½ÃÀ庸°í¼­
»óǰÄÚµå
1807516

¼¼°èÀÇ ÇÙÀÇÇÐ ½ÃÀå : Á¦Ç° À¯Çü, Åõ¿© ¹æ¹ý, »ç¿ë, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Nuclear Medicine Market by Product Type, Mode Of Administration, Usage, Application, End Users - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÇÙÀÇÇÐ ½ÃÀåÀº 2024³â¿¡ 146¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³â¿¡´Â 160¾ï 5,000¸¸ ´Þ·¯, ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 10.80%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç 2030³â¿¡´Â 270¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 146¾ï ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 160¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ : 2030³â 270¾ï 4,000¸¸ ´Þ·¯
¿¬Æò±Õ ¼ºÀå·ü(CAGR)(%) 10.80%

ÁøÈ­ÇÏ´Â ÇÙÀÇÇÐ ¹Ì·¡ Ž»ö : Àü ¼¼°è ÀÇ·á ¹ßÀüÀ» ÃËÁøÇÏ´Â ÃÖ±Ù Áø´Ü ¹× Ä¡·á Çõ½Å¿¡ ´ëÇÑ ±âÃÊÀû ÀλçÀÌÆ®

ÇÙÀÇÇÐÀº ¹æ»ç¼º µ¿À§¿ø¼ÒÀÇ µ¶Æ¯ÇÑ Æ¯¼ºÀ» Ȱ¿ëÇÏ¿© Á¤¹ÐÇÑ Áø´Ü°ú Ç¥Àû Ä¡·á¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ÃÖ±Ù ÀÇ·áÀÇ Ãʼ®À¸·Î ºÎ»óÇß½À´Ï´Ù. Ãʱ⠰¨¸¶ Ä«¸Þ¶ó ¿µ»ó¿¡¼­ ¿À´Ã³¯ÀÇ Á¤±³ÇÑ Ä¡·áÁø´Ü(theranostic) Á¢±Ù¹ý±îÁö, ÀÌ ºÐ¾ß´Â ÆÛ½º³Î Äɾ ´ëÇÑ ¼ö¿ä Áõ°¡, ºÐÀÚ »ý¹°ÇÐÀÇ ¹ßÀü, ¿µ»ó Àåºñ ¹× ¹æ»ç¼º ÀǾàǰ È­ÇÐ ºÐ¾ßÀÇ ²÷ÀÓ¾ø´Â Çõ½Å¿¡ ´ëÀÀÇϸç ÁøÈ­ÇØ ¿Ô½À´Ï´Ù. ¹æ»ç¼º ÀǾàǰ °³¹ß»ç, Àåºñ Á¦Á¶»ç, ÀÓ»ó ½Ç¹«ÀÚ, ±ÔÁ¦ ±â°ü µî °¡Ä¡ »ç½½ Àü¹ÝÀÇ ÀÌÇØ°ü°èÀÚµéÀº º¯È­ÇÏ´Â ÀÓ»ó Áöħ, È®´ëµÇ´Â ÀûÀÀÁõ, ¾ÈÀü¼º°ú °ø±Þ ¾ÈÁ¤¼º¿¡ ´ëÇÑ °­È­µÈ °¨½Ã·Î Çü¼ºµÈ ¹Ì·¡¸¦ ÇìÃÄ ³ª°¡°í ÀÖ½À´Ï´Ù.

ÇÙÀÇÇÐÀ» ÀçÆíÇÏ´Â º¯ÇõÀû º¯È­ ÆÄ¾Ç : ±âÁ¸ µ¿À§¿ø¼Ò ÇÁ·ÎÅäÄÝ¿¡¼­ ´ÙÁß ¸ð´Þ¸®Æ¼¿¡ °ÉÄ£ ȹ±âÀûÀÎ ¹æ»ç¼º ÀǾàǰ °³¹ß±îÁö

ÇÙÀÇÇÐ ¹Ì·¡´Â ¹æ»ç¼º ÀǾàǰ ¹ß°ß°ú À¶ÇÕ ±â¼ú Çõ½ÅÀÇ µ¹ÆÄ±¸¿¡¼­ ºñ·ÔµÈ º¯ÇõÀû º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù ¸î ³â°£ ƯÁ¤ ¹ÙÀÌ¿À¸¶Ä¿¿¡ ¸ÂÃãÈ­µÈ »õ·Î¿î ºÐÀÚ ÃßÀûÀÚ(Æ®·¹À̼­)ÀÇ ±ÞÁõ°ú ÇÔ²², ÀÓ»óÀǵéÀº Àü·Ê ¾ø´Â ¹Î°¨µµ·Î º´¸®ÇÐÀû °úÁ¤À» ŽÁöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ µðÁöÅÐ ¿µ»ó °ËÃâ±â¿Í °í±Þ ´ÜÃþ ÃÔ¿µ À籸¼º ¾Ë°í¸®ÁòÀº ¿µ»ó ÇØ»óµµ¿Í Á¤·®È­ ´É·ÂÀ» Çâ»ó½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁß µ¿ÇâÀº ¾çÀüÀÚ ¹æÃâ ´ÜÃþ ÃÔ¿µ(PET), ´ÜÀÏ ±¤ÀÚ ¹æÃâ ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ(SPECT), ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ(CT)À» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â ÇÏÀ̺긮µå Ç÷§ÆûÀ¸·Î ¼ö·ÅµÇ¾î Áúº´¿¡ ´ëÇÑ º¸´Ù Á¾ÇÕÀûÀÎ °üÁ¡À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ ÇÙÀÇÇÐ °ø±Þ¸Á, ¿¬±¸ Çù·Â ¿ªÇÐ, ±¹°æ °£ ¹æ»ç¼º ÀǾàǰ ¹«¿ª È帧¿¡ ¹ÌÄ¡´Â ´©ÀûÀû ¿µÇâ Æò°¡

