½ÃÀ庸°í¼­
»óǰÄÚµå
1806538

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ºÎǰº°, ±â¼úº°, ±â´Éº°, µð¹ÙÀ̽º À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è Àü¸Á(2025-2030³â)

Power Electronics Market by Components, Technology, Functionality, Device Types, Application, End Users - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 193 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº 2024³â¿¡ 462¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â CAGR 5.85%·Î 486¾ï ´Þ·¯·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 650¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 462¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 486¾ï ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 650¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 5.85%

ÅëÂû·Â ÀÖ´Â ½ÃÀå ºÐ¼®°ú »õ·Î¿î ±â¼ú ÃËÁø¿äÀÎÀ» ÅëÇØ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Àü·Ê ¾ø´Â ¹ßÀüÀÇ ¹ßÆÇÀ» ¸¶·ÃÇÕ´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â Çö´ë ¿¡³ÊÁö ½Ã½ºÅÛ, »ê¾÷ ÀÚµ¿È­ ¹× ¼ÒºñÀÚ¿ëµµÀÇ Á߽ɿ¡ À§Ä¡ÇÏ¸ç º¯È­ÀÇ ±æÀ» °È°í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ Àü·Â º¯È¯ ¾ÆÅ°ÅØÃ³°¡ º¸´Ù È¿À²ÀûÀ̰í ÄÄÆÑÆ®ÇÑ ¼Ö·ç¼ÇÀ¸·Î ´ëüµÇ´Â °¡¿îµ¥, ¹ë·ùüÀÎ Àü¹ÝÀÇ ÀÌÇØ°ü°èÀÚµéÀº Çõ½ÅÀ» Çü¼ºÇÏ´Â ÁÖ¿ä Èû¿¡ ´ëÇÑ ´õ ±íÀº ÀÌÇØ¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â ½Å±â¼ú, ÁøÈ­ÇÏ´Â ±ÔÁ¦ ȯ°æ, º¯È­ÇÏ´Â °í°´ ´ÏÁî°¡ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå¿¡¼­ ¾î¶»°Ô À¶ÇյǾî Àü·Ê ¾ø´Â ¼ºÀå°ú º¹À⼺À» °¡Á®¿À´ÂÁö »ìÆìº½À¸·Î½á ±âÃÊÀûÀÎ »óȲÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

÷´Ü ±â¼ú ÅëÇÕÀ¸·Î ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°´Â º¯È­¸¦ °ËÁõÇÏ´Â Àü·«Àû ÆÄÆ®³Ê½Ê°ú ÁøÈ­ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ëÇÑ °ËÁõ

ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º´Â È¿À²¼º°ú ¼ÒÇüÈ­ÀÇ Á¡ÁøÀûÀÎ °³¼±»Ó¸¸ ¾Æ´Ï¶ó ¸¹Àº Çõ½ÅÀûÀÎ º¯È­·Î ÀÎÇØ ÀçÆíµÇ°í ÀÖ½À´Ï´Ù. ¿ÍÀÌµå ¹êµå°¸ ¼ÒÀç, µðÁöÅÐ Àü·Â °ü¸®, ÷´Ü ÆÐŰ¡ ±â¼úÀÇ À¶ÇÕÀ¸·Î °ú°Å¿¡´Â ½ÇÇö ºÒ°¡´ÉÇÏ´Ù°í ¿©°ÜÁ³´ø ¼º´É ¼öÁØÀÌ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© »ç¾÷ÀÚ¿Í °Å·¡Ã³ »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü°¡ ¼Õ½Ç °¨¼Ò¿Í ¿­ ¹ßÀÚ±¹ ÃÖ¼ÒÈ­¸¦ Ãß±¸ÇÏ´Â °¡¿îµ¥, ÁúÈ­°¥·ý°ú źȭ±Ô¼Ò ¹ÝµµÃ¼ÀÇ ±â¼ú Çõ½ÅÀº Àü¾Ð, Á֯ļö, Àü·Â ¹ÐµµÀÇ ÇѰ踦 ³ÐÇô°¡°í ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ Á¶Ä¡°¡ ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º °ø±Þ¸Á¿¡ ¹ÌÄ¡´Â ´©Àû ¿µÇâ ÆÄ¾Ç 2025³â ºñ¿ë ±¸Á¶ ¹× Àü·«Àû Á¶´Þ °áÁ¤¿¡ ¹ÌÄ¡´Â ¿µÇ⠺м®

