시장보고서
상품코드
1806566

태양전지판 재활용 시장 : 프로세스 유형, 패널 유형, 최종 용도별 - 세계 전망(2025-2030년)

Solar Panel Recycling Market by Process Type, Panel Type, End-Use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

태양전지판 재활용 시장은 2024년에 3억 1,011만 달러로 평가되었습니다. 2025년에는 3억 3,883만 달러에 이르고, CAGR 9.47%로 성장하여 2030년에는 5억 3,393만 달러에 달할 전망입니다.

주요 시장 통계
기준 연도 : 2024년 3억 1,011만 달러
추정 연도 : 2025년 3억 3,883만 달러
예측 연도 : 2030년 5억 3,393만 달러
CAGR(%) 9.47%

고도의 순환 경제 전략과 혁신적인 중고 솔루션이 주도하는 지속 가능한 에너지의 미래에서 태양광 패널 재활용의 중요성을 밝혀내다.

세계적으로 태양광 발전의 도입이 그 어느 때보다 빠르게 증가함에 따라, 사용한 태양광 모듈의 견고한 재활용 프레임워크 구축이 시급하다는 점이 부각되고 있습니다. 전 세계 설치 용량이 계속 확대됨에 따라 사용 후 패널의 양이 급격히 증가하여 지속 가능한 관리가 요구되는 복잡한 폐기물 흐름이 도래할 것으로 예측됩니다. 재활용은 유해 물질과 관련된 환경 위험을 줄일 뿐만 아니라 실리콘, 알루미늄, 은 구리와 같은 귀중한 상품을 회수하고, 공급망이 혼란스러운 상황에서 자원의 안전을 강화합니다.

환경적 요구와 정책 혁신에 대응하고, 태양광 패널 재활용 기술과 시장 역학을 형성하는 변혁적 변화를 검증합니다.

지난 10년동안 태양전지판 재활용은 틈새 관심사에서 환경 정책 및 산업 전략의 초점으로 전환되었습니다. 이전에는 단편적이었던 노력이 다양한 모듈의 화학적 특성과 폼팩터에 대응할 수 있는 확장 가능한 기술로 집약되고 있습니다. 파쇄, 분쇄, 체질과 같은 기계적 공정은 현재 열분해와 같은 열처리와 함께 작동하며, 새로운 화학 기술은 산 침출과 용매 추출을 활용하여 고순도 실리콘과 귀금속을 분리하고 있습니다.

미국 관세가 태양광 패널 재활용 공급망에 미치는 장기적 영향 분석 2025년 국내 처리 인센티브 및 세계 경쟁 역학 분석

2025년 예정된 미국의 수입 태양광 패널 및 관련 재활용 제품에 대한 관세 도입은 국내 재활용 사업과 세계 밸류체인의 경제성을 변화시킬 것입니다. 주요 제조 거점으로부터의 선적에 추가 관세를 부과함으로써, 이 조치는 국내 처리 능력을 강화하는 동시에 해외 시설에 대한 의존도를 낮추기 위한 것입니다. 그 결과, 미국 내 재활용 업체들은 보다 유리한 무역 조건에서 원료를 확보하기 위해 공급 체제를 재검토하고 새로운 파트너십을 협상하고 있습니다.

태양광 패널 재활용의 성장과 차별화를 촉진하고, 공정 유형별 패널 기술 및 최종 용도별 주요 부문 분석

공정 유형 세분화에 대한 자세한 이해는 화학적 기계적 재활용과 열적 재활용 경로에서 분명한 기회와 과제를 드러냅니다. 기계적 재활용은 파쇄, 분쇄, 체분리를 통해 유리 프레임과 금속, 고분자 부품을 분리하는 것으로, 혼합물질이 나올 가능성이 있는 것, 저비용으로 진입할 수 있습니다. 케미컬 리사이클은 산성 침출 및 용매 추출 기술을 응용하여 고순도 실리콘과 전략 금속을 회수할 수 있습니다. 열 재활용은 소각과 열분해를 이용하여 고분자 백시트와 봉지재를 분해하여 합성가스와 숯을 생성하는 방식입니다.