2025³â ¹Ì±¹ °ü¼¼ µµÀÔÀº µ¿À§¿ø¼Ò ¹°Áú°ú ¿µ»ó Àåºñ ¼öÀÔ ¸ðµÎ¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç ÇÙÀÇÇÐ °ø±Þ¸Á¿¡ »õ·Î¿î º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. ÇÙ½É ¿øÀÚÀç ¹× Æ¯¼ö ºÎǰ¿¡ ´ëÇÑ °ü¼¼°¡ ¹ßÈ¿µÇ¸é¼­ Á¦Á¶¾÷üµéÀº »ý»ê ºñ¿ë »ó½Â ¾Ð·Â°ú ¹°·ù Á¦¾à ¿äÀο¡ Á÷¸éÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀϺΠ»ý»êÀÚµéÀº Á¶´Þ Àü·« Àç°ËÅä, ±¹³» µ¿À§¿ø¼Ò ±â·Ï ½Ã¼³ ÅõÀÚ, ¼öÀÔ °ü¼¼ ³ëÃâ ¿ÏÈ­¸¦ À§ÇÑ ¼öÁ÷Àû ÅëÇÕ ÃßÁøÀ» °í·ÁÇÏ°Ô µÇ¾ú½À´Ï´Ù.

Àü·«Àû ¸íÈ®¼ºÀ» À§ÇÑ Á¦Ç° À¯Çü, Åõ¿© ¹æ½Ä, »ç¿ë ¹üÁÖ, ÀÓ»ó ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ÇÁ·ÎÇʺ° ÁÖ¿ä ½ÃÀå ¼¼ºÐÈ­ ÀλçÀÌÆ® âÃâ

½ÃÀå ¼¼ºÐÈ­ ÀλçÀÌÆ®´Â Àü·«Àû °èȹ ¼ö¸³°ú ÀÚ¿ø ¹èºÐÀÇ ±â¹ÝÀÌ µÇ´Â ´Ù°¢Àû ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦½ÃÇÕ´Ï´Ù. Á¦Ç° À¯Çü¿¡ µû¶ó ÀÌ ºÐ¾ß´Â ¾çÀüÀÚ ¹æÃâ ´ÜÃþ ÃÔ¿µ(PET) µ¿À§¿ø¼Ò ¹× ´ÜÀÏ ±¤ÀÚ ¹æÃâ ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ(SPECT) µ¿À§¿ø¼Ò¸¦ Æ÷°ýÇÏ´Â Áø´Ü¿ë ¹æ»ç¼º ÀǾàǰ°ú ¼¼½·-131, ¿ä¿Àµå-125, À̸®µã-192, ÆÈ¶óµã-103°ú °°Àº ±ÙÁ¢ Ä¡·á¿ë µ¿À§¿ø¼Ò ¹× ¾ËÆÄ ¹æÃâü¿Í º£Å¸ ¹æÃâü¸¦ ¸ðµÎ »ç¿ëÇÏ´Â ¹æ»ç¼º ÀǾàǰ Ä¡·á¸¦ Æ÷ÇÔÇÏ´Â Ä¡·á¿ë ÇÙÀÇÇÐÀ¸·Î ±¸ºÐµË´Ï´Ù. ÀÌ·¯ÇÑ °èÃþÀû ºÐ·ù¸¦ ÅëÇØ ÀÓ»óÀû À¯¿ë¼º, Á¦Á¶ º¹À⼺, ±ÔÁ¦ °æ·Î¸¦ ´ë»óÀ¸·Î ÇÑ ºÐ¼®ÀÌ °¡´ÉÇÕ´Ï´Ù.

ÇÙÀÇÇÐ È®Àå Àü·« ¼ö¸³À» À§ÇÑ Á¤º¸ ±â¹Ý ÀÇ»ç°áÁ¤À» À§ÇÑ ¾Æ¸Þ¸®Ä«, À¯·´¡¤Áßµ¿¡¤¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÇ Áö¿ªº° ¿ªÇÐ ¹× ÁÖ¿ä ÃËÁø¿äÀÎ ºÐ¼®