¹Ì±¹ÀÌ 2025³â »õ·Î¿î °ü¼¼ Á¶Ä¡¸¦ µµÀÔÇÔ¿¡ µû¶ó ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º °ø±Þ¸Á Àüü¿¡ Å« ÆÄ±ÞÈ¿°ú°¡ ¹ß»ýÇÏ¿© ºñ¿ë ±¸Á¶¿Í Á¶´Þ Àü·«¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Ä¿ÆÐ½ÃÅÍ¿Í ÀδöÅÍ¿¡¼­ ÆÄ¿ö ¸ðµâ°ú °³º° ¼ÒÀÚ¿¡ À̸£±â±îÁö ÁÖ¿ä ºÎǰÀÇ ¼öÀÔ °ü¼¼·Î ÀÎÇØ ¸¹Àº ±â¾÷µéÀÌ ±âÁ¸ÀÇ Á¶´Þ ¸ðµ¨À» Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. »ó·ú ºñ¿ë »ó½Â¿¡ Á÷¸éÇÑ ±â¾÷µéÀº ´Ù°¢È­ ³ë·ÂÀ» °¡¼ÓÈ­Çϰí, ´Ï¾î¼î¾î¸µ ¿É¼ÇÀ» ¸ð»öÇϰí, º¸´Ù À¯¸®ÇÑ Á¶°ÇÀ» È®º¸ÇÏ°í °¡°Ý º¯µ¿À» ¿ÏÈ­Çϱâ À§ÇØ °è¾àÀ» ÀçÇù»óÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ, ±¸¼º ¿ä¼Ò ±â¼ú ±â´É ÀåÄ¡ À¯Çü ¿ëµµ ¹× ÃÖÁ¾ »ç¿ëÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ¼¼ºÐÈ­ ÅëÂû·ÂÀ» ¸íÈ®È÷Çϱâ À§ÇØ

¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ±¸¼º ¿ä¼Ò À¯Çü, ±â¼úÀû Á¢±Ù ¹æ½Ä, ÃÖÁ¾ ¿ëµµ ±â´É¿¡ µû¶ó Å©°Ô ´Þ¶óÁö´Â ¹Ì¹¦ÇÑ ¿ªÇÐ °ü°è¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. Ä¿ÆÐ½ÃÅÍ´Â ¾Ë·ç¹Ì´½ ÀüÇØ Ä¿ÆÐ½ÃÅÍµç ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅ͵ç Àü·Â ÄÁµð¼Å´× ¹× ÇÊÅ͸µ ¿ëµµ¿¡¼­ °­ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, ÀδöÅÍ¿Í Á¤·ù±â´Â Àü·Â º¯È¯¿¡¼­ ¾ÈÁ¤ÀûÀÎ ÁÖ·Â Á¦Ç°À¸·Î¼­ÀÇ ¿ªÇÒÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù. °­¾Ð º¯¾Ð±â¿Í ½Â¾Ð º¯¾Ð±âµµ ¸¶Âù°¡Áö·Î Áß¿äÇϸç, ´Ù¾çÇÑ Àü¾Ð ·¹º§ÀÇ Àü¾Ð Á¶Á¤ ¿ä±¸¸¦ ÃæÁ·½Ãŵ´Ï´Ù.

¹ÌÁÖ, À¯·´, Áßµ¿/¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º »ýŰ迡¼­ Áö¿ª ½ÃÀå º¯È­¿Í ¼ºÀå ÃËÁø¿äÀο¡ ´ëÇÑ °íÂû

ÆÄ¿öÀÏ·ºÆ®·Î´Ð½ºÀÇ Áö¿ª ¿ªÇÐÀº ºÏ¹Ì, ³²¹Ì, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çº°·Î °¢±â ´Ù¸¥ ÃËÁø¿äÀΰú ½ÃÀå ¼º¼÷µµ¿¡ µû¶ó Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ¹ÌÁÖ Áö¿ª¿¡¼­´Â Àü±âÀÚµ¿Â÷ ÀÎÇÁ¶ó, Àü·Â¸Á Çö´ëÈ­ °èȹ, µðÁöÅÐ º¯Àü¼Ò¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ°¡ ÷´Ü ¹ÝµµÃ¼ ¹× Àü·Â ¸ðµâ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì Á¦Á¶¾÷üµéÀº ¶ÇÇÑ ±¹³» »ý»êÀ» È®´ëÇÏ°í °ø±Þ¸ÁÀÇ Åº·Â¼ºÀ» ³ôÀ̱â À§ÇØ Áö¿øÀûÀÎ Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

¼¼°è ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀÇ °æÀï ¿ªÇÐ ¹× ±â¼ú äÅÃÀ» Çü¼ºÇÏ´Â ¾÷°è ¼±µÎÁÖÀÚµé°ú ±×µéÀÇ Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÇÁ·ÎÆÄÀϸµÇÕ´Ï´Ù.

ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º°æÀï ±¸µµ´Â ±âÁ¸ÀÇ ±âÁ¸ ±â¾÷µé°ú ¹ÎøÇÑ ½Å±Ô ÁøÃâ±â¾÷µé¿¡ ÀÇÇØ Á¤Àǵǰí ÀÖÀ¸¸ç, °¢ ±â¾÷µéÀº ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ Â÷º°È­µÈ Àü·«À» Ãß±¸Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ÝµµÃ¼ ¾÷üµéÀº È¿À²°ú ¿­ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ GaN°ú SiC ±â¼ú¿¡ ÁýÁßÇϰí ÀÖÀ¸¸ç, Ÿ°Ù Àμö ¹× ÇÕÀÛ ÅõÀÚ¸¦ ÅëÇØ ±¤´ë¿ª °¸ Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ¿Í ¸ðµâ °ø±Þ¾÷ü´Â ÷´Ü µðÁöÅÐ Á¦¾î ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇÕÇÏ¿© Áß¿äÇÑ ¿ëµµÀÇ ¿¹Áöº¸Àü ¹× ½Ç½Ã°£ ¼º´É ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¾÷°è ¸®´õ¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¦¾È ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Çõ½ÅÀ» ÅëÇØ È¥¶õÀ» ±Øº¹ÇÏ°í °æÀï ¿ìÀ§¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾÷°è ¸®´õµéÀº ±¤´ë¿ª °¸ ¹ÝµµÃ¼ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°í, È¿À²À» ³ôÀ̰í, Àüü ¿ëµµ¿¡¼­ ´õ ³ôÀº Àü·Â ¹Ðµµ¸¦ ´Þ¼ºÇØ¾ß ÇÕ´Ï´Ù. Àç·á °ø±Þ¾÷ü ¹× Àü·«Àû °í°´°úÀÇ Çù·Â °ü°è¸¦ ±¸ÃàÇÔÀ¸·Î½á ±â¾÷Àº Á¦Ç° °³¹ß Áֱ⸦ ´ÜÃàÇϰí ÃÖÁ¾ »ç¿ëÀÚÀÇ ÅëÇÕ º¹À⼺À» ÁÙÀÌ´Â ÅÏŰ ¼Ö·ç¼ÇÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´Ù°¢È­, Àç°í ÃÖÀûÈ­, Áö¿ª Á¦Á¶¾÷ü¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ °ø±Þ¸Á °­ÀμºÀ» °­È­ÇÔÀ¸·Î½á ¹«¿ª Á¤Ã¥ÀÇ º¯µ¿°ú ºÎǰ ºÎÁ·¿¡ µû¸¥ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍÀÇ ¿ÏÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ Ã¤ÅÃµÈ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀÇ ¼³¸í ºÐ¼®ÀÇ ¾ö°ÝÇÔ°ú Àü·Â ÀüÀÚ µ¿Çâ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Æ÷°ý¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

º» Á¶»ç¹æ¹ýÀº Á¾ÇÕÀûÀÎ 2Â÷ ºÐ¼®°ú Ÿ°ÙÆÃµÈ 1Â÷ ÀÎÅÍºä ¹× µ¥ÀÌÅÍ °ËÁõÀ» °áÇÕÇÑ °­·ÂÇÑ ¹æ¹ýÀ¸·Î µÞ¹ÞħµË´Ï´Ù. ÇмúÁö, ƯÇã µ¥ÀÌÅͺ£À̽º, ¾÷°è °£Ç๰, ±â¼ú ¹é¼­, ±ÔÁ¦ ´ç±¹¿¡ ´ëÇÑ ½Å°í µî 2Â÷ Á¤º¸ Ãâó´Â Á¤·®Àû, Á¤¼ºÀû ÅëÂû·ÂÀÇ Ç³ºÎÇÑ Åä´ë¸¦ Á¦°øÇÕ´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â ¹ÝµµÃ¼ Á¦Á¶¾÷ü, ÆÄ¿ö ¸ðµâ °ø±Þ¾÷ü, OEM, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ °æ¿µÁø, R&D Ã¥ÀÓÀÚ, °ø±Þ¸Á °ü¸®ÀÚ, ±â¼ú Àü¹®°¡¸¦ ´ë»óÀ¸·Î ½ÉÃþ ÀÎÅͺ並 ÁøÇàÇß½À´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¼Ö·ç¼ÇÀÇ ¹Ì·¡ ±Ëµµ¸¦ ÁÖµµÇÏ´Â ±â¼ú Á¤Ã¥°ú ½ÃÀå ¿ø¸®ÀÇ À¶ÇÕ¿¡ ´ëÇÑ °á·Ð °íÂû