진화하는 태양광 패널 재활용 생태계에서 북미, 중남미, 중동 및 아프리카, 아시아태평양의 지역별 수요 패턴 및 시장 성장 촉진요인 하이라이트

규제 프레임워크와 인프라 능력의 지역적 차이는 북미와 남미의 태양광 패널 재활용 패러다임을 크게 형성하고 있습니다. 북미 시장은 강력한 환경 법규와 새로운 확대된 생산자책임의무의 혜택을 누리고 있으며, 미국과 캐나다에서는 회수 네트워크의 확장에 박차를 가하고 있습니다. 한편, 라틴아메리카 국가에서는 공식적인 사용 후 제품 회수 프로그램 구축이 초기 단계에 있으며, 도시 중심부에서 혁신적인 회수 체계를 시범 운영하기 위한 민관 협력의 기회가 생겨나고 있습니다.

전략적 파트너십을 통해 태양광 패널 재활용 솔루션을 혁신하는 주요 기업 프로파일 기술적 진보와 지속 가능한 비즈니스 모델을 소개합니다.

업계 선두 기업들은 수직적 통합과 전략적 제휴를 통해 태양광 패널 재활용 생태계 내에서 입지를 확보하고 있습니다. 기술 제공 업체는 금속 제련 업체 및 폐기물 관리 회사와 협력하여 원료 수집, 재료 회수 및 재제조 경로를 간소화하는 엔드 투 엔드 처리 네트워크를 구축합니다. 일부 전통 있는 태양광 제조업체들은 자체 재활용 시설에 투자하여 재활용 실리콘의 일관된 품질을 보장하고, 폐쇄형 생산 주기를 가능하게 합니다.

태양광 패널 재활용 사업 최적화를 위한 업계 리더를 위한 실행 가능한 제안 지속가능성 강화 및 경쟁 우위 달성

업계 선두주자들은 상당한 다운타임 없이 다양한 패널 화학물질과 포맷을 처리할 수 있는 유연한 모듈식 설비 개발을 우선순위에 두어야 합니다. 적응형 설비 설치 공간에 투자하면 새로운 유형의 모듈이나 재료가 폐기물에 포함될 때 신속하게 재구성할 수 있습니다. 동시에, 금속 제련업체 및 화학 처리 기업과의 전략적 파트너십을 구축하여 가치 회수 이니셔티브를 촉진하고 단일 공급원 원료 계약에 대한 의존도를 낮출 수 있습니다.

태양광 패널 재활용 시장 역학 기술 동향과 이해관계자의 관점을 분석하기 위해 채택한 종합적인 조사 방법의 개요.

이번 조사는 재활용 기술 제공업체, 폐기물 관리 책임자, 정책 전문가를 대상으로 한 1차 인터뷰와 규제 관련 간행물, 기술 백서, 업계 회의록 등 광범위한 2차 조사를 결합한 다면적인 방법을 사용했습니다. 주요 정보 제공업체와의 토론은 진화하는 비즈니스 모델과 새로운 프로세스 혁신을 포착하기 위해 구성되었으며, 기존 트렌드와 새로운 트렌드 모두 철저하게 문서화되었습니다.

