½ÃÀ庸°í¼­
»óǰÄÚµå
1806569

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå : ÄÄÆ÷³ÍÆ®, Á¢¼Ó À¯Çü, Àü°³ ¸ðµå, Á¶Á÷ ±Ô¸ð, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º° - ¼¼°è Àü¸Á(2025-2030³â)

Software Defined Wide Area Network Market by Component, Connectivity Type, Deployment Mode, Organization Size, End User Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 182 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 57¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 68¾ï 2,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 19.83%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 169¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 57¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 68¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 169¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 19.83%

¹ÎøÇÑ ¿¬°á¼º°ú ¿î¿µ ¿ì¼ö¼ºÀ» °­È­ÇÏ´Â ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©ÀÇ Àü·«Àû Á߿伺À» ¹àÇô³»´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©´Â ±â¾÷ÀÌ ºÐ»êµÈ °ÅÁ¡, ÆÄÆ®³Ê, Ŭ¶ó¿ìµå ¸®¼Ò½º¸¦ ¿¬°áÇÏ´Â ¹æ½ÄÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» »ó¡ÇÕ´Ï´Ù. ³×Æ®¿öÅ© Á¦¾î¸¦ ¹°¸®Àû ÀÎÇÁ¶ó¿¡¼­ ºÐ¸®ÇÔÀ¸·Î½á ±â¾÷Àº Àü·Ê ¾ø´Â ¹Îø¼º, ºñ¿ë È¿À²¼º, ¼º´É ÃÖÀûÈ­¸¦ ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº Áß¾Ó ÁýÁᫎ ¿ÀÄɽºÆ®·¹À̼ÇÀ» Ȱ¿ëÇÏ¿© ½Ç½Ã°£ »óȲ, ¿ëµµ ¿ä±¸»çÇ×, º¸¾È Á¤Ã¥¿¡ µû¶ó Æ®·¡ÇÈÀ» µ¿ÀûÀ¸·Î ¶ó¿ìÆÃÇÏ¿© IT ÆÀÀÌ º¯È­ÇÏ´Â ºñÁî´Ï½º ¿ä±¸»çÇ׿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ ±¤¿ª ³×Æ®¿öÅ·À» À籸ÃàÇÏ´Â »õ·Î¿î ±â¼ú ÆÐ·¯´ÙÀÓ°ú Á¶Á÷ º¯È­ÀÇ ¸ð»ö

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ· ȯ°æÀº ÁøÈ­ÇÏ´Â ±â¾÷ ¿ä±¸ »çÇ×°ú ±â¼ú ¹ßÀü¿¡ ÈûÀÔ¾î º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. °¡»óÈ­¿Í ³×Æ®¿öÅ© ±â´ÉÀÇ °¡»óÈ­´Â ±âÁ¸ÀÇ À庮À» Çã¹°°í, ±â¾÷µéÀº Àü¿ë Çϵå¿þ¾î ¾îÇöóÀ̾𽺠¾øÀ̵µ »õ·Î¿î ¿§Áö ¼­ºñ½º¸¦ ½Å¼ÓÇÏ°Ô ±¸ÃàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº Â÷¼¼´ë ¹æÈ­º® ¹× º¸¾È À¥ °ÔÀÌÆ®¿þÀÌ¿Í °°Àº º¸¾È ±â´ÉÀ» WAN ÆÐºê¸¯¿¡ Á÷Á¢ ÅëÇÕÇÏ¿© ¼º´ÉÀ» À¯ÁöÇϸ鼭 º¸È£ ±â´ÉÀ» °­È­ÇÏ´Â ÅëÇÕ º¸¾È ¹× ³×Æ®¿öÅ· ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇÔÀ¸·Î½á ´õ¿í °­È­µË´Ï´Ù.

ÇâÈÄ µµÀ﵃ ¹Ì±¹ °ü¼¼°¡ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© °ø±Þ¸Á°ú µµÀÔ ¿ªÇп¡ ¹ÌÄ¡´Â º¹ÇÕÀûÀÎ ¿µÇ⠺м®.