°á·ÐÀûÀ¸·Î ÆÄ¿öÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹Ì·¡´Â ÷´Ü ¼ÒÀç, µðÁöÅÐÈ­, Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¶ó´Â ¿ä±¸ÀÇ ¼ö·Å¿¡ ÀÇÇØ Á¤ÀÇµÉ °ÍÀÔ´Ï´Ù. GaN ¹× SiC¿Í °°Àº ±¤´ë¿ª °¸ ¹ÝµµÃ¼´Â È¿À² º¥Ä¡¸¶Å©¸¦ ÀçÁ¤ÀÇÇϰí, ¿¡³ÊÁö ¼öÈ®, ¹«¼± Àü·Â, HVDC ±â¼úÀº ¿¡³ÊÁö »ý»ê, Àü¼Û ¹× ¼Òºñ ¹æ½ÄÀ» º¯È­½Ãų °ÍÀÔ´Ï´Ù. °ü¼¼, Żź¼Ò Àǹ«È­ µîÀÇ Á¤Ã¥ º¯È­´Â Àü·«Àû ÀÇ»ç°áÁ¤°ú °ø±Þ¸Á ±¸¼ºÀ» Áö¼ÓÀûÀ¸·Î Çü¼ºÇϰí ÀÖÀ¸¸ç, ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô ¹ÎøÇÑ ´ëÀÀÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Ä¿ÆÐ½ÃÅÍ
    • ¾Ë·ç¹Ì´½ ÀüÇØ Ä¿ÆÐ½ÃÅÍ
    • ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ
  • ÀδöÅÍ
  • Á¤·ù±â
  • Æ®·£½ºÆ÷¸Ó
    • °­¾Ð º¯¾Ð±â
    • ½Â¾Ð º¯¾Ð±â

Á¦9Àå ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ±â¼úº°

  • ¿¡³ÊÁö¼öÈ® ±â¼ú
    • ž籤¹ßÀü
    • ¿­Àü ¿¡³ÊÁö
  • HVDC ±â¼ú
    • ÄÁ¹öÅÍ
    • º¯¾Ð±â
  • ¹«¼± Àü·Â Àü¼Û

Á¦10Àå ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ±â´É¼ºº°

  • ¹èÅ͸® °ü¸®
  • ¿¡³ÊÁö º¯È¯
  • ¸ðÅÍ Á¦¾î
  • Àü·Â °ü¸®

Á¦11Àå ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå µð¹ÙÀ̽º À¯Çüº°

  • ´ÙÀÌ¿Àµå
  • ÆÄ¿ö µð½ºÅ©¸®Æ®
  • ÆÄ¿ö ¸ðµâ
    • GaN µð¹ÙÀ̽º
    • SiC µð¹ÙÀ̽º
  • »çÀ̸®½ºÅÍ
  • Æ®·£Áö½ºÅÍ

Á¦12Àå ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ¿ëµµº°

  • ÀÚµ¿Â÷
    • ÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS)
    • Àü±âÀÚµ¿Â÷
      • ¹èÅ͸® °ü¸® ½Ã½ºÅÛ
      • ¿Âº¸µå ÃæÀü±â
    • ÇÏÀ̺긮µåÂ÷
  • °¡Àü
    • ³ëÆ®ºÏ
    • ½º¸¶Æ®Æù
    • TV
    • ¿þ¾î·¯ºí
      • ÇÇÆ®´Ï½º Æ®·¡Ä¿
      • ½º¸¶Æ®¿öÄ¡
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
    • Àü·Â¸Á
    • Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ
    • ½º¸¶Æ® ±×¸®µå ½Ã½ºÅÛ
  • ÇコÄɾî
    • ÀÇ·á ¿µ»ó
    • ¿þ¾î·¯ºí Çコ µð¹ÙÀ̽º
  • »ê¾÷
    • ÀÚµ¿È­ ±â°è
    • ·Îº¿ °øÇÐ
    • ¼¾¼­ ¹× ¾×Ãß¿¡ÀÌÅÍ
  • Åë½Å
    • ÈÞ´ëÆù ³×Æ®¿öÅ©
    • ±¤¼¶À¯ ½Ã½ºÅÛ
    • À§¼º ½Ã½ºÅÛ

