시장보고서
상품코드
1806508

제조업용 컴퓨터 비전 시장 : 컴포넌트별, 유형별, 용도별, 업종별, 기업 규모별 - 세계 예측(2025-2030년)

Computer Vision in Manufacturing Market by Component, Type, Application, Industry Vertical, Enterprise Size - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

제조업용 컴퓨터 비전 시장은 2024년에 62억 7,000만 달러로 평가되었습니다. 2025년에는 70억 2,000만 달러에 이르고, CAGR 12.43%로 성장하여 2030년에는 126억 7,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
예측 연도(2024년) 62억 7,000만 달러
기준 연도(2025년) 70억 2,000만 달러
예측 연도(2030년) 126억 7,000만 달러
CAGR(%) 12.43%

최신 이미지 처리, 광학, 임베디드 인텔리전스가 품질 보증 및 공장 자동화 기능을 재구성하는 방법에 대한 입문 분석

첨단 이미지 처리, 기계 인식, 산업 자동화가 교차하면서 제조업이 결함을 감지하고, 처리량을 최적화하고, 자산을 관리하는 방법을 재정의하고 있습니다. 컴퓨터 비전 기술은 실험실의 맞춤형 프로토타입에서 제어 시스템, 로봇 공학, 기업 데이터 플랫폼과 통합할 수 있는 견고하고 배포 가능한 솔루션으로 발전했습니다. 그 결과, 제조업체들은 수율 향상, 불량률 감소, 개선 시간 단축을 위해 샘플링 검사에서 지속적인 자동 시각적 모니터링으로 전환하고 있습니다.

전략적 공장 인프라로서 기계 인식의 채택을 가속화하는 새로운 기술적, 운영적 변곡점

제조업이 회복력, 유연성, 데이터 중심 운영을 우선시하는 가운데, 업계 컴퓨터 비전 환경은 변화의 시기를 맞이하고 있습니다. 첫째, 2D 검사 패러다임에서 3D 머신비전이 가능하게 하는 보다 풍부한 공간 이해로 눈에 띄는 전환이 있습니다. 이 시프트는 정확한 3차원 위치 확인이 필요한 조립 검증, 로봇 가이던스 등 복잡한 작업을 지원합니다.

관세 중심의 조달 압력과 공급망 재구축이 제조업 전반의 조달 전략과 배치 일정을 어떻게 재구성하고 있는가?

정책 및 무역 역학은 비전 하드웨어 및 관련 부품의 조달 전략, 공급망 설계 및 배치 일정에 영향을 미칩니다. 관세 조정은 수입 카메라, 광학 부품, 조명 모듈의 상대적 비용을 변화시킬 수 있으며, 그 결과 조달 결정 및 비전 시스템의 총 소유 비용에 영향을 미칠 수 있습니다. 이러한 역풍에 직면하여 조달팀은 공급업체 포트폴리오를 재평가하고, 계약 기간을 재검토하고, 관세 변경의 영향을 줄이기 위해 부품의 다양화를 추진하고 있습니다.

센서, 소프트웨어 유형, 용도, 업종, 기업 규모에 따라 구축 성과로 연결, 차별화된 세분화 중심의 관점

기능, 형태, 조직적 배경이 어떻게 교차하는지를 이해하는 것은 효과적인 비전 프로그램을 설계하는 데 매우 중요합니다. 구성 요소에 기반한 시장 분석에서는 하드웨어와 소프트웨어를 구분합니다. 하드웨어는 카메라와 조명의 하위 구성 요소로 나뉘며, 이미지 처리의 충실도와 환경의 견고성을 결정합니다. 유형에 따라 2D 머신비전과 3D 머신비전으로 분류되며, 각각 다른 검사 작업에 적합합니다.

세계 제조 거점의 기술 선택, 공급업체 참여, 도입 우선순위를 결정하는 지역별 도입 역학 및 업무 추진 요인

지역별 동력은 제조업체가 이용할 수 있는 기술과 투자 결정을 유도하는 비즈니스 우선순위 모두에 영향을 미칩니다. 미국 대륙에서 제조업체들은 확장성과 레거시 제어 시스템과의 통합을 중시하고, 비전 솔루션과 기존 자동화 벤더를 결합하여 빠른 통합 효과를 우선시합니다. 그 결과, 지역 공급망과 표준이 하드웨어 및 소프트웨어 파트너의 선택에 영향을 미치고, 규제 및 안전 프레임워크가 배포 방식을 형성합니다.