2025³â ¹Ì±¹ÀÌ »õ·Î¿î °ü¼¼¸¦ µµÀÔÇÔ¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©ÀÇ Çϵå¿þ¾î Á᫐ ±¸¼º ¿ä¼Ò¿¡ Å« ¾Ð·ÂÀ» °¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³×Æ®¿öÅ· ¾îÇöóÀ̾𽺠¹× Ư¼ö ½Ç¸®ÄÜ¿¡ ´ëÇÑ ¼öÀÔ °ü¼¼´Â ¹°¸®Àû ¿§Áö µð¹ÙÀ̽º¿¡ ÀÇÁ¸ÇÏ´Â ±â¾÷¿¡°Ô Á¶´Þ ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸¹Àº ¼Ö·ç¼Ç Á¦°ø¾÷üµéÀº Çϵå¿þ¾î °¡°Ý º¯µ¿¿¡ µû¸¥ ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î ¿ì¼± Á¦Ç° ¹× ±¸µ¶ ±â¹Ý ¸ðµ¨·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ±â¾÷µéÀº ÃѼÒÀ¯ºñ¿ëÀ» º¸´Ù ¾ö°ÝÇÏ°Ô Æò°¡Çϰí, ¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º ¹× °¡»ó ¾îÇöóÀ̾ð½ºÀÇ ÀåÁ¡°ú Àü¿ë ¹Ú½ºÀÇ Ãʱâ ÅõÀÚ ¿ä°ÇÀ» ºñ±³ °ËÅäÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ÀÇ Áß¿äÇÑ Ãø¸éÀ» ¹àÈ÷°í, ¼­ºñ½º ¸ðµ¨ ¼±È£µµ, µð¹ÙÀ̽º ¹èÆ÷ ¹× ¾÷°è ÀÌ¿ë ÆÐÅÏ¿¡ ´ëÇÑ ¼±È£µµ¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ WAN ½ÃÀåÀº ¹Ì¹¦ÇÑ °í°´ ¼±È£µµ¿Í ¼Ö·ç¼Ç ¾ÆÅ°ÅØÃ³¸¦ µå·¯³»´Â ¿©·¯ ¼¼ºÐÈ­ ·»Á ÅëÇØ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¸¼º ¿ä¼ÒÀÇ °üÁ¡¿¡¼­ º¼ ¶§, ¼­ºñ½º´Â Å©°Ô ¼­ºñ½º¿Í ¼Ö·ç¼ÇÀÇ µÎ °¡Áö·Î ³ª´¹´Ï´Ù. ¼­ºñ½º¿¡´Â °ø±ÞÀÚ°¡ ÀÏ»óÀûÀÎ ¿î¿µÀ» °¨µ¶ÇÏ´Â °ü¸®Çü °è¾à°ú ¾ÆÅ°ÅØÃ³ ¼³°è ¹× ÅëÇÕÀ» Áö¿øÇÏ´Â Àü¹® ÀÚ¹® ¼­ºñ½º°¡ ¸ðµÎ Æ÷ÇԵ˴ϴÙ. ¼Ö·ç¼ÇÀº ºÐ»êµÈ °ÅÁ¡¿¡ Àü¿ë 󸮸¦ Á¦°øÇÏ´Â Çϵå¿þ¾î ¾îÇöóÀÌ¾ð½º¿Í »ó¿ë Çϵå¿þ¾î ¹× °¡»óÈ­ ȯ°æ¿¡¼­ µ¿ÀÛÇÏ´Â ¼ÒÇÁÆ®¿þ¾î Á᫐ Ç÷§ÆûÀ¸·Î ³ª´¹´Ï´Ù.

¹Ì±¹, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÇ ¿¬°á¼º ¼ö¿ä¿Í Àü·«Àû ¿ì¼±¼øÀ§¿¡ ´ëÇÑ Áö¿ªÀû Â÷ÀÌ °­Á¶

Áö¿ª Á¤¼¼´Â °íÀ¯ÇÑ ±ÔÁ¦ ȯ°æ, ÀÎÇÁ¶ó ¼º¼÷µµ, °æÀï ±¸µµ¸¦ ³ªÅ¸³»±â ¶§¹®¿¡ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ WAN µµÀÔ¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­ ±â¾÷µéÀº źźÇÑ ÆÄÀ̹ö ¹éº»°ú Àß ±¸ÃàµÈ ¸Å´ÏÁöµå ¼­ºñ½º »ýŰèÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ƯÈ÷ ºÏ¹Ì ±â¾÷µéÀº Ŭ¶ó¿ìµå Á᫐ ¸ðµ¨À» äÅÃÇÏ°í °í±Þ º¸¾È ±â´ÉÀ» WAN °èȹ¿¡ ÅëÇÕÇÏ´Â µ¥ ¾ÕÀå¼­°í ÀÖ½À´Ï´Ù. ÇÑÆí, ¶óƾ¾Æ¸Þ¸®Ä« ±â¾÷µéÀº ±¤´ë¿ª°ú LTE¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ¿¬°á Àü·«À» ¸ð»öÇÏ´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, Ä¿¹ö¸®Áö °ÝÂ÷¸¦ ÇØ¼ÒÇÏ°í µðÁöÅÐ ÀÎŬ·çÀü ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.

¾÷°è ÃÖ°íÀÇ ±â¾÷ ÇÁ·ÎÆÄÀϸµ ±×µéÀÇ Àü·«Àû ³ë·Â ±â¼úÀû Â÷º°È­ ¿ä¼Ò ¹× Çù¾÷ »ýŰè Á¢±Ù ¹æ½Ä ÇÁ·ÎÆÄÀϸµ

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ WAN ºÐ¾ßÀÇ ÁÖ¿ä º¥´õµéÀº ±â¼ú Çõ½Å, Àü·«Àû ÆÄÆ®³Ê½Ê, »ýÅÂ°è °³¹ßÀÇ Á¶ÇÕÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ À¯¸í º¥´õµéÀº °í±Þ º¸¾È ¸ðµâÀ» ÅëÇÕÇϰí Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¿ÀÄɽºÆ®·¹ÀÌ¼Ç ±â´ÉÀ» È®ÀåÇÏ¿© Æ÷Æ®Æú¸®¿À¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¿©·¯ ¼ÒÇÁÆ®¿þ¾î ±â¹Ý Ç»¾îÇ÷¹ÀÌ Á¦°ø¾÷üµéÀº ÇÏÀÌÆÛ½ºÄÉÀÏ Å¬¶ó¿ìµå »ç¾÷ÀÚ¿Í Çù·ÂÇÏ¿© ÆÛºí¸¯ Ŭ¶ó¿ìµå ȯ°æ ³»¿¡¼­ Æ÷ÀÎÆ®-Åõ-»çÀÌÆ® ¿¬°á°ú »çÀÌÆ®-Åõ-»çÀÌÆ® ¿¬°áÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. À̹ø Á¦ÈÞ¸¦ ÅëÇØ ¸ÖƼ Ŭ¶ó¿ìµå ¾ÆÅ°ÅØÃ³ Àü¹Ý¿¡ ´ëÇÑ °¡½Ã¼ºÀ» ³ôÀ̰í Á¤Ã¥ °ü¸®¸¦ °£¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁøÈ­ÇÏ´Â Software Defined Wide Area Network ȯ°æ¿¡¼­ È®»ê°ú °æÀï ȯ°æÀÇ Â÷º°È­¸¦ ÃËÁøÇÏ´Â Àü·«Àû Á¦¾È Á¦°ø

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ©°¡ °¡Á®¿Ã º¯È­ÀÇ ÀáÀç·ÂÀ» ÃÖ´ëÇÑ È°¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº Àû±ØÀûÀ̰í Á¡ÁøÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ¸ÕÀú, Àüü ³×Æ®¿öÅ©ÀÇ ¼º¼÷µµ Æò°¡¸¦ ÅëÇØ ¼º´É º´¸ñ Çö»ó, º¸¾È ż¼ °ÝÂ÷, È®À强 Á¦¾à µîÀ» ÆÄ¾ÇÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æò°¡´Â ºñÁî´Ï½º ¿ì¼±¼øÀ§, ÄÄÇöóÀ̾𽺠¿ä±¸»çÇ×, ÃѼÒÀ¯ºñ¿ë ¸ñÇ¥¿¡ µû¶ó ¸ñÇ¥¿¡ ¸Â´Â µµÀÔ ·Îµå¸ÊÀ» °³¹ßÇÒ ¼ö ÀÖ´Â »ç½Ç¿¡ ±â¹ÝÇÑ ±â¹ÝÀÌ µË´Ï´Ù.