Á¦13Àå ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¾ÖÇÁÅ͸¶ÄÏ ¼­ºñ½º Á¦°ø¾÷ü
  • Á¤ºÎ ¹× ±º
  • OEM
  • ¿¬±¸°³¹ß ±â¾÷

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • ABB Ltd.
    • BorgWarner Inc.
    • Alpha and Omega Semiconductor Limited
    • ASM International N.V.
    • Delta Electronics, Inc.
    • Efficient Power Conversion Corporation.
    • Fuji Electric Co., Ltd.
    • Heraeus Group
    • Imperix ltd.
    • Infineon Technologies AG
    • Liebherr-International Deutschland GmbH
    • Littelfuse, Inc.
    • Microchip Technology Incorporated
    • Mitsubishi Electric Corporation
    • Murata Manufacturing Co., Ltd.
    • Navitas Semiconductor Ltd.
    • Nordic Semiconductor ASA
    • NXP Semiconductor N.V
    • ON Semiconductor Corp.
    • Proterial, Ltd.
    • Qualcomm Incorporated
    • Renesas Electronics Corporation
    • ROHM Co., Ltd.
    • Semikron Danfoss Elektronik GmbH & Co. KG
    • Siemens AG
    • Silicon Laboratories Inc.
    • STMicroelectronics International N.V.
    • Taiyo Yuden Co., Ltd.
    • Texas Instruments, Inc.
    • Toshiba International Corporation
    • Vicor Corporation
    • Wolfspeed, Inc.
    • ZF Friedrichshafen AG

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH

The Power Electronics Market was valued at USD 46.22 billion in 2024 and is projected to grow to USD 48.60 billion in 2025, with a CAGR of 5.85%, reaching USD 65.04 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 46.22 billion
Estimated Year [2025] USD 48.60 billion
Forecast Year [2030] USD 65.04 billion
CAGR (%) 5.85%

Setting the Stage for Unprecedented Advancements in Power Electronics Through Insightful Market Analysis and Emerging Technological Drivers

Power electronics is undergoing a transformative journey that sits at the heart of modern energy systems, industrial automation, and consumer applications. As traditional power conversion architectures give way to more efficient and compact solutions, stakeholders across the value chain are seeking a deeper understanding of the key forces shaping innovation. This introduction establishes the foundational landscape by exploring how emerging technologies, evolving regulatory frameworks, and shifting customer demands are converging to drive unprecedented growth and complexity within the power electronics market.

Moreover, the integration of renewable energy sources, the electrification of transportation, and the digitalization of industrial processes are creating new opportunities for power conversion, management, and control solutions. Against this backdrop, the report synthesizes macroeconomic trends, supply chain dynamics, and competitive strategies to present a cohesive narrative of where the industry stands today and where it is headed tomorrow. By setting the stage with a clear articulation of current drivers and challenges, this section paves the way for a comprehensive exploration of transformative shifts, trade policy impacts, and segmentation insights that follow.

Examining the Transformative Shifts Revolutionizing Power Electronics by Integrating Cutting-Edge Technologies Strategic Partnerships and Evolving Regulatory Frameworks

Power electronics is being reshaped by a number of transformative shifts that extend beyond incremental improvements in efficiency and size reduction. The convergence of wide bandgap materials, digital power management, and advanced packaging techniques is unlocking performance levels that were once considered unattainable. As network operators and original equipment manufacturers seek to reduce losses and minimize thermal footprints, innovations in gallium nitride and silicon carbide semiconductors are pushing the boundaries of voltage, frequency, and power density.

At the same time, the rise of energy harvesting techniques-spanning photovoltaic and thermoelectric sources-along with the deployment of high-voltage direct current transmission and wireless power technologies, is redefining how energy is generated, transmitted, and consumed. Beyond technical breakthroughs, evolving environmental regulations and decarbonization targets are accelerating strategic partnerships among utilities, technology providers, and automotive OEMs. Consequently, collaboration ecosystems are forming to address system-level challenges, driving faster adoption of next-generation solutions and ensuring that power electronics remains at the forefront of a sustainable energy transition.

Unraveling the Cumulative Impact of New United States Tariff Measures on Power Electronics Supply Chains Cost Structures and Strategic Sourcing Decisions in 2025

The United States' introduction of new tariff measures in 2025 has generated significant ripple effects across power electronics supply chains, with downstream implications for cost structures and sourcing strategies. Import duties on key components-from capacitors and inductors to power modules and discrete devices-have prompted many companies to reevaluate traditional procurement models. Faced with higher landed costs, organizations are accelerating diversification efforts, exploring nearshoring options, and renegotiating contracts to secure more favorable terms and mitigate pricing volatility.

As a result, original equipment manufacturers and tier-one suppliers are recalibrating their manufacturing footprints to balance operational efficiency against potential trade-related risks. Increased tariff burdens have also emphasized the importance of inventory management, forward purchasing agreements, and strategic alliances with local manufacturing partners. Looking ahead, companies that proactively adapt to these policy shifts by optimizing their supply chains and strengthening risk-management frameworks will be better positioned to maintain pricing competitiveness and support uninterrupted production in an uncertain trade environment.

Uncovering Key Segmentation Insights Across Components Technology Functionality Device Types Applications and End Users to Illuminate Market Dynamics

Segmentation analysis reveals nuanced dynamics that vary widely depending on component type, technological approach, and end-use functionality. When examining component categories, capacitors-whether aluminum electrolytic or ceramic-have demonstrated strong uptake in power conditioning and filtering applications, while inductors and rectifiers continue to serve as stable workhorses in power conversion. Step-down and step-up transformers are similarly critical, addressing voltage regulation needs across a spectrum of voltage levels.

In parallel, technology segmentation highlights the growing importance of energy harvesting-both photovoltaic and thermoelectric-and the rising prominence of HVDC systems incorporating advanced converters and transformers. Wireless power transmission is also gaining traction for industrial automation and consumer electronics charging use cases. Functionality-based analysis underscores the centrality of battery management, energy conversion, motor control, and power management in emerging mobility and smart grid applications.

Device types further differentiate competitive dynamics, with diodes, power discrete devices, thyristors, and transistors addressing foundational power switching needs, while power modules-particularly those featuring GaN and SiC devices-are driving breakthroughs in efficiency and thermal performance. Application-level segmentation reflects broad adoption across automotive sectors such as ADAS, electric and hybrid vehicles with onboard charging and battery management systems; consumer electronics ranging from laptops and smartphones to wearables; energy and utility infrastructures including power grids and renewable energy systems; healthcare diagnostics and wearable health monitoring devices; industrial automation and robotics; and telecommunication networks spanning cellular, fiber optic, and satellite systems.

Finally, end-user analysis shows significant engagement from aftermarket service providers, government and military entities, OEMs, and research and development enterprises, each demanding tailored solutions that align with stringent performance, reliability, and compliance requirements.

Delving into Regional Market Variations and Growth Drivers Across the Americas Europe Middle East Africa and Asia-Pacific Power Electronics Ecosystems

Regional dynamics in power electronics are shaped by distinct drivers and market maturity levels across the Americas, Europe Middle East Africa, and Asia-Pacific. In the Americas, robust investments in electric vehicle infrastructure, grid modernization initiatives, and digital substations are fueling demand for advanced semiconductors and power modules. North American manufacturers are also leveraging supportive policy frameworks to scale up domestic production and enhance supply chain resilience.

Meanwhile, Europe Middle East Africa is characterized by aggressive decarbonization targets, renewable energy integration, and infrastructure modernization, particularly in offshore wind and smart grid deployments. Regulatory programs incentivizing energy efficiency and emissions reductions are prompting end users to adopt next-generation power conversion and management solutions. In Asia-Pacific, the convergence of strong manufacturing ecosystems in China, Japan, South Korea, and India with booming industrial automation, 5G rollout, and electric mobility initiatives is creating one of the most dynamic growth landscapes globally. As countries within the region vie for leadership in emerging technologies, strategic investments in wide bandgap materials and localized production are reshaping competitive positioning.

Profiling Leading Industry Players and Their Strategic Initiatives Shaping Competitive Dynamics and Technology Adoption in the Global Power Electronics Market

The competitive landscape of power electronics is defined by both established incumbents and agile new entrants, each pursuing differentiated strategies to capture market share. Leading semiconductor manufacturers are expanding their wide bandgap portfolios through targeted acquisitions and joint ventures, focusing on GaN and SiC technologies to improve efficiency and thermal performance. Concurrently, system integrators and module suppliers are embedding advanced digital control software, enabling predictive maintenance and real-time performance optimization for critical applications.