ÇÙÀÇÇÐ ºÐ¾ßÀÇ Áö¿ªº° ¿ªÇÐÀº ¾Æ¸Þ¸®Ä«, À¯·´¡¤Áßµ¿¡¤¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ª °£ ÅõÀÚ ÆÐÅÏ, ÀÎÇÁ¶ó ¼º¼÷µµ, ±ÔÁ¦ ȯ°æÀÇ Â÷À̸¦ ¹Ý¿µÇÕ´Ï´Ù. ¾Æ¸Þ¸®Ä« Áö¿ª¿¡¼­´Â ºÏ¹ÌÀÇ È®¸³µÈ ÀÇ·á ½Ã½ºÅÛÀÌ °í±Þ ¿µ»ó Ç÷§Æû°ú Ãֽűâ¼ú ¹æ»ç¼º ÃßÀûÀÚ µµÀÔÀ» ÃËÁøÇÏ´Â ¹Ý¸é, ¶óƾ ¾Æ¸Þ¸®Ä« ½ÃÀåÀº Áõ°¡ÇÏ´Â Áø´Ü ¼ö¿ä¸¦ ÇØ°áÇϱâ À§ÇØ ±âº»ÀûÀÎ PET ¹× SPECT ¿ª·® È®´ë¸¦ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÀÌÇØ°ü°èÀÚµéÀº ºñ¿ë È¿À²ÀûÀÎ °ø±Þ ¼Ö·ç¼ÇÀÇ Çʿ伺°ú ÃֽŠġ·áÁø´Ü ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ ¼ö¿ä »çÀÌ¿¡¼­ ±ÕÇüÀ» ¸ÂÃß°í ÀÖ½À´Ï´Ù.

ÇÙÀÇÇÐ °¡Ä¡ »ç½½¿¡¼­ Çõ½Å, ¿î¿µ È¿À²¼º ¹× °æÀï ¿ìÀ§¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä ¾÷°è ÀÌÇØ°ü°èÀÚ ¹× Àü·«Àû ÆÄÆ®³Ê½Ê ºÐ¼®

¼±µµ ±â¾÷µéÀº ÆÄÀÌÇÁ¶óÀÎ °³¹ß °¡¼ÓÈ­¿Í ½ÃÀå ÀÔÁö °­È­¸¦ À§ÇØ Àü·«Àû Á¦ÈÞ¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ¿µ»ó Àåºñ Á¦Á¶»çµéÀº ¹æ»ç¼º ÀǾàǰ °³¹ß»ç¿Í Çù·ÂÇÏ¿© ½ÅÁ¾ ÃßÀûÀÚ¿ë ½ºÄ³³Ê ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ´Â Á¾´Ü°£ ¼Ö·ç¼ÇÀ» °øµ¿ °³¹ßÇϰí ÀÖ½À´Ï´Ù. Àü¹® µ¿À§¿ø¼Ò »ý»ê»çµéÀº °è¾à °³¹ß ¹× Á¦Á¶ ±â°ü°ú Çù·ÂÇÏ¿© Ç¥Àû ¾ËÆÄ ¹× º£Å¸ ¹æÃâü »ý»êÀ» È®´ëÇϰí ÀÖÀ¸¸ç, ÇÙÀǾàǰ ¾à±¹µéÀº º´¿ø ¹× Áø´Ü ¼¾ÅÍ¿ÍÀÇ ¶óÀ̼±½º °è¾àÀ» ÅëÇØ Áö¿ªÀû ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÇÙÀÇÇÐ »ýÅÂ°è ³»¿¡¼­ °ø±Þ¸Á ÃÖÀûÈ­, ±ÔÁ¦ Áؼö, ÅõÀÚ ¿ì¼±¼øÀ§ ¼³Á¤À» À§ÇÑ ½ÇÇà °¡´ÉÇÑ ±Ç°í»çÇ× Á¦°ø

»ê¾÷ ¸®´õµéÀº Áö¿ª »ý»ê ´É·Â¿¡ ÅõÀÚÇϰí ÄÁ¼Ò½Ã¾ö ±â¹Ý °ø±Þ °è¾àÀ» ü°áÇÏ¿© µ¿À§¿ø¼Ò Á¶´Þ ´Ù°¢È­¸¦ ÃÖ¿ì¼± °úÁ¦·Î »ï¾Æ¾ß ÇÕ´Ï´Ù. ÀÌ´Â ÁöÁ¤ÇÐÀû ¹× ¹«¿ª Â÷Áú¿¡ ´ëºñÇϱâ À§ÇÔÀÔ´Ï´Ù. Ç¥ÁØ ¼³Á¤ ±â±¸¿¡ Àû±Ø Âü¿©ÇÏ¿© ±ÔÁ¦ ±â°ü°úÀÇ Çù·ÂÀ» °­È­Çϸé ÁÖ¿ä ½ÃÀå °£ ½ÂÀÎ ÀýÂ÷¸¦ Á¶À²ÇÏ°í ½Å¾àÀÇ ÀÓ»ó Àû¿ë ½Ã±â¸¦ ´ÜÃàÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, Á¶´Þ ¹× Àç°í °ü¸®¿¡ °í±Þ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÕÇÏ¸é ¿¹Ãø Á¤È®µµ¸¦ ³ôÀÌ°í ¹Ý°¨±â°¡ ªÀº µ¿À§¿ø¼ÒÀÇ ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÙÀÇÇÐ ½ÃÀå ÀÎÅÚ¸®Àü½º¿¡¼­ µ¥ÀÌÅÍ ¹«°á¼º, Æ÷°ýÀû ½ÃÀå ºÐ¼® ¹× °ß°íÇÑ °ËÁõÀ» º¸ÀåÇϱâ À§ÇØ Àû¿ëµÈ ¾ö°ÝÇÑ ¿¬±¸ ¹æ¹ý·Ð »ó¼¼ ¼³¸í