확장 가능한 태양광 패널 재활용 솔루션을 촉진하는 데 있어 공동 혁신과 정책 지원의 중요한 역할을 강조하는 전략적 인사이트을 요약한 보고서

요약: 태양광 패널 재활용 분야는 PV의 급속한 보급으로 인한 사용 후 패널의 양 증가와 진화하는 정책 프레임워크에 따라 변곡점에 서 있습니다. 기계적, 화학적, 열적 공정의 기술 발전으로 재료 회수율이 향상되고 있지만, 업계는 원료의 다양성과 지역마다 다른 규제 차이와 싸워야 합니다. 재활용업체와 정책 입안자, 그리고 다운스트림 금속 제련업체와의 전략적 협력은 확장 가능한 순환 경제의 성과를 달성하는 데 있어 매우 중요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 태양전지판 재활용 시장 프로세스 유형별

  • 케미컬 재활용
    • 산 침출
    • 용매 추출
  • 기계적 재활용
    • Crushing
    • Grinding
    • Sieving
  • 서멀 재활용
    • 소각
    • 열분해

제9장 태양전지판 재활용 시장 패널 유형별

  • 실리콘 기반
    • 단결정
    • 다결정
  • 박막 기반
    • 아몰퍼스 실리콘
    • 카드뮴 텔룰라이드
    • 구리 인듐 갈륨 셀렌

제10장 태양전지판 재활용 시장 : 최종 용도별

  • 환경복원
  • 금속 제련
    • 알루미늄 제련
    • 구리 회수
    • 은 회수
  • Off-grid 용도

제11장 아메리카의 태양전지판 재활용 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제12장 유럽, 중동 및 아프리카의 태양전지판 재활용 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제13장 아시아태평양의 태양전지판 재활용 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Canadian Solar Inc.
    • Cascade Eco Minerals LLC
    • Cleanlites Recycling
    • Decom Solar, LLC
    • Electronic Recyclers International, Inc.
    • Envaris GmbH
    • Envela Corporation
    • EtaVolt Pte. Ltd.
    • Fabtech Enterprises, Inc.
    • First Solar, Inc.
    • Hanwha Group
    • Interco Trading, Inc.
    • PV Industries Pty Ltd.
    • REC Solar Holdings AS
    • Recycle1234.com
    • Reiling GmbH & Co. KG
    • Rinovasol Global Services B. V.
    • Silcontel Ltd.
    • SOLARCYCLE, Inc.
    • SunPower Corporation
    • Suny Group
    • The Retrofit Companies, Inc.
    • Veolia Environnement SA

제15장 리서치 AI

제16장 리서치 통계

제17장 리서치 컨택트

제18장 리서치 기사

제19장 부록

LSH 25.09.12

The Solar Panel Recycling Market was valued at USD 310.11 million in 2024 and is projected to grow to USD 338.83 million in 2025, with a CAGR of 9.47%, reaching USD 533.93 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 310.11 million
Estimated Year [2025] USD 338.83 million
Forecast Year [2030] USD 533.93 million
CAGR (%) 9.47%

Unveiling the Critical Importance of Solar Panel Recycling in a Sustainable Energy Future Driven by Advanced Circular Economy Strategies and Innovative End-of-Life Solutions

An unprecedented surge in photovoltaic deployment worldwide has underscored the urgency of establishing robust recycling frameworks for end-of-life solar modules. As global installed capacity continues to expand, the volume of retired panels is projected to rise dramatically, ushering in a complex waste stream that demands sustainable management. Recycling not only mitigates environmental risks associated with hazardous materials but also recovers valuable commodities such as silicon aluminum silver and copper, reinforcing resource security amid supply chain disruptions.

The confluence of extended producer responsibility regulations and emerging circular economy initiatives has prompted manufacturers and policymakers to collaborate on end-of-life strategies. Innovative recycling programs are evolving from pilot phases to industrial-scale operations, supported by technological refinements in mechanical thermal and chemical processing. Meanwhile, stakeholder alliances spanning technology providers waste management firms and research institutions are fostering knowledge exchange and accelerating process optimization.

Altogether this dynamic context calls for a comprehensive analysis of technological pathways regulatory drivers market segmentation and regional dynamics. This executive summary distills the most critical developments shaping the solar panel recycling sector today. It equips decision-makers with a clear understanding of transformative shifts current policy impacts key segmentation insights and actionable recommendations to capitalize on emerging opportunities while addressing critical sustainability challenges.

Examining the Transformative Shifts Reshaping Solar Panel Recycling Technologies and Market Dynamics in Response to Environmental Imperatives and Policy Innovations

Over the past decade solar panel recycling has transitioned from a niche concern to a focal point of environmental policy and industrial strategy. Previously fragmented efforts are converging around scalable technologies that can handle diverse module chemistries and form factors. Mechanical processes such as crushing grinding and sieving now operate in concert with thermal treatments like pyrolysis, while emerging chemical techniques leverage acid leaching and solvent extraction to isolate high-purity silicon and valuable metals.

Concurrently, regulatory frameworks are evolving to mandate producer accountability and standardized collection mechanisms. In many regions, extended producer responsibility schemes now require manufacturers to finance end-of-life management, thereby incentivizing design for recyclability and alternative business models such as module leasing. These policy shifts drive collaboration across value chains, encouraging original equipment manufacturers to integrate recycling considerations early in product development.

As technology providers refine process efficiencies and environmental performance metrics, economies of scale are beginning to materialize. Strategic partnerships between recycling facilities and metal refineries create closed-loop systems that extract aluminum, copper and silver with minimal waste. This advanced integration is reshaping market dynamics and positioning solar panel recycling as a critical pillar within the broader renewable energy ecosystem.

Analyzing the Long-Term Implications of United States Tariffs on Solar Panel Recycling Supply Chains Domestic Processing Incentives and Global Competitive Dynamics in 2025

The introduction of United States tariffs on imported solar panels and associated recyclate slated for 2025 is set to alter the economics of domestic recycling operations and global value chains. By imposing additional levies on shipments from major manufacturing hubs, these measures aim to bolster domestic processing capacity while reducing reliance on foreign facilities. Consequently, recyclers within the United States are revisiting supply arrangements and negotiating new partnerships to secure feedstock under more favorable trade conditions.

This tariff regime is also expected to stimulate capital investment in local recycling infrastructure, as companies seek to offset increased import costs by internalizing processing and value recovery activities. At the same time, downstream industries such as aluminum refining copper recovery and silver reclamation are likely to benefit from stable domestic feedstock availability, enhancing their long-term planning horizons. However, these shifts may introduce short-term disruptions in feedstock flows and pricing volatility as the market adjusts to revised cost structures.

In parallel, multinational participants are adapting their strategies to navigate the evolving trade landscape. Some are pivoting toward exporting recovered metals rather than processed modules, while others are exploring tariff exemption pathways through bilateral agreements or technology licensing. Overall, the tariffs of 2025 represent a watershed moment that will redefine competitive dynamics across the solar panel recycling value chain.

Illuminating Key Segmentation Insights across Process Types Panel Technologies and End-Use Applications Driving Growth and Differentiation in the Solar Panel Recycling Landscape

A nuanced understanding of process type segmentation reveals distinct opportunities and challenges across chemical mechanical and thermal recycling pathways. Mechanical recycling leverages crushing grinding and sieving to separate glass frames from metallic and polymeric components, offering a lower-cost entry point though it may yield mixed-material outputs. Chemical recycling delves deeper by applying acid leaching and solvent extraction techniques to recover high-purity silicon and strategic metals, albeit with higher energy inputs and complexity. Thermal recycling employs incineration and pyrolysis to break down polymeric backsheets and encapsulants, generating syngas and char that can be valorized if emission controls are in place.

Equally important is the segmentation by panel technology, which highlights differential treatment requirements for silicon based modules versus thin-film variants. Monocrystalline and polycrystalline silicon panels typically exhibit a well-defined glass-silicon-metal layering, facilitating mechanical separation before chemical refinement. In contrast, amorphous silicon cadmium telluride and copper indium gallium selenide modules demand tailored processing routes to address toxic elements and complex compound structures. Adapting recycling facilities to this diversity necessitates flexible designs and modular equipment that can transition between process streams.