Strategic alliances between power electronics vendors and automotive OEMs are accelerating the development of integrated solutions for electric and hybrid vehicles, while partnerships with energy utilities are driving grid-edge deployments for renewable integration and energy storage. In parallel, start-ups specializing in wireless power transmission and energy harvesting are gaining traction by offering novel form factors and use-case-specific designs. Further, contract manufacturers and design houses are strengthening their service offerings by incorporating digital twins, simulation tools, and co-development models that shorten time-to-market and enhance product customization.

Actionable Recommendations for Industry Leaders to Navigate Disruption Capitalize on Innovation and Sustain Competitive Advantage in Power Electronics

Industry leaders should prioritize investments in wide bandgap semiconductor technologies to capture efficiency gains and deliver higher power densities across applications. By forging collaborations with material suppliers and strategic customers, companies can accelerate product development cycles and create turnkey solutions that reduce integration complexity for end users. In addition, strengthening supply chain resilience through diversification, inventory optimization, and partnerships with regional manufacturers will mitigate risks associated with trade policy fluctuations and component shortages.

Digital transformation of internal operations-encompassing data analytics, digital twins, and advanced simulation-will enable product and process innovations that drive cost efficiency and reliability. Sustainability goals should be woven into product roadmaps, highlighting reduced carbon footprints and recyclability to meet increasingly stringent regulatory and customer requirements. Finally, fostering talent development in power electronics design and semiconductor fabrication will be critical for maintaining a pipeline of skilled engineers and sustaining long-term competitive advantage.

Articulating the Rigorous Research Methodology Employed to Ensure Data Integrity Analytical Rigor and Comprehensive Coverage of Power Electronics Trends

This research is underpinned by a robust methodology combining comprehensive secondary analysis with targeted primary interviews and data validation. Secondary sources include academic journals, patent databases, industry publications, technical white papers, and regulatory filings, providing a rich foundation of quantitative and qualitative insights. Primary research entails in-depth interviews with senior executives, R&D heads, supply chain managers, and technical experts across semiconductor manufacturers, power module suppliers, OEMs, and system integrators.

Data triangulation processes ensure consistency and reliability by cross-referencing findings across multiple sources, while rigorous data cleaning and normalization techniques guarantee analytical integrity. Market dynamics are further explored through scenario modeling, sensitivity analysis, and expert workshops, enabling the identification of key drivers, constraints, and emerging opportunities. Throughout, a transparent documentation approach tracks assumptions, data sources, and analytical steps, ensuring replicability and confidence in the insights presented.

Concluding Reflections on the Convergence of Technology Policy and Market Forces Driving the Future Trajectory of Power Electronics Solutions

In conclusion, the future of power electronics will be defined by the convergence of advanced materials, digitalization, and sustainable energy imperatives. Wide bandgap semiconductors such as GaN and SiC are set to redefine efficiency benchmarks, while energy harvesting, wireless power, and HVDC technologies will transform the ways in which energy is produced, transmitted, and consumed. Policy shifts, including tariffs and decarbonization mandates, will continue to shape strategic decision-making and supply chain configurations, demanding agile responses from market participants.

As regional ecosystems evolve and competitive dynamics intensify, success will hinge on the ability to integrate cross-functional expertise, engage in strategic partnerships, and drive innovation through data-driven R&D. Stakeholders that embrace a holistic approach-combining technological prowess, operational resilience, and sustainability commitments-will be best positioned to navigate the complex landscape ahead and capture the immense growth potential within global power electronics.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of solid-state transformers for decentralized renewable energy systems with faster response times and reduced losses
  • 5.2. Rapid expansion of high-power bidirectional EV charging infrastructure supporting vehicle to grid integration and grid services
  • 5.3. Integration of SiC and GaN wide bandgap semiconductors in automotive powertrains to enhance efficiency and reduce cooling requirements
  • 5.4. Deployment of intelligent digital power controllers with machine learning algorithms for adaptive load balancing and predictive maintenance
  • 5.5. Adoption of advanced 800 volt SiC MOSFET switching modules in fast charging and industrial motor drive applications
  • 5.6. Integration of wireless power transfer technology into consumer electronics and electric vehicle fleets for cable free charging
  • 5.7. Use of AI enabled monitoring systems in grid scale battery energy storage for enhanced reliability and lifecycle optimization

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Power Electronics Market, by Components

  • 8.1. Introduction
  • 8.2. Capacitors
    • 8.2.1. Aluminum Electrolytic Capacitors
    • 8.2.2. Ceramic Capacitors
  • 8.3. Inductors
  • 8.4. Rectifiers
  • 8.5. Transformers
    • 8.5.1. Step-Down Transformers
    • 8.5.2. Step-Up Transformers