º» º¸°í¼­ÀÇ ÀλçÀÌÆ®Àº 1Â÷ ¹× 2Â÷ ¿¬±¸, µ¥ÀÌÅÍ »ï°¢°ËÁõ ¹× Àü¹®°¡ °ËÁõÀ» °áÇÕÇÑ ¾ö°ÝÇÑ ¹æ¹ý·Ð¿¡ ±â¹ÝÇÕ´Ï´Ù. µ¿·á °ËÅ並 °ÅÄ£ ÃâÆÇ¹°, ƯÇã Ãâ¿ø ¹× ±ÔÁ¦ µ¥ÀÌÅͱâ¹Ý¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ °ËÅä°¡ ±âÃÊ Áö½Ä ±â¹ÝÀ» Á¦°øÇß½À´Ï´Ù. ½ÅÈï µ¿Çâ°ú »ê¾÷ °úÁ¦¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °üÁ¡À» Æ÷ÂøÇϱâ À§ÇØ ¹æ»ç¼º ÀǾàǰ Á¦Á¶»ç, ¿µ»ó Àåºñ °ø±Þ¾÷ü, Çмú ¿¬±¸ ¼¾ÅÍ ¹× ±ÔÁ¦ ´ç±¹ÀÇ °íÀ§ °æ¿µÁø°ú ½ÉÃþ ÀÎÅͺ並 ÁøÇàÇß½À´Ï´Ù.

ÇÙÀÇÇÐ ºÐ¾ßÀÇ ¹Ì·¡¸¦ ¼±µµÇÏ°í ½ÅÈï µ¿ÇâÀ» Ȱ¿ëÇϱâ À§ÇÑ ÀÌÇØ°ü°èÀÚ ´ë»ó ÇÙ½É ¹ß°ß »çÇ× ¹× Àü·«Àû ½Ã»çÁ¡ ¿ä¾à

°í±Þ ÃßÀûÀÚ °³¹ß, µðÁöÅÐ ¿µ»ó ±â¼úÀÇ Çõ½Å, ÁøÈ­ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ À¶ÇÕÀº ÇÙÀÇÇÐÀ» ÁøÁ¤ÇÑ Á¤¹ÐÀ» ÃËÁøÇÏ´Â ºÐ¾ß·Î ÀçÆíÇϰí ÀÖ½À´Ï´Ù. 2025³â °ü¼¼°¡ °ø±Þ¸Á ȸº¹Åº·Â¼º¿¡ ¹ÌÄ¡´Â ¿µÇâºÎÅÍ Á¦Ç° À¯Çü ¹× ÀÓ»ó ¿ëµµº° ¼¼ºÐÈ­ ÀλçÀÌÆ®¿¡ À̸£±â±îÁö, º» ºÐ¼®Àº Àü·«Àû ÀûÀÀ·Â°ú Çù·ÂÀû Çõ½ÅÀÇ Á߿伺À» °­Á¶ÇÕ´Ï´Ù. Áö¿ªº° ¿ªÇÐÀº ÇöÁö ÀÎÇÁ¶ó, ±ÔÁ¦ Á¶È­, ½ÃÀå ¼º¼÷µµ¸¦ °í·ÁÇÑ ¸ÂÃãÇü Á¢±Ù¹ýÀÇ Çʿ伺À» ´õ¿í ºÎ°¢½Ãŵ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • Á¾¾çÇÐ ºÐ¾ß¿¡¼­ Ç¥Àû PET ¿µ»óÈ­¸¦ À§ÇÑ ºÒ¼Ò-18 ±â¹Ý ¹æ»ç¼º ÃßÀûÀÚ È®´ë
  • ÀÚµ¿È­µÈ PET/CT ¿µ»ó ºÐ¼® ¹× Áø´Ü Á¤È®µµ¸¦ À§ÇÑ ÀΰøÁö´É°ú ¸Ó½Å ·¯´×ÀÇ ÅëÇÕ
  • ¸ÂÃãÇü ¾Ï Ä¡·á¸¦ À§ÇÑ °¥·ý-68°ú °°Àº Áø´Ü ¿µ»ó µ¿À§¿ø¼Ò¿Í ·çÅׯ¬-177°ú °°Àº Ä¡·á¿ë µ¿À§¿ø¼Ò¸¦ °áÇÕÇÑ Ä¡·áÁø´Ü ½ÖÀÇ ¼ºÀå
  • Àü½Å ¿µ»ó ¿¬±¸¿¡¼­ °¨µµ Çâ»ó ¹× ¹æ»ç¼±·® °¨ÃàÀ» À§ÇÑ Àü½Å PET ½ºÄ³³Ê äÅà Áõ°¡
  • ´Ü¸í ¹æ»ç¼ºÇÙÁ¾ ÇöÁö »ý»ê Áö¿ø ¹× °ø±Þ¸Á Á¦¾à ¿äÀÎ °¨ÃàÀ» À§ÇÑ »çÀÌŬ·ÎÆ®·Ð ¹× ¹æ»ç¼º¾àÁ¦ ÀÎÇÁ¶ó ¹ßÀü
  • Àü¸³¼±¾Ï Ä¡·á¿ë ¾×Ƽ´½-225 ±â¹Ý ¿ä¹ý µî »õ·Î¿î ¾ËÆÄ¼± ¹æÃâ ¹æ»ç¼ºÇÙÁ¾ Ä¡·á¹ýÀÇ ±ÔÁ¦ ÁøÀü ¹× ½ÂÀÎ
  • ´Ù±â°ü ÀÓ»ó½ÃÇè °£ ÇÙÀÇÇÐ ¿µ»ó µ¥ÀÌÅÍÀÇ ¾ÈÀüÇÑ °øÀ¯ ¹× Çù¾÷À» À§ÇÑ Å¬¶ó¿ìµå ±â¹Ý µðÁöÅÐ Ç÷§Æû ±¸Çö
  • PET ÃßÀûÀÚ »ý»êÀÇ ºÐ»êÈ­¿Í Áö¿ª»çȸ º´¿ø Á¢±Ù¼ºÀÌ È®´ëµÇ±â¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÎ ¼ÒÇü »çÀÌŬ·ÎÆ®·Ð °³¹ß
  • ÀüÀ̼º Áúȯ¿¡ ´ëÇÑ Á¤¹Ð ÇÙÀÇÇÐ ¿ëµµ¸¦ À§ÇÑ PSMA ¹× HER2 Ç¥Àû ½ÅÁ¾ ¹æ»ç¸é¿ªÁ¢ÇÕü µîÀå
  • ¹æ»ç¼º ÀǾàǰ ÇÕ¼º ÇÁ·ÎÅäÄÝ ÃÖÀûÈ­ ¹× ¼öÀ² Àϰü¼º Çâ»óÀ» À§ÇÑ µö ·¯´× ¾Ë°í¸®Áò ¿ëµµ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ(2025³â)

Á¦8Àå ÇÙÀÇÇÐ ½ÃÀå : Á¦Ç° À¯Çüº°

  • Áø´Ü¿ë ¹æ»ç¼º ÀǾàǰ
    • ¾çÀüÀÚ ¹æÃâ ´ÜÃþ ÃÔ¿µ(PET) µ¿À§¿ø¼Ò
    • ´ÜÀÏ ±¤ÀÚ ¹æÃâ ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ(SPECT) µ¿À§¿ø¼Ò
  • Ä¡·á¿ë ÇÙÀÇÇÐ
    • ±ÙÁ¢ Ä¡·á¿ë µ¿À§¿ø¼Ò
      • ¼¼½·-131
      • ¿ä¿Àµå-125
      • À̸®µã-192
      • ÆÈ¶óµã-103
    • ¹æ»ç¼º ÀǾàǰ Ä¡·á
      • ¾ËÆÄ ¹æÃâü
      • º£Å¸ ¹æÃâü

Á¦9Àå ÇÙÀÇÇÐ ½ÃÀå : Åõ¿© ¹æ¹ýº°

  • Á¤¸Æ ÁÖ»ç
  • °æ±¸ ¼·Ãë

Á¦10Àå ÇÙÀÇÇÐ ½ÃÀå : »ç¿ëº°

  • Áø´Ü ÀýÂ÷
    • PET ½ºÄ³³Ê
      • ¾Æ³¯·Î±× PET
      • µðÁöÅÐ PET
    • SPECT ½ºÄ³³Ê
  • Ä¡·á ÀýÂ÷

Á¦11Àå ÇÙÀÇÇÐ ½ÃÀå : ¿ëµµº°

  • ½ÉÀ庴
  • ³»ºÐºñ
  • ¼ÒÈ­±â³»°ú
  • ½Å°æ
  • Á¾¾ç
  • Á¤Çü¿Ü°ú
  • È£Èí±â°ú

Á¦12Àå ÇÙÀÇÇÐ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
  • Áø´Ü¼¾ÅÍ
  • º´¿ø
    • °ø¸³º´¿ø
    • »ç¸³º´¿ø

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ÇÙÀÇÇÐ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«ÀÇ ÇÙÀÇÇÐ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÇÙÀÇÇнÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024³â)
  • °æÀï ºÐ¼®
    • 3B Pharmaceuticals GmbH
    • Actinium Pharmaceuticals, Inc.
    • BJ Madan & Co.
    • Bayer AG
    • Bracco SpA
    • BWX Technologies, Inc.
    • Clarity Pharmaceuticals
    • Curium
    • Eli Lilly and Company
    • GE HealthCare
    • IBA
    • Institute of Isotopes Co., Ltd
    • Isotopia Molecular Imaging Ltd.
    • Jubilant Pharma Limited
    • Lantheus Holdings, Inc.
    • Medi-Radiopharma Co., Ltd.
    • Nordion
    • Northstar Medical Technologies LLC
    • Novartis AG
    • Nusano, Inc.
    • PeptiDream Inc.
    • Radiopharm Theranostics Limited
    • SHINE Technologies, LLC
    • Siemens Healthineers AG
    • Sinotau Pharmaceuticals Group
    • South African Nuclear Energy Corporation
    • State Atomic Energy Corporation Rosatom
    • Thor Medical AS by Nordic Nanovector ASA

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

HBR 25.09.22

The Nuclear Medicine Market was valued at USD 14.60 billion in 2024 and is projected to grow to USD 16.05 billion in 2025, with a CAGR of 10.80%, reaching USD 27.04 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 14.60 billion
Estimated Year [2025] USD 16.05 billion
Forecast Year [2030] USD 27.04 billion
CAGR (%) 10.80%

Navigating the Evolving Nuclear Medicine Landscape: Foundational Insights Into Modern Diagnostics and Therapeutic Innovations Driving Global Healthcare Progress

Nuclear medicine has emerged as a cornerstone of modern healthcare, harnessing the unique properties of radioisotopes to enable both precise diagnostics and targeted therapies. From early gamma camera imaging to today's sophisticated theranostic approaches, the field has evolved in response to rising demand for personalized care, advances in molecular biology, and relentless innovation in imaging hardware and radiopharmaceutical chemistry. Stakeholders across the value chain-including radiopharmaceutical developers, equipment manufacturers, clinical practitioners, and regulators-are navigating a landscape shaped by shifting clinical guidelines, expanding indications, and heightened scrutiny of safety and supply security.

Against this backdrop, the convergence of digital imaging technologies, novel tracer development, and integrated data analytics is catalyzing a new era of nuclear medicine. Technological strides such as high-resolution detectors, digital positron emission tomography, and hybrid imaging platforms are amplifying diagnostic accuracy, while breakthroughs in targeted alpha and beta emitters are unlocking therapeutic options for oncology, cardiology, and neurology. This introduction lays the foundation for an in-depth exploration of the forces reshaping nuclear medicine, setting the stage for a detailed examination of market drivers, segmentation insights, regional dynamics, and strategic imperatives that will define the industry's trajectory through 2025 and beyond.

Identifying Transformational Shifts Reshaping Nuclear Medicine From Traditional Isotope Protocols to Breakthrough Radiopharmaceutical Developments Across Multiple Modalities

The nuclear medicine landscape is undergoing transformative shifts, originating from breakthroughs in radiopharmaceutical discovery and convergent technological innovations. Recent years have witnessed a surge in novel molecular tracers tailored to specific biomarkers, enabling clinicians to detect pathological processes with unprecedented sensitivity. Concurrently, digital imaging detectors and advanced tomographic reconstruction algorithms have elevated image resolution and quantification capabilities. These dual trends are converging in hybrid platforms that seamlessly integrate positron emission tomography, single photon emission computed tomography, and computed tomography, fostering a more holistic view of disease.

Beyond hardware and tracer advances, the industry is responding to evolving regulatory frameworks that emphasize safety, standardization, and harmonized licensing across jurisdictions. Governments and international bodies are working to streamline radiopharmaceutical approval pathways and improve cross-border supply arrangements, while also enforcing stringent quality controls for isotope production and handling. This regulatory momentum, combined with growing collaboration between academic research institutes and contract manufacturing organizations, is accelerating the translation of preclinical candidates into clinical-grade products. As a result, the sector is poised for a new wave of innovation, where precision diagnostics and targeted therapies coalesce to deliver more effective and efficient patient care.

Assessing the Cumulative Impact of 2025 United States Tariffs on Nuclear Medicine Supply Chains, Research Collaboration Dynamics, and Cross-Border Radiopharmaceutical Trade Flows

The introduction of United States tariffs in 2025 has injected fresh complexity into nuclear medicine supply chains, affecting both isotopic materials and imaging equipment imports. As tariffs on critical raw materials and specialized components took effect, manufacturers faced upward pressure on production costs and logistical constraints. This shift has prompted some producers to reconsider sourcing strategies, invest in domestic isotope generation facilities, and pursue vertical integration to mitigate exposure to import levies.

In tandem, collaborative research networks that once relied on seamless transnational exchange of isotopes and consumables are adjusting to new financial and regulatory burdens. Academic and clinical partners in Europe and Asia are exploring local production partnerships to ensure uninterrupted access to critical radiotracers. Meanwhile, equipment providers have intensified after-sales service and spare-parts stocking in regional hubs to circumvent tariff-driven delays. These adjustments underscore a broader rethinking of the global nuclear medicine ecosystem, where supply resilience and cost containment have become as vital as clinical efficacy for sustaining growth and innovation.

Uncovering Key Market Segmentation Insights Across Product Types, Administration Modes, Usage Categories, Clinical Applications, and End User Profiles for Strategic Clarity

Insights into market segmentation reveal a multifaceted framework that underpins strategic planning and resource allocation. Across product types, the field is delineated into diagnostic radiopharmaceuticals-encompassing positron emission tomography isotopes and single photon emission computed tomography isotopes-and therapeutic nuclear medicine, which includes brachytherapy isotopes such as cesium-131, iodine-125, iridium-192 and palladium-103, alongside radiopharmaceutical therapies employing both alpha emitters and beta emitters. This layered breakdown enables targeted analysis of clinical utility, manufacturing complexity, and regulatory pathways.

The mode of administration distinguishes between intravenous injection and oral ingestion, reflecting divergent pharmacokinetic profiles and patient convenience considerations. Usage patterns are classified into diagnostic procedures and therapeutic procedures, with diagnostic workflows segmented by PET scanner modalities-ranging from analog to digital systems-and SPECT scanners designed for high-resolution imaging. Clinical application categories span cardiology, endocrinology, gastroenterology, neurology, oncology, orthopedics and pulmonology, each driving unique demand trajectories based on disease prevalence and standard-of-care protocols. Finally, end users include academic and research institutes, specialized diagnostic centers, and hospitals-which themselves are segmented into government and private facilities-highlighting the varying operational requirements and procurement processes across the healthcare spectrum.

Analyzing Regional Dynamics and Priority Drivers in the Americas, Europe Middle East Africa, and Asia Pacific Markets for Informed Decisions in Nuclear Medicine Expansion Strategies

Regional dynamics in nuclear medicine reflect divergent investment patterns, infrastructure maturity, and regulatory environments across the Americas, Europe Middle East Africa and Asia Pacific. In the Americas, established healthcare systems in North America drive high adoption of advanced imaging platforms and cutting-edge radiotracers, while Latin American markets focus on expanding basic PET and SPECT capacity to address growing diagnostic needs. Stakeholders in this region are balancing the need for cost-effective supply solutions with demand for the latest theranostic protocols.

Europe Middle East Africa presents a mosaic of adoption rates, with Western Europe leading in standardized regulatory frameworks and collaborative research consortia. Emerging markets in the Middle East and Africa are at earlier stages of establishing isotope generation and distribution networks, often leveraging public-private partnerships to accelerate capability building. Regulatory harmonization efforts are underway to reduce complexity for multinational clinical trials and cross-border collaborations.

Asia Pacific's nuclear medicine sector is characterized by rapid capacity expansion in countries such as China, Japan and India, driven by government initiatives to enhance domestic isotope production and bolster nuclear medicine infrastructure. This region is also a hotbed for technological innovation, with local manufacturers investing heavily in digital imaging detectors and mobile cyclotron installations. As a result, Asia Pacific is emerging as both a consumer and producer of advanced radiopharmaceutical solutions.

Profiling Leading Industry Stakeholders and Strategic Partnerships Fueling Innovation, Operational Excellence, and Competitive Advantage in the Nuclear Medicine Value Chain

Leading companies are forging strategic alliances to accelerate pipeline development and reinforce market presence. Global imaging equipment manufacturers have partnered with radiopharmaceutical developers to co-develop end-to-end solutions that optimize scanner performance for novel tracers. Specialized isotope producers are collaborating with contract development and manufacturing organizations to scale up production of targeted alpha and beta emitters, while nuclear pharmacies are expanding their geographic footprint through licensing agreements with hospitals and diagnostic centers.

In parallel, a new generation of agile start-ups is leveraging proprietary radiochemistry platforms to engineer next-generation theranostic agents, often in joint ventures with academic research institutions. These collaborations are fostering a robust innovation ecosystem, where intellectual property is shared under structured agreements to de-risk development and accelerate regulatory submissions. Equally, established pharmaceutical companies are investing in nuclear medicine capabilities through acquisitions, signaling growing recognition of radiopharmaceuticals as a core component of precision medicine portfolios.

Delivering Actionable Recommendations to Empower Industry Leaders in Optimizing Supply Chains, Regulatory Compliance, and Investment Priorities Within Nuclear Medicine Ecosystems

Industry leaders should prioritize diversification of isotope sourcing by investing in regional production capacity and forming consortium-based supply agreements to hedge against geopolitical and trade disruptions. Strengthening regulatory engagement through active participation in standards-setting bodies will help align approval processes across key markets and reduce time-to-clinic for novel compounds. Moreover, integrating advanced data analytics into procurement and inventory management can enhance forecasting accuracy and minimize waste for short-lived isotopes.

Organizations must also consider forging cross-sector alliances with digital health and artificial intelligence specialists to develop companion diagnostic platforms that personalize treatment pathways. Deploying modular cyclotron technologies in strategic locations will not only improve supply resilience but also drive down logistics costs. Finally, dedicating resources to workforce training and safety protocols will ensure that facilities maintain high compliance standards, safeguard staff and patients, and support sustainable growth in an increasingly complex environment.

Detailing Rigorous Research Methodology Employed to Ensure Data Integrity, Comprehensive Market Analysis, and Robust Validation in Nuclear Medicine Market Intelligence

This report's insights are grounded in a rigorous methodology that combines primary and secondary research, data triangulation and expert validation. An extensive review of peer-reviewed publications, patent filings and regulatory databases provided the foundational knowledge base. Detailed interviews were conducted with senior executives across radiopharmaceutical manufacturers, imaging equipment providers, academic research centers and regulatory authorities to capture firsthand perspectives on emerging trends and industry challenges.

Quantitative data sets covering production volumes, technology adoption rates and demographic trends were analyzed using statistical techniques to identify underlying patterns and correlations. Segmentation analysis was applied across product types, administration modes, clinical applications and end-user categories to ensure that findings are granular and actionable. The resulting conclusions were subjected to multiple rounds of expert review to verify accuracy and relevance, ensuring that the final report delivers robust, evidence-based insights for strategic decision making.

Summarizing Critical Findings and Strategic Implications for Stakeholders to Capitalize on Emerging Trends and Navigate the Future of the Nuclear Medicine Sector

The convergence of advanced tracer development, digital imaging breakthroughs and evolving regulatory frameworks is reshaping nuclear medicine into a truly precision-driven discipline. From the impact of 2025 tariffs on supply chain resilience to the nuanced segmentation insights across product types and clinical applications, this analysis underscores the importance of strategic adaptability and collaborative innovation. Regional dynamics further highlight the need for tailored approaches that address local infrastructure, regulatory alignment and market maturity.

Looking ahead, stakeholders who proactively invest in supply diversification, regulatory harmonization and cross-sector partnerships will be best positioned to capture the next wave of opportunities in theranostics and diagnostic imaging. By leveraging the comprehensive findings outlined in this report, decision-makers can refine their go-to-market strategies, optimize resource allocation and accelerate time-to-clinic for transformative nuclear medicine solutions. This confluence of innovation, regulation and strategic foresight will define the sector's trajectory and its impact on patient care in the coming decade.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Expansion of fluorine-18 based radiotracers for targeted PET imaging in oncology
  • 5.2. Integration of artificial intelligence and machine learning for automated PET/CT image analysis and diagnostic accuracy
  • 5.3. Growth of theranostic pairs combining diagnostic imaging isotopes like gallium-68 with therapeutic isotopes like lutetium-177 for personalized cancer treatment
  • 5.4. Increasing adoption of total-body PET scanners to improve sensitivity and reduce radiation dose in whole-body imaging studies
  • 5.5. Advancements in cyclotron and radiopharmacy infrastructure to support local production of short-lived radionuclides and reduce supply chain constraints
  • 5.6. Regulatory progress and approvals for novel alpha-emitting radionuclide therapies such as actinium-225 based treatments for prostate cancer
  • 5.7. Implementation of cloud-based digital platforms for secure sharing and collaboration of nuclear imaging data across multi-center trials
  • 5.8. Development of cost-effective compact cyclotrons to decentralize production of PET tracers and expand access in community hospitals
  • 5.9. Emergence of novel radioimmunoconjugates targeting PSMA and HER2 for precision nuclear medicine applications in metastatic disease
  • 5.10. Application of deep learning algorithms to optimize radiopharmaceutical synthesis protocols and enhance yield consistency

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Nuclear Medicine Market, by Product Type

  • 8.1. Introduction
  • 8.2. Diagnostic Radiopharmaceuticals
    • 8.2.1. Positron Emission Tomography (PET) Isotopes
    • 8.2.2. Single Photon Emission Computed Tomography (SPECT) Isotopes
  • 8.3. Therapeutic Nuclear Medicine
    • 8.3.1. Brachytherapy Isotopes
      • 8.3.1.1. Cesium-131
      • 8.3.1.2. Iodine-125
      • 8.3.1.3. Iridium-192
      • 8.3.1.4. Palladium-103
    • 8.3.2. Radiopharmaceutical Therapy
      • 8.3.2.1. Alpha Emitters
      • 8.3.2.2. Beta Emitters

9. Nuclear Medicine Market, by Mode Of Administration

  • 9.1. Introduction
  • 9.2. Intravenous Injection
  • 9.3. Oral Ingestion

10. Nuclear Medicine Market, by Usage

  • 10.1. Introduction
  • 10.2. Diagnostic Procedure
    • 10.2.1. PET Scanners
      • 10.2.1.1. Analog PET
      • 10.2.1.2. Digital PET
    • 10.2.2. SPECT Scanners
  • 10.3. Therapeutic Procedure

11. Nuclear Medicine Market, by Application

  • 11.1. Introduction
  • 11.2. Cardiology
  • 11.3. Endocrinology
  • 11.4. Gastroenterology
  • 11.5. Neurology
  • 11.6. Oncology
  • 11.7. Orthopedics
  • 11.8. Pulmonology

12. Nuclear Medicine Market, by End Users

  • 12.1. Introduction
  • 12.2. Academic & Research Institutes
  • 12.3. Diagnostic Centers
  • 12.4. Hospitals
    • 12.4.1. Government Hospitals
    • 12.4.2. Private Hospitals

13. Americas Nuclear Medicine Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Nuclear Medicine Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Nuclear Medicine Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. 3B Pharmaceuticals GmbH
    • 16.3.2. Actinium Pharmaceuticals, Inc.
    • 16.3.3. B J Madan & Co.
    • 16.3.4. Bayer AG
    • 16.3.5. Bracco S.p.A.
    • 16.3.6. BWX Technologies, Inc.
    • 16.3.7. Clarity Pharmaceuticals
    • 16.3.8. Curium
    • 16.3.9. Eli Lilly and Company
    • 16.3.10. GE HealthCare
    • 16.3.11. IBA
    • 16.3.12. Institute of Isotopes Co., Ltd
    • 16.3.13. Isotopia Molecular Imaging Ltd.
    • 16.3.14. Jubilant Pharma Limited
    • 16.3.15. Lantheus Holdings, Inc.
    • 16.3.16. Medi-Radiopharma Co., Ltd.
    • 16.3.17. Nordion
    • 16.3.18. Northstar Medical Technologies LLC
    • 16.3.19. Novartis AG
    • 16.3.20. Nusano, Inc.
    • 16.3.21. PeptