribution Channel

  • 13.1. Introduction
  • 13.2. Offline
  • 13.3. Online

14. Americas Gallium Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Gallium Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Gallium Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Thermo Fisher Scientific Inc.
    • 17.3.2. Merck KGaA
    • 17.3.3. ALB Materials Inc.
    • 17.3.4. Aldon Corporation
    • 17.3.5. Aluminum Corporation of China Limited
    • 17.3.6. American Elements, Inc.
    • 17.3.7. AXT, Inc.
    • 17.3.8. BELMONT METALS INC.
    • 17.3.9. Cathay Advanced Materials Limited
    • 17.3.10. Chengdu Fufu Technology Co., Ltd.
    • 17.3.11. Dowa Holdings Co., Ltd.
    • 17.3.12. ESPI Metals
    • 17.3.13. Furukawa Co., Ltd.
    • 17.3.14. Gelest Inc.
    • 17.3.15. Indium Corporation
    • 17.3.16. IQE PLC
    • 17.3.17. Mitsubishi Chemical Corp
    • 17.3.18. Nanoshel LLC
    • 17.3.19. Neo Performance Materials
    • 17.3.20. Noah Chemicals
    • 17.3.21. Otto Chemie Pvt. Ltd.
    • 17.3.22. RusAL
    • 17.3.23. Shin-Etsu Chemical Co., Ltd.
    • 17.3.24. Sumitomo Electric Industries, Ltd.
    • 17.3.25. Umicore SA
    • 17.3.26. Vital Materials Co., Limited
    • 17.3.27. Vizag chemical international
    • 17.3.28. Zhuzhou Keneng New Material Co., Ltd.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제