9. Power Electronics Market, by Technology

  • 9.1. Introduction
  • 9.2. Energy Harvesting Technology
    • 9.2.1. Photovoltaic Energy
    • 9.2.2. Thermoelectric Energy
  • 9.3. HVDC Technology
    • 9.3.1. Converters
    • 9.3.2. Transformer
  • 9.4. Wireless Power Transmission

10. Power Electronics Market, by Functionality

  • 10.1. Introduction
  • 10.2. Battery Management
  • 10.3. Energy Conversion
  • 10.4. Motor Control
  • 10.5. Power Management

11. Power Electronics Market, by Device Types

  • 11.1. Introduction
  • 11.2. Diodes
  • 11.3. Power Discrete
  • 11.4. Power Modules
    • 11.4.1. GaN Devices
    • 11.4.2. SiC Devices
  • 11.5. Thyristors
  • 11.6. Transistors

12. Power Electronics Market, by Application

  • 12.1. Introduction
  • 12.2. Automotive
    • 12.2.1. Advanced Driver Assistance Systems
    • 12.2.2. Electric Vehicles
      • 12.2.2.1. Battery Management Systems
      • 12.2.2.2. Onboard Chargers
    • 12.2.3. Hybrid Vehicles
  • 12.3. Consumer Electronics
    • 12.3.1. Laptops
    • 12.3.2. Smartphones
    • 12.3.3. Televisions
    • 12.3.4. Wearables
      • 12.3.4.1. Fitness Trackers
      • 12.3.4.2. Smartwatches
  • 12.4. Energy & Utilities
    • 12.4.1. Power Grids
    • 12.4.2. Renewable Energy Systems
    • 12.4.3. Smart Grid Systems
  • 12.5. Healthcare
    • 12.5.1. Medical Imaging
    • 12.5.2. Wearable Health Devices
  • 12.6. Industrial
    • 12.6.1. Automated Machinery
    • 12.6.2. Robotics
    • 12.6.3. Sensors & Actuators
  • 12.7. Telecommunication
    • 12.7.1. Cellular Networks
    • 12.7.2. Fiber Optic Systems
    • 12.7.3. Satellites Systems

13. Power Electronics Market, by End Users

  • 13.1. Introduction
  • 13.2. Aftermarket Service Providers
  • 13.3. Government and Military
  • 13.4. Original Equipment Manufacturers (OEMs)
  • 13.5. Research and Development Enterprises

14. Americas Power Electronics Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Power Electronics Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Power Electronics Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. ABB Ltd.
    • 17.3.2. BorgWarner Inc.
    • 17.3.3. Alpha and Omega Semiconductor Limited
    • 17.3.4. ASM International N.V.
    • 17.3.5. Delta Electronics, Inc.
    • 17.3.6. Efficient Power Conversion Corporation.
    • 17.3.7. Fuji Electric Co., Ltd.
    • 17.3.8. Heraeus Group
    • 17.3.9. Imperix ltd.
    • 17.3.10. Infineon Technologies AG
    • 17.3.11. Liebherr-International Deutschland GmbH
    • 17.3.12. Littelfuse, Inc.
    • 17.3.13. Microchip Technology Incorporated
    • 17.3.14. Mitsubishi Electric Corporation
    • 17.3.15. Murata Manufacturing Co., Ltd.
    • 17.3.16. Navitas Semiconductor Ltd.
    • 17.3.17. Nordic Semiconductor ASA
    • 17.3.18. NXP Semiconductor N.V
    • 17.3.19. ON Semiconductor Corp.
    • 17.3.20. Proterial, Ltd.
    • 17.3.21. Qualcomm Incorporated
    • 17.3.22. Renesas Electronics Corporation
    • 17.3.23. ROHM Co., Ltd.
    • 17.3.24. Semikron Danfoss Elektronik GmbH & Co. KG
    • 17.3.25. Siemens AG
    • 17.3.26. Silicon Laboratories Inc.
    • 17.3.27. STMicroelectronics International N.V.
    • 17.3.28. Taiyo Yuden Co., Ltd.
    • 17.3.29. Texas Instruments, Inc.
    • 17.3.30. Toshiba International Corporation
    • 17.3.31. Vicor Corporation
    • 17.3.32. Wolfspeed, Inc.
    • 17.3.33. ZF Friedrichshafen AG

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