Á¾ÇÕÀûÀÎ ½ÃÀå ÀλçÀÌÆ®À» À§ÇØ 1Â÷ Á¶»ç¿Í 2Â÷ µ¥ÀÌÅÍ ¹× ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý·Ð¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¸¼¼¿ä.

ÀÌ ºÐ¼®Àº 1Â÷ Á¤º¸¿Í ÀÌÂ÷ Á¤º¸¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀ» ÅëÇØ Á¾ÇÕÀûÀÎ ½ÃÀå ÀλçÀÌÆ®À» Á¦°øÇÕ´Ï´Ù. ÁÖ¿ä ¾÷Á¾ÀÇ ³×Æ®¿öÅ© ¾ÆÅ°ÅØÆ®, º¸¾È ¸®´õ, C·¹º§ °æ¿µÁø°úÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ 1Â÷ Á¤º¸¸¦ ¼öÁýÇß½À´Ï´Ù. ´Ù¾çÇÑ Á¶Á÷¿¡¼­ µµÀÔ Èñ¸Á, ¼º´É¿¡ ´ëÇÑ ±â´ë, ¿¹»ê»óÀÇ Á¦¾à µîÀ» ÆÄ¾ÇÇϱâ À§ÇÑ Á¶»ç ¼ö´ÜÀ» µµÀÔÇß½À´Ï´Ù. ¶ÇÇÑ, Àü¹®°¡ ÆÐ³ÎÀº »õ·Î¿î ÀÌ¿ë »ç·Ê, º¥´õÀÇ ¿ª·®, °æÀï ¿ªÇп¡ ´ëÇÑ ÁúÀû °üÁ¡À» Á¦°øÇß½À´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ WANÀÇ Çõ½ÅÀ» ÅëÇØ Áö¼ÓÀûÀÎ ºñÁî´Ï½º °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖµµ·Ï ÁÖ¿ä Á¶»ç °á°ú¿Í ¹Ì·¡ Àü¸ÁÀ» ÅëÇÕÇÏ¿© ¾È³»ÇÕ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ·ÀÇ µîÀåÀº ±â¾÷ÀÌ ¿ëµµ¸¦ ¹èÆ÷Çϰí, Æ®·¡ÇÈÀ» º¸È£Çϰí, ºÐ»ê ³×Æ®¿öÅ©¸¦ °ü¸®ÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇÏ´Â ±â¾÷ ¿¬°á¼ºÀÇ Áß¿äÇÑ ºÐ±âÁ¡À» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. Áß¾Ó ÁýÁᫎ ¿ÀÄɽºÆ®·¹À̼Ç, °¡»óÈ­ ±â´É, ÅëÇÕ º¸¾È ¼­ºñ½º¸¦ ÅëÇØ ±â¾÷Àº ´õ ³ôÀº ¹Îø¼º, ºñ¿ë ¿¹Ãø °¡´É¼º, º¹¿ø·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. 5G, ¿§Áö ÄÄÇ»ÆÃ, ¸Ó½Å·¯´×°ú °°Àº ½Å±â¼úÀÇ À¶ÇÕÀº µðÁöÅÐ Çõ½ÅÀÇ Ã˸ÅÁ¦·Î¼­ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ WANÀÇ Àü·«Àû Á߿伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • ¼Ö·ç¼Ç
    • Çϵå¿þ¾î ¾îÇöóÀ̾ð½º
    • ¼ÒÇÁÆ®¿þ¾î

Á¦9Àå ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå : Á¢¼Ó À¯Çüº°

  • ºê·Îµå¹êµå
    • ÄÉÀ̺í
    • DSL
    • ÆÄÀ̹ö
  • LTE/5G
  • ¸ÖƼÇÁ·ÎÅäÄÝ ¶óº§ ½ºÀ§Äª

Á¦10Àå ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå
  • On-Premise

Á¦11Àå ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦12Àå ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå ÃÖÁ¾»ç¿ëÀÚ ¾÷°èº°

  • ÀºÇà ±ÝÀ¶ ¼­ºñ½º¿Í º¸Çè
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¤ºÎ
  • ÇコÄɾî
  • IT ÅÚ·¹ÄÞ
  • ¼Ò¸Å

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¤¿ª ³×Æ®¿öÅ© ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Cisco Systems, Inc.
    • International Business Machines Corporation
    • Adaptiv Networks, Inc.
    • Aryaka Networks, Inc.
    • Bigleaf Networks, Inc.
    • Broadcom Inc.
    • Cato Networks, Ltd.
    • Ciena Corporation
    • Citrix Systems, Inc. by Cloud Software Group, Inc.
    • FatPipe Networks Inc.
    • Flexiwan Ltd.
    • Fortinet, Inc.
    • Fujitsu Limited
    • Hewlett Packard Enterprise Company
    • Huawei Technologies Co., Ltd.
    • Infovista SAS
    • Kyndryl Inc.
    • Lavelle Networks Private Limited
    • Lumen Technologies, Inc.
    • Mushroom Networks, Inc.
    • NEC Corporation
    • Nokia Corporation
    • Oracle Corporation
    • Palo Alto Networks, Inc.
    • Peplink
    • Riverbed Technology, Inc.
    • Sophos Ltd.
    • Versa Networks, Inc.
    • Zenlayer Inc.

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

LSH 25.09.12

The Software Defined Wide Area Network Market was valued at USD 5.72 billion in 2024 and is projected to grow to USD 6.82 billion in 2025, with a CAGR of 19.83%, reaching USD 16.96 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.72 billion
Estimated Year [2025] USD 6.82 billion
Forecast Year [2030] USD 16.96 billion
CAGR (%) 19.83%

Unveiling the Strategic Importance of Software Defined Wide Area Networks in Empowering Agile Connectivity and Operational Excellence

Software defined wide area networking represents a paradigm shift in how enterprises connect distributed locations, partners, and cloud resources. By decoupling network control from physical infrastructure, organizations can achieve unprecedented agility, cost efficiency, and performance optimization. The technology leverages centralized orchestration to dynamically route traffic based on real-time conditions, application requirements, and security policies, empowering IT teams to respond swiftly to changing business demands.

As digital transformation initiatives accelerate, traditional WAN architectures have revealed limitations in handling the growing complexity of multicloud environments and remote workforces. Software defined WAN addresses these challenges by simplifying deployment, enabling granular control over traffic flows, and integrating advanced security services at the edge. These capabilities not only reduce operational overhead but also drive improved user experience across mission-critical applications. Consequently, software defined WAN is emerging as a foundational element in modern network strategies, supporting both immediate connectivity needs and future innovation.

Exploring Emerging Technological Paradigms and Organizational Transformations Reshaping Wide Area Networking Through Software Defined Architectures

The software defined wide area networking landscape is undergoing transformative shifts driven by evolving enterprise requirements and technological advances. Virtualization and network function virtualization have dismantled legacy barriers, allowing organizations to deploy new edge services swiftly without the need for dedicated hardware appliances. This flexibility is further amplified by the integration of security functions such as next-generation firewalls and secure web gateways directly into the WAN fabric, creating a unified security and networking framework that enhances protection while maintaining performance.

In parallel, the proliferation of cloud-native applications and the rise of borderless workforces have elevated the importance of zero trust architectures. By adopting identity-based access controls and micro-segmentation within software defined WAN environments, enterprises can enforce consistent security policies across all branches and endpoints. Moreover, emerging connectivity paradigms like 5G and multi-access edge computing are fostering new use cases that demand ultra-low latency and seamless mobility. Artificial intelligence and machine learning are being infused into network controllers to provide predictive analytics, automate anomaly detection, and optimize path selection, ensuring that wide area networks evolve from static transport layers into dynamic, self-aware infrastructures.

Analyzing the Compound Effects of Upcoming United States Tariffs on Software Defined Wide Area Network Supply Chains and Adoption Dynamics

The introduction of new United States tariffs in 2025 is poised to exert significant pressure on hardware-centric components of software defined wide area networks. Import duties on networking appliances and specialized silicon could result in heightened procurement costs for enterprises reliant on physical edge devices. In response, many solution providers are accelerating their shift toward software-first offerings and subscription-based models that minimize exposure to hardware pricing volatility. Consequently, organizations are evaluating the total cost of ownership more rigorously, weighing the benefits of software licenses and virtual appliances against the upfront capital requirements of dedicated boxes.

Tariff-induced supply chain realignment is prompting vendors and enterprises alike to diversify manufacturing footprints and source components from alternative geographies. This shift is likely to reshape vendor assortments, with some manufacturers relocating production lines or forging new partnerships to mitigate duty impacts. Additionally, service providers may reconfigure managed offerings to bundle hardware leasing options, absorbing some of the tariff costs while preserving predictable monthly billing for customers. Ultimately, the cumulative effect of these measures will accelerate the adoption of cloud-based deployment models and virtualized network functions, further cementing the software defined WAN ethos.

Illuminating Critical Market Segmentation Dimensions to Uncover Service Model Preferences Device Deployments and Industry Utilization Patterns

The software defined WAN market can be understood through multiple segmentation lenses that reveal nuanced customer preferences and solution architectures. From a component perspective, offerings fall into two broad categories: services and solutions. Services encompass both managed engagements, where providers oversee day-to-day operations, and professional advisory work that supports architecture design and integration. Solutions are divided between hardware appliances, which deliver dedicated processing at distributed sites, and software-centric platforms that run on commercial off-the-shelf hardware or within virtualized environments.

Connectivity requirements introduce a second segmentation axis, distinguishing between broadband access, cellular technologies like LTE and emerging 5G, and more traditional multiprotocol label switching networks. Within the broadband category, enterprises often choose between cable, DSL, and fiber based on availability and cost considerations. A third dimension considers deployment mode, contrasting cloud-hosted virtualized solutions that offer rapid scaling with on-premise implementations favored for data sovereignty and performance control. Organizational scale constitutes a fourth division, contrasting the needs of large enterprises that demand granular policy orchestration and high throughput with small and medium-sized enterprises seeking simplified management and predictable expenditure.

Finally, end user verticals shape adoption trajectories, with banking, financial services, and insurance firms prioritizing robust security alignment, energy and utilities companies valuing resilience and remote monitoring, and government entities focusing on compliance and secure multi-agency collaboration. Healthcare providers emphasize low latency for telemedicine, IT and telecom operators leverage dynamic traffic steering to support high-bandwidth applications, and retail chains adopt centralized policy enforcement to ensure consistent customer experience across distributed storefronts. By mapping these segmentation criteria against buyer imperatives, vendors can craft tailored offerings that resonate with distinct market segments.

Highlighting Regional Variances in Connectivity Demand and Strategic Priorities Across Americas Europe Middle East Africa and Asia Pacific Markets

Regional dynamics exert a profound influence on software defined WAN adoption, as geographic markets exhibit unique regulatory environments, infrastructure maturity, and competitive landscapes. In the Americas, enterprises benefit from robust fiber backbones and a well-established managed services ecosystem. North American organizations, in particular, are at the forefront of adopting cloud-centric models and integrating advanced security functions into their WAN planning. Meanwhile, Latin American enterprises are increasingly exploring hybrid connectivity strategies, combining broadband and LTE to bridge coverage gaps and support digital inclusion initiatives.

Across Europe, the Middle East, and Africa, diverse regulatory frameworks and economic conditions drive varied procurement strategies. Western European markets emphasize stringent data protection requirements, prompting a preference for on-premise solutions or local cloud-hosting partnerships. In contrast, organizations in emerging Middle Eastern and African markets prioritize rapid deployment and cost-effective managed services to accelerate connectivity for greenfield deployments and smart city projects.

The Asia-Pacific region presents a blend of advanced and developing markets. Mature economies such as Japan, Australia, and South Korea are investing heavily in edge computing and 5G integration, driving demand for ultra-low-latency architectures. Meanwhile, fast-growing Southeast Asian and South Asian markets demonstrate a keen appetite for subscription-based managed offerings, balancing fiscal constraints with an urgent need to modernize legacy networks. Collectively, these regional insights guide vendors in tailoring go-to-market strategies, alliance models, and pricing structures to local conditions.

Profiling Leading Industry Players Their Strategic Initiatives Technological Differentiators and Collaborative Ecosystem Approaches

Leading vendors in the software defined WAN domain are differentiating through a combination of technological innovation, strategic partnerships, and ecosystem development. Prominent incumbents have bolstered their portfolios by integrating advanced security modules and expanding cloud-native orchestration capabilities. Several software-driven pure-play providers have forged alliances with hyperscale cloud operators, enabling seamless integration of point-to-site and site-to-site connectivity within public cloud environments. This alignment enhances visibility across multicloud architectures and simplifies policy management.

At the same time, established networking equipment manufacturers are accelerating their transition to subscription and managed services models, deploying virtualized network functions that can be provisioned via centralized portals. Some vendors are investing in AI-driven analytics platforms that provide predictive path selection and automated remediation, further strengthening their value propositions. Collaborations with systems integrators and channel partners are also on the rise, enabling end-to-end solutions that combine connectivity, security, and professional services. As the competitive landscape intensifies, differentiation increasingly hinges on the ability to offer modular, interoperable offerings that can adapt to diverse deployment scenarios and evolving use cases.

Delivering Strategic Recommendations to Drive Adoption and Competitive Differentiation in the Evolving Software Defined Wide Area Network Landscape

To capitalize on the transformative potential of software defined wide area networks, industry leaders should adopt a proactive, phased approach. First, conduct a holistic network maturity assessment to identify performance bottlenecks, security posture gaps, and scalability constraints. Such an evaluation provides a fact-based foundation for developing a targeted deployment roadmap that aligns with business priorities, compliance requirements, and total cost of ownership goals.

Next, pilot software defined WAN capabilities within a controlled environment, focusing on critical applications and high-traffic sites. This allows for validation of policy orchestration, failover mechanisms, and integration with existing security infrastructures. Based on pilot outcomes, extend deployments incrementally to additional branches, ensuring that operational processes and support workflows mature alongside the technology. Concurrently, invest in upskilling network and security teams, leveraging vendor-led training programs and certification paths to build internal expertise.

Finally, establish continuous performance monitoring and analytics practices that leverage built-in telemetry and machine learning algorithms. By tracking key metrics such as application latency, packet loss, and security incidents, organizations can refine traffic routing policies and proactively address anomalies. In addition, explore partnerships with specialist managed services providers to augment internal resources, accelerate time to value, and maintain a future-ready network architecture capable of scaling with emerging demands.

Detailing Rigorous Research Methodologies Combining Primary Intelligence Secondary Data and Analytical Frameworks for Comprehensive Market Insights

This analysis draws on a rigorous research methodology combining primary and secondary sources to deliver comprehensive market insights. Primary intelligence was gathered through structured interviews with network architects, security leaders, and C-level executives across key verticals. Survey instruments were deployed to capture deployment preferences, performance expectations, and budgetary constraints from a broad spectrum of organizations. In addition, expert panels provided qualitative perspectives on emerging use cases, vendor capabilities, and competitive dynamics.

Secondary research involved an exhaustive review of public filings, regulatory documents, vendor white papers, and industry publications. These sources were supplemented by data mining from technology forums, patent registries, and financial reports to identify strategic investments and partnership trends. A top-down and bottom-up triangulation process was employed to validate findings, ensuring consistency between quantitative data and qualitative observations. Forecasting and scenario analysis leveraged historical adoption curves, tariff impact models, and technology maturation rates to enrich the narrative, while sensitivity analyses tested the robustness of key assumptions.

Synthesizing Key Findings and Future Outlook to Guide Stakeholders in Harnessing Software Defined WAN Innovations for Sustained Business Value

The rise of software defined wide area networking marks a critical juncture in enterprise connectivity, reshaping how organizations deliver applications, secure traffic, and manage distributed networks. By embracing centralized orchestration, virtualized functions, and integrated security services, businesses can achieve greater agility, cost predictability, and resilience. The convergence of emerging technologies such as 5G, edge computing, and machine learning further amplifies the strategic importance of software defined WAN as a catalyst for digital transformation.

Looking forward, the market will continue to evolve in response to shifting regulatory landscapes, tariff influences, and evolving enterprise priorities. Vendors that can deliver modular, cloud-native, and security-centric solutions will be best positioned to capture growth opportunities. Meanwhile, enterprises that adopt a structured deployment strategy-anchored in pilot testing, team enablement, and continuous analytics-will unlock the full potential of next-generation WAN architectures. As digital ecosystems expand and application complexity intensifies, software defined WAN will remain a foundational pillar in driving operational excellence and competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for AI-driven network analytics in SD-WAN platforms to optimize traffic flows and proactively detect anomalies
  • 5.2. Growing adoption of SASE frameworks driving SD-WAN evolution toward unified security and networking functions
  • 5.3. Enterprises prioritizing zero trust network access integration with SD-WAN for improved security posture
  • 5.4. Telecom providers bundling SD-WAN services with 5G network connectivity to enable high-performance branch networking
  • 5.5. Integration of multicloud connectivity features in SD-WAN solutions to streamline application performance across providers
  • 5.6. Emergence of edge computing integration within SD-WAN architectures to support low-latency IoT and real-time applications
  • 5.7. Shift toward managed SD-WAN services by MSPs to reduce deployment complexity and total cost of ownership for enterprises
  • 5.8. Adoption of bandwidth-on-demand capabilities in SD-WAN to dynamically allocate network resources during peak usage periods

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Software Defined Wide Area Network Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Solution
    • 8.3.1. Hardware Appliances
    • 8.3.2. Software

9. Software Defined Wide Area Network Market, by Connectivity Type

  • 9.1. Introduction
  • 9.2. Broadband
    • 9.2.1. Cable
    • 9.2.2. Dsl
    • 9.2.3. Fiber
  • 9.3. LTE/5G
  • 9.4. Multi Protocol Label Switching

10. Software Defined Wide Area Network Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. On-Premise

11. Software Defined Wide Area Network Market, by Organization Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small & Medium Enterprises

12. Software Defined Wide Area Network Market, by End User Industry

  • 12.1. Introduction
  • 12.2. Banking Financial Services & Insurance
  • 12.3. Energy Utilities
  • 12.4. Government
  • 12.5. Healthcare
  • 12.6. IT Telecom
  • 12.7. Retail

13. Americas Software Defined Wide Area Network Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Software Defined Wide Area Network Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Software Defined Wide Area Network Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Cisco Systems, Inc.
    • 16.3.2. International Business Machines Corporation
    • 16.3.3. Adaptiv Networks, Inc.
    • 16.3.4. Aryaka Networks, Inc.
    • 16.3.5. Bigleaf Networks, Inc.
    • 16.3.6. Broadcom Inc.
    • 16.3.7. Cato Networks, Ltd.
    • 16.3.8. Ciena Corporation
    • 16.3.9. Citrix Systems, Inc. by Cloud Software Group, Inc.
    • 16.3.10. FatPipe Networks Inc.
    • 16.3.11. Flexiwan Ltd.
    • 16.3.12. Fortinet, Inc.
    • 16.3.13. Fujitsu Limited
    • 16.3.14. Hewlett Packard Enterprise Company
    • 16.3.15. Huawei Technologies Co., Ltd.
    • 16.3.16. Infovista SAS
    • 16.3.17. Kyndryl Inc.
    • 16.3.18. Lavelle Networks Private Limited
    • 16.3.19. Lumen Technologies, Inc.
    • 16.3.20. Mushroom Networks, Inc.
    • 16.3.21. NEC Corporation
    • 16.3.22. Nokia Corporation
    • 16.3.23. Oracle Corporation
    • 16.3.24. Palo Alto Networks, Inc.
    • 16.3.25. Peplink
    • 16.3.26. Riverbed Technology, Inc.
    • 16.3.27. Sophos Ltd.
    • 16.3.28. Versa Networks, Inc.
    • 16.3.29. Zenlayer Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