벤더의 통합 전략, 제품 차별화, 서비스 모델이 산업용 비전 생태계에서 경쟁 우위를 형성하는 방법의 통합

산업용 비전의 경쟁력은 광학 분야의 전문성과 모델 교육, 배포, 라이프사이클 관리의 강력한 소프트웨어 역량을 겸비한 기업에 의해 형성됩니다. 주요 업체들은 PLC, MES, 로봇 컨트롤러와의 통합을 간소화하는 통합 스택을 제공함으로써 차별화를 꾀하고 있으며, 다른 업체들은 고정밀 광학, 특수 조명 또는 선별된 결함 라이브러리로 훈련된 산업별 모델과 같은 틈새 우수성에 초점을 맞추었습니다.

제조업계 리더들이 통합과 공급망 리스크를 통제하면서 가치 창출을 가속화할 수 있도록 돕는 실용적인 도입 경로와 조달 전술을 소개합니다.

업계 리더들은 통합의 마찰을 최소화하면서 비즈니스에 미치는 영향을 극대화할 수 있는 이니셔티브에 우선순위를 두어야 합니다. 먼저, 측정 가능한 성과 지표와 수용 기준을 가진 명확한 이용 사례를 정의하는 것부터 시작합니다. 이를 통해 파일럿 테스트에서 실용적인 증거를 확실하게 생성하고 스케일링 결정의 모호성을 줄일 수 있습니다. 그런 다음 엔지니어링, 운영, 유지보수, IT 이해관계자를 포함한 부서 간 팀을 구성하여 요구사항을 조정하고 배포 의사결정을 가속화합니다.

실무자 인터뷰, 기술 문헌 검토, 시나리오 분석을 결합한 투명성이 높은 혼합 방식의 조사 프로토콜을 통해 재현성 있고 운영과 관련된 조사 결과를 보장합니다.

이 연구 접근법은 기술 문헌, 표준 문서, 발표된 사례 연구의 2차 분석과 함께 실무자, 엔지니어링 리더, 시스템 통합사업자를 대상으로 한 1차 인터뷰를 통합하는 방식으로 이루어졌습니다. 1차 인터뷰는 배포 경험, 검증 프로토콜, 운영상의 교훈에 초점을 맞추어 실질적인 모범 사례를 도출할 수 있도록 합니다. 2차 자료는 기술적 정확성과 맥락적 타당성을 보장하기 위해 비교 기술 평가, 구성 요소의 특성, 통합 패턴을 제공합니다.

결론: 시각 정보를 공장 인프라로 취급하는 것이 장기적인 운영 개선과 회복력을 위해 필수적인 이유

컴퓨터 비전은 더 이상 동경의 대상이 아니라 엄격하게 도입하면 품질, 처리량, 안전성을 크게 향상시킬 수 있는 전략적 능력입니다. 광학, 3차원 인식, 엣지 추론, 라이프사이클 관리 등 이 기술의 진화는 모든 분야의 제조업체에 광범위한 실용적인 기회를 제공합니다. 그러나 이러한 가능성을 실현하기 위해서는 조달 제약, 공급업체 생태계의 지역적 차이 등 운영상의 현실과 기술적 선택을 의도적으로 일치시켜야 합니다.

목차

제1장 서론

제2장 분석 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 제조업용 컴퓨터 비전 시장 : 컴포넌트별

  • 하드웨어
    • 카메라
    • 조명기구
  • 소프트웨어

제9장 제조업용 컴퓨터 비전 시장 : 유형별

  • 2D 머신 비전
  • 3D 머신 비전

제10장 제조업용 컴퓨터 비전 시장 : 용도별

  • 재고 관리
  • 예지보전
  • 프로세스 모니터링 및 최적화
  • 품질 검사 및 결함 감지
    • 조립 검증
    • 표면 결함 감지
  • 로봇 공학 가이던스
  • 안전성 및 컴플라이언스 감시

제11장 제조업용 컴퓨터 비전 시장 : 업종별

  • 자동차
    • 조립 검사
    • 차체 검사
  • 화학 및 재료
    • 혼합 분석
    • 표면 검사
  • 일렉트로닉스 및 반도체
  • 식품 및 음료
  • 의약품 및 의료

제12장 제조업용 컴퓨터 비전 시장 : 기업 규모별

  • 대기업
  • 중소기업

제13장 아메리카의 제조업용 컴퓨터 비전 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 제조업용 컴퓨터 비전 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 제조업용 컴퓨터 비전 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • ABB Ltd.
    • Artemis Vision
    • Basler AG
    • Baumer Holding AG
    • Clarifai, Inc.
    • Cognex Corporation
    • Fastec Imaging Corporation
    • Fujitsu Limited
    • GE Vernova
    • Google LLC by Alphabet, Inc.
    • Heliovision
    • IFM Electronic GmbH
    • Intel Corporation
    • International Business Machines Corporation
    • ISRA VISION GmbH
    • Keyence Corporation
    • Microsoft Corporation
    • ML2Grow
    • Nexus Integra
    • NVIDIA Corporation
    • OMRON Corporation
    • Oracle Corporation
    • Sick AG
    • Siemens AG
    • Softengi
    • Teledyne Technologies Incorporated
    • Xometry Europe GmbH
    • Zebra Technologies Corporation
    • Acquired Data Solutions

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

LSH 25.09.17

The Computer Vision in Manufacturing Market was valued at USD 6.27 billion in 2024 and is projected to grow to USD 7.02 billion in 2025, with a CAGR of 12.43%, reaching USD 12.67 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 6.27 billion
Estimated Year [2025] USD 7.02 billion
Forecast Year [2030] USD 12.67 billion
CAGR (%) 12.43%

An introductory analysis of how modern imaging, optics, and embedded intelligence are reshaping quality assurance and factory automation capabilities

The intersection of advanced imaging, machine perception, and industrial automation is redefining how manufacturers detect defects, optimize throughput, and manage assets. Computer vision technologies have matured from bespoke laboratory prototypes into robust, deployable solutions that integrate with control systems, robotics, and enterprise data platforms. As a result, manufacturers are moving beyond sampling inspection to continuous, automated visual oversight that supports higher yields, reduced rework, and faster time to remediation.

This transition is being driven by more than algorithmic improvements; it reflects converging advances in sensor technology, optics, compute at the edge, and model deployment frameworks. The combination of high-resolution cameras, structured lighting, and three-dimensional imaging enables a level of perceptual acuity previously reserved for human inspectors. Meanwhile, reductions in inference latency and improvements in model explainability have made it practical to embed vision into safety-critical and high-speed production environments.

Taken together, these developments create a pathway for manufacturers to reframe quality assurance and process control. Rather than treating vision as a point solution, progressive organizations now view it as foundational infrastructure that interfaces with digital twins, predictive maintenance regimes, and autonomous material handling systems. Consequently, decision-makers must assess vision initiatives not as isolated pilots but as components of a broader factory intelligence strategy.

Emerging technological and operational inflection points that are accelerating adoption of machine perception as strategic factory infrastructure

The landscape of industrial computer vision is undergoing transformative shifts as manufacturers prioritize resilience, flexibility, and data-centric operations. First, there is a marked move from 2D inspection paradigms toward richer spatial understanding enabled by 3D machine vision, which allows systems to interpret depth, volume, and spatial relationships. This shift supports complex tasks such as assembly verification and robotics guidance that require precise three-dimensional localization.

Second, edge computing has matured sufficiently to accommodate real-time inference without routing sensitive visual data to centralized clouds, thereby reducing latency and improving privacy controls. As a consequence, vision applications that once required trade-offs between speed and model complexity can now deliver both low-latency responses and robust decision-making at the point of action. Third, modular software frameworks and containerized deployment patterns have simplified lifecycle management, enabling frequent model updates and iterative improvements in production.

In addition, integration with broader enterprise systems is accelerating. Vision outputs are increasingly normalized into standardized telemetry streams that feed process monitoring, inventory management, and maintenance planning tools. Collectively, these trends move computer vision from an experimental capability to a strategic enabler that can materially influence operational KPIs and long-term competitiveness.

How tariff-driven procurement pressures and supply chain reconfigurations are reshaping sourcing strategies and deployment timelines across manufacturing operations

Policy and trade dynamics are influencing procurement strategies, supply chain design, and deployment timelines for vision hardware and associated components. Tariff adjustments can alter the relative cost of imported cameras, optics, and lighting modules, which in turn affects sourcing decisions and the total cost of ownership for vision systems. Facing these headwinds, procurement teams are reassessing vendor portfolios, re-evaluating contract durations, and pursuing greater component diversification to mitigate exposure to duty changes.

Simultaneously, manufacturers are adapting their sourcing strategies by strengthening relationships with regional suppliers and by qualifying multiple component vendors to sustain deployment schedules. In some cases, firms are accelerating orders or front-loading capital expenditures to lock in current pricing and delivery windows, while others are redesigning solutions to substitute higher-tariff items with locally sourced alternatives or revised form factors that maintain performance.

These reactions have broader operational implications: project timelines may expand to accommodate alternate supplier validation, integration testing may require additional iterations, and total lifecycle economics should be reassessed to capture the impact of tariffs on maintenance and spare-part strategies. As a result, strategic planners must incorporate trade-related volatility into procurement roadmaps and solution architecture decisions to preserve scalability and resilience.

A differentiated segmentation-driven perspective that connects sensors, software types, applications, industry verticals, and enterprise scale to deployment outcomes

Understanding how function, form, and organizational context intersect is critical to designing effective vision programs. Based on Component, market analysis distinguishes between Hardware and Software, where Hardware is further delineated into Camera and Lighting subcomponents that determine imaging fidelity and environmental robustness; consequently, optical selection and illumination strategy have outsized influence on detection capability. Based on Type, deployments are categorized into 2D Machine Vision and 3D Machine Vision, each suited to different classes of inspection tasks, with 3D systems offering richer spatial analytics for complex geometry and alignment checks.

Based on Application, the technology is applied across Inventory Management, Predictive Maintenance, Process Monitoring & Optimization, Quality Inspection & Defect Detection, Robotics Guidance, and Safety & Compliance Monitoring; within Quality Inspection & Defect Detection, subdomains such as Assembly Verification and Surface Defect Detection require distinct sensor configurations and model architectures. Based on Industry Vertical, adoption patterns vary across Automotive, Chemical & Material, Electronics & Semiconductor, Food & Beverage, and Pharmaceutical & Healthcare; specific vertical needs such as Assembly Inspection and Body Inspection in Automotive or Mixture Analysis and Surface Inspection in Chemical & Material demand tailored pipelines and validation criteria.

Finally, based on Enterprise Size, solution selection and deployment cadence diverge between Large Enterprises and Small & Medium Enterprises, as larger organizations often integrate vision into broader MES and ERP ecosystems while smaller firms may prioritize turnkey solutions that minimize integration overhead. Recognizing these dimensions enables architects to align technology choices with operational constraints and value objectives.

Regional adoption dynamics and operational drivers that determine technology selection, supplier engagement, and deployment priorities across global manufacturing hubs

Regional dynamics influence both the technologies available to manufacturers and the operational priorities that drive investment decisions. In the Americas, manufacturers often emphasize scalability and integration with legacy control systems, pairing vision solutions with established automation vendors and prioritizing rapid return on integration. Consequently, regional supply chains and standards influence choice of hardware and software partners, while regulatory and safety frameworks shape deployment practices.

In Europe, Middle East & Africa, regulatory stringency and a focus on sustainability can prioritize solutions that support energy-efficient operations and rigorous compliance documentation. This region also demonstrates strong interest in advanced analytics and cross-facility standardization, which encourages vendors to provide interoperable platforms and long-term support commitments. Meanwhile, in Asia-Pacific, high-volume manufacturing and rapid adoption cycles place a premium on cost-effective, high-throughput vision systems. The proximity to component manufacturers and optics providers often accelerates prototyping and iteration, enabling rapid deployment at scale.

Across regions, firms must account for differences in labor practices, regulatory regimes, and supplier ecosystems to ensure that vision strategies are both technically robust and commercially viable. Harmonizing regional requirements with global architecture decisions is therefore essential for multinational players seeking consistent performance and predictable operational outcomes.

A synthesis of how vendor integration strategies, product differentiation, and service models shape competitive advantage in industrial vision ecosystems

Competitive dynamics in industrial vision are shaped by firms that combine domain expertise in optics with strong software capabilities in model training, deployment, and lifecycle management. Leading companies differentiate by offering integrated stacks that simplify integration with PLCs, MES, and robotics controllers, while others focus on niche excellence such as high-precision optics, specialized illumination, or industry-specific models trained on curated defect libraries.

Partnerships and channel strategies are important competitive levers. Vendors that cultivate deep systems integrator relationships, offer comprehensive developer tools, and provide robust support services tend to achieve broader adoption across complex production environments. Moreover, firms that invest in replicable validation frameworks and provide prescriptive deployment playbooks reduce the time from pilot to scale and lower perceived risk for industrial adopters.

Finally, service-oriented models such as managed vision or outcome-based contracts are gaining traction among enterprises that prefer predictable operational expenses and performance guarantees. These models require vendors to demonstrate not only technical accuracy but also operational reliability, support processes, and upgrade pathways that align with evolving plant priorities.

Practical implementation pathways and procurement tactics that help manufacturing leaders accelerate value capture while controlling integration and supply chain risks

Industry leaders should prioritize initiatives that maximize operational impact while minimizing integration friction. Start by defining clear use cases with measurable performance metrics and acceptance criteria; this ensures pilots generate actionable evidence and reduces ambiguity in scaling decisions. Next, build cross-functional teams that include engineering, operations, maintenance, and IT stakeholders to align requirements and accelerate deployment decisions.

Leaders should also adopt an iterative deployment strategy that favors modularity: select sensors and compute platforms that support phased rollouts, enabling teams to validate performance in situ before committing to enterprise-wide integration. Additionally, invest in data governance and labeling processes early to sustain model performance and to facilitate continuous improvement. Equally important is vendor selection: prioritize partners that provide open APIs, robust support services, and proven integration patterns for industrial control systems.

Finally, incorporate supply chain resilience into procurement planning by qualifying multiple component suppliers and by evaluating regional sourcing options. Combined, these steps create a pragmatic roadmap for organizations seeking to derive measurable value from vision while controlling technical and commercial risk.

A transparent mixed-methods research protocol combining practitioner interviews, technical literature review, and scenario analysis to ensure reproducible, operationally relevant findings

The research approach integrates primary interviews with practitioners, engineering leads, and system integrators, alongside secondary analysis of technical literature, standards documentation, and published case studies. Primary conversations focus on deployment experiences, validation protocols, and operational lessons learned, enabling the derivation of practical best practices. Secondary sources inform comparative technology assessments, component characteristics, and integration patterns, ensuring technical accuracy and contextual relevance.

Data triangulation is achieved by cross-referencing field observations with vendor specifications and independent performance assessments to reduce bias. Additionally, scenario analysis was applied to assess the operational implications of supply chain disruptions and tariff changes, using qualitative inputs from procurement and sourcing specialists to ground strategic recommendations. Quality control measures included vendor-agnostic validation exercises, peer review by industry practitioners, and consistency checks across thematic findings.

This mixed-methods approach privileges reproducibility and practitioner utility, producing insights that are both evidence-based and directly translatable into operational programs. It is designed to support decision-makers who require actionable intelligence rooted in real-world deployment experience and technical fidelity.

A concise synthesis underscoring why treating visual intelligence as factory infrastructure is essential for long-term operational improvement and resilience

Computer vision is no longer an aspirational line item; it is a strategic capability that can materially improve quality, throughput, and safety when deployed with rigor. The technology's evolution-spanning optics, three-dimensional perception, edge inference, and lifecycle management-creates a broad array of practical opportunities for manufacturers across sectors. However, realizing this potential requires deliberate alignment of technical choices with operational realities, including procurement constraints and regional variations in supplier ecosystems.

By treating vision as infrastructure rather than a collection of pilots, organizations can ensure consistent performance, accelerate the transition from proof of concept to production, and capture sustained operational benefits. This necessitates investment in governance, data processes, and cross-functional collaboration, alongside prudent vendor selection and supply chain planning. With these elements in place, vision systems can integrate into broader digital strategies, supporting predictive maintenance, process optimization, and higher degrees of automation.

In short, the organizations that treat vision as an integral part of their factory intelligence stack will be best positioned to improve quality, reduce waste, and respond adaptively to evolving market and policy conditions.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Edge computing enabled vision modules for low-latency quality inspection on the factory floor
  • 5.2. Integration of augmented reality and computer vision for remote maintenance and training support
  • 5.3. Integration of 3D stereo and LiDAR vision sensors for precise robotic assembly in automotive production
  • 5.4. 5G-enabled high-throughput vision networks supporting decentralized smart factory architectures
  • 5.5. Collaborative robots leveraging 3d vision sensors for precision assembly in electronics manufacturing
  • 5.6. AI-driven predictive maintenance through real-time visual anomaly detection in production lines
  • 5.7. Deep learning based quality control platforms detecting microscopic defects on assembly lines in real time
  • 5.8. Supply chain transparency enhanced by computer vision sensors for automated part tracking and inventory management
  • 5.9. Adoption of 3D stereo vision systems for precision robotic welding and part alignment
  • 5.10. Emergence of self-learning vision systems capable of adapting to new product variations without reprogramming

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Computer Vision in Manufacturing Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Camera
    • 8.2.2. Lighting
  • 8.3. Software

9. Computer Vision in Manufacturing Market, by Type

  • 9.1. Introduction
  • 9.2. 2D Machine Vision
  • 9.3. 3D Machine Vision

10. Computer Vision in Manufacturing Market, by Application

  • 10.1. Introduction
  • 10.2. Inventory Management
  • 10.3. Predictive Maintenance
  • 10.4. Process Monitoring & Optimization
  • 10.5. Quality Inspection & Defect Detection
    • 10.5.1. Assembly Verification
    • 10.5.2. Surface Defect Detection
  • 10.6. Robotics Guidance
  • 10.7. Safety & Compliance Monitoring

11. Computer Vision in Manufacturing Market, by Industry Vertical

  • 11.1. Introduction
  • 11.2. Automotive
    • 11.2.1. Assembly Inspection
    • 11.2.2. Body Inspection
  • 11.3. Chemical & Material
    • 11.3.1. Mixture Analysis
    • 11.3.2. Surface Inspection
  • 11.4. Electronics & Semiconductor
  • 11.5. Food & Beverage
  • 11.6. Pharmaceutical & Healthcare

12. Computer Vision in Manufacturing Market, by Enterprise Size

  • 12.1. Introduction
  • 12.2. Large Enterprises
  • 12.3. Small & Medium Enterprises

13. Americas Computer Vision in Manufacturing Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Computer Vision in Manufacturing Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Computer Vision in Manufacturing Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ABB Ltd.
    • 16.3.2. Artemis Vision
    • 16.3.3. Basler AG
    • 16.3.4. Baumer Holding AG
    • 16.3.5. Clarifai, Inc.
    • 16.3.6. Cognex Corporation
    • 16.3.7. Fastec Imaging Corporation
    • 16.3.8. Fujitsu Limited
    • 16.3.9. GE Vernova
    • 16.3.10. Google LLC by Alphabet, Inc.
    • 16.3.11. Heliovision
    • 16.3.12. IFM Electronic GmbH
    • 16.3.13. Intel Corporation
    • 16.3.14. International Business Machines Corporation
    • 16.3.15. ISRA VISION GmbH
    • 16.3.16. Keyence Corporation
    • 16.3.17. Microsoft Corporation
    • 16.3.18. ML2Grow
    • 16.3.19. Nexus Integra
    • 16.3.20. NVIDIA Corporation
    • 16.3.21. OMRON Corporation
    • 16.3.22. Oracle Corporation
    • 16.3.23. Sick AG
    • 16.3.24. Siemens AG
    • 16.3.25. Softengi
    • 16.3.26. Teledyne Technologies Incorporated
    • 16.3.27. Xometry Europe GmbH
    • 16.3.28. Zebra Technologies Corporation
    • 16.3.29. Acquired Data Solutions

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제