Finally, end-use segmentation underscores the varied downstream applications that valorize recovered materials. Environmental remediation sectors may capitalize on purified silicon for advanced filtration media, while metal refining operations integrate aluminum refining copper recovery and silver reclamation into existing smelter workflows. Off-grid applications present a growing outlet for reconditioned modules and recovered materials, aligning with sustainability goals in remote or underserved regions. Together these segmentation insights guide strategic investment and technology selection throughout the solar panel recycling ecosystem.

Highlighting Regional Demand Patterns and Market Drivers across the Americas Europe Middle East Africa and Asia-Pacific in the Evolving Solar Panel Recycling Ecosystem

Regional variation in regulatory frameworks and infrastructure capacities profoundly shapes the solar panel recycling paradigm across the Americas. North American markets benefit from robust environmental legislation and emerging extended producer responsibility mandates, which are catalyzing the expansion of collection networks in the United States and Canada. Meanwhile, Latin American countries are in the early stages of establishing formal end-of-life programs, creating opportunities for public-private collaborations aimed at piloting innovative take-back schemes in urban centers.

Across Europe the Middle East and Africa, policy harmonization efforts driven by the European Union's stringent waste directives are setting a high bar for recycling performance. Member states are intensifying enforcement of decommissioning requirements, prompting investment in specialized facilities capable of processing diverse module chemistries. In the Middle East major solar developers are piloting localized recycling solutions to complement large-scale photovoltaic installations, while select African nations are exploring regional hubs to serve multiple markets and achieve economies of scale.

In the Asia-Pacific region, high installation rates in China and India are generating significant end-of-life volumes, compelling policymakers to draft national recycling guidelines and incentivize private sector participation. Southeast Asian countries are leveraging existing electronics recycling infrastructure to incorporate photovoltaic modules, whereas Australia is refining its policy frameworks to balance environmental stewardship with industry competitiveness. These regional insights highlight the critical need for adaptable business models that can address policy divergence and infrastructure maturity across geographies.

Profiling Leading Companies Innovating Solar Panel Recycling Solutions through Strategic Partnerships Technological Advancements and Sustainable Business Models

Major industry players are leveraging vertical integration and strategic alliances to secure their positions within the solar panel recycling ecosystem. Technology providers are partnering with metal refiners and waste management firms to create end-to-end processing networks that streamline feedstock collection, material recovery and remanufacturing pathways. Some established photovoltaic manufacturers are investing in proprietary recycling facilities, ensuring consistent quality of recycled silicon and enabling closed-loop production cycles.

Startups are also playing a pivotal role by introducing advanced chemical and thermal treatments designed to boost recovery rates of high-value metals while minimizing environmental footprints. Collaborative projects between research institutions and corporate entities have yielded pilot plants that demonstrate innovative solvent extraction methods for thin-film modules. At the same time, logistics and waste management specialists are developing specialized collection services and mobile treatment units to overcome geographic and infrastructure challenges.

These strategic moves reflect a broader industry trend toward service-based models, where recyclers offer comprehensive asset management solutions encompassing deinstallation logistics, reverse logistics and compliance reporting. By differentiating on the basis of technological expertise, regulatory acumen and supply chain integration, leading companies are establishing competitive moats that will influence market dynamics for years to come.

Presenting Actionable Recommendations for Industry Leaders to Optimize Solar Panel Recycling Operations Enhance Sustainability and Achieve Competitive Advantage

Industry leaders should prioritize the development of flexible modular facilities capable of processing multiple panel chemistries and formats without significant downtime. Investing in adaptable equipment footprints enables rapid reconfiguration as new module types and materials enter the waste stream. Concurrently, establishing strategic partnerships with metal refiners and chemical processing firms will facilitate value recovery initiatives and reduce reliance on single-source feedstock agreements.

Organizations must also engage proactively with policymakers to shape extended producer responsibility regulations that balance environmental objectives with operational feasibility. By contributing technical expertise and data-driven insights, companies can influence the design of collection and financing schemes that incentivize high recycling rates while avoiding undue administrative burdens. In parallel, leveraging digital traceability platforms will enhance transparency across supply chains, enabling real-time monitoring of module lifecycles and improved compliance reporting.

Finally, industry stakeholders should accelerate R&D efforts focused on low-energy chemical leaching solvents and advanced thermal conversion techniques that minimize environmental emissions. Prioritizing closed-loop water usage and emissions capture in process design will meet growing stakeholder expectations and future-proof facilities against tightening environmental standards. Collectively these recommendations will position recycling operations at the forefront of sustainable resource management and circular economy innovation.

Outlining the Comprehensive Research Methodology Employed to Analyze Market Dynamics Technology Trends and Stakeholder Perspectives within Solar Panel Recycling

This research employed a multi-pronged methodology combining primary interviews with recycling technology providers waste management executives and policy experts alongside extensive secondary analysis of regulatory publications technical white papers and industry conference proceedings. Key informant discussions were structured to capture evolving business models and emerging process innovations, ensuring that both established and nascent trends were thoroughly documented.

Secondary data collection focused on legislative frameworks across major regions, technical performance metrics of mechanical chemical and thermal recycling processes, and documented case studies of pilot and full-scale facilities. Data triangulation techniques were applied to validate insights and reconcile discrepancies between reported performance and on-the-ground operational results. This iterative validation approach provided a robust foundation for the segmentation and regional analyses presented herein.

Finally, the study incorporated scenario planning workshops with cross-functional stakeholders to evaluate the implications of potential tariff changes supply chain disruptions and policy evolutions. These sessions informed the actionable recommendations and strategic priorities outlined in this summary, ensuring relevance and practicality for decision makers navigating a dynamic solar panel recycling landscape.

Concluding Strategic Insights Emphasizing the Critical Role of Collaboration Innovation and Policy Support in Advancing Scalable Solar Panel Recycling Solutions

In summary the solar panel recycling sector stands at an inflection point defined by rapid PV deployment accelerating end-of-life volumes and evolving policy frameworks. Technological advances across mechanical chemical and thermal processes are unlocking higher material recovery rates, yet the industry must contend with feedstock diversity and regional regulatory divergence. Strategic alignment between recyclers manufacturers policymakers and downstream metal refiners will be critical to achieving scalable circular economy outcomes.

The introduction of United States tariffs in 2025 underscores the importance of supply chain resilience and domestic processing capacity, while extending producer responsibility schemes across major jurisdictions will drive infrastructure investments. By embracing flexible facility designs modular process configurations and data-driven compliance tools, industry participants can mitigate risk and capture value from recovered materials. Ultimately the ability to integrate technological innovation with proactive policy engagement and partnership-based business models will determine leaders in the rapidly maturing solar panel recycling ecosystem.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advanced chemical recycling processes enabling high-purity silicon recovery from spent photovoltaics
  • 5.2. Increasing government mandates drive investment in circular economy infrastructure for solar waste management
  • 5.3. Integration of robotic disassembly and AI sorting to enhance efficiency in solar module recycling operations
  • 5.4. Growth of second-life solar panel applications in off-grid and emerging market energy systems
  • 5.5. Partnerships between PV manufacturers and recyclers accelerate closed-loop supply chain integration in the solar industry
  • 5.6. Advancements in thermal and acid leaching techniques boost recovery rates of silver and rare metals from end-of-life modules
  • 5.7. Adoption of blockchain-based tracking for transparent lifecycle management of solar panels to support recycling compliance
  • 5.8. Shift toward modular solar panel designs simplifies end-of-life dismantling and material separation processes

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Solar Panel Recycling Market, by Process Type

  • 8.1. Introduction
  • 8.2. Chemical Recycling
    • 8.2.1. Acid Leaching
    • 8.2.2. Solvent Extraction
  • 8.3. Mechanical Recycling
    • 8.3.1. Crushing
    • 8.3.2. Grinding
    • 8.3.3. Sieving
  • 8.4. Thermal Recycling
    • 8.4.1. Incineration
    • 8.4.2. Pyrolysis

9. Solar Panel Recycling Market, by Panel Type

  • 9.1. Introduction
  • 9.2. Silicon Based
    • 9.2.1. Monocrystalline
    • 9.2.2. Polycrystalline
  • 9.3. Thin-Film Based
    • 9.3.1. Amorphous Silicon
    • 9.3.2. Cadmium Telluride
    • 9.3.3. Copper Indium Gallium Selenide

10. Solar Panel Recycling Market, by End-Use

  • 10.1. Introduction
  • 10.2. Environmental Remediation
  • 10.3. Metal Refining
    • 10.3.1. Aluminum Refining
    • 10.3.2. Copper Recovery
    • 10.3.3. Silver Recovery
  • 10.4. Off-Grid Applications

11. Americas Solar Panel Recycling Market

  • 11.1. Introduction
  • 11.2. United States
  • 11.3. Canada
  • 11.4. Mexico
  • 11.5. Brazil
  • 11.6. Argentina

12. Europe, Middle East & Africa Solar Panel Recycling Market

  • 12.1. Introduction
  • 12.2. United Kingdom
  • 12.3. Germany
  • 12.4. France
  • 12.5. Russia
  • 12.6. Italy
  • 12.7. Spain
  • 12.8. United Arab Emirates
  • 12.9. Saudi Arabia
  • 12.10. South Africa
  • 12.11. Denmark
  • 12.12. Netherlands
  • 12.13. Qatar
  • 12.14. Finland
  • 12.15. Sweden
  • 12.16. Nigeria
  • 12.17. Egypt
  • 12.18. Turkey
  • 12.19. Israel
  • 12.20. Norway
  • 12.21. Poland
  • 12.22. Switzerland

13. Asia-Pacific Solar Panel Recycling Market

  • 13.1. Introduction
  • 13.2. China
  • 13.3. India
  • 13.4. Japan
  • 13.5. Australia
  • 13.6. South Korea
  • 13.7. Indonesia
  • 13.8. Thailand
  • 13.9. Philippines
  • 13.10. Malaysia
  • 13.11. Singapore
  • 13.12. Vietnam
  • 13.13. Taiwan

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Canadian Solar Inc.
    • 14.3.2. Cascade Eco Minerals LLC
    • 14.3.3. Cleanlites Recycling
    • 14.3.4. Decom Solar, LLC
    • 14.3.5. Electronic Recyclers International, Inc.
    • 14.3.6. Envaris GmbH
    • 14.3.7. Envela Corporation
    • 14.3.8. EtaVolt Pte. Ltd.
    • 14.3.9. Fabtech Enterprises, Inc.
    • 14.3.10. First Solar, Inc.
    • 14.3.11. Hanwha Group
    • 14.3.12. Interco Trading, Inc.
    • 14.3.13. PV Industries Pty Ltd.
    • 14.3.14. REC Solar Holdings AS
    • 14.3.15. Recycle1234.com
    • 14.3.16. Reiling GmbH & Co. KG
    • 14.3.17. Rinovasol Global Services B. V.
    • 14.3.18. Silcontel Ltd.
    • 14.3.19. SOLARCYCLE, Inc.
    • 14.3.20. SunPower Corporation
    • 14.3.21. Suny Group
    • 14.3.22. The Retrofit Companies, Inc.
    • 14.3.23. Veolia Environnement SA

15. ResearchAI

16. ResearchStatistics

17. ResearchContacts

18. ResearchArticles

19. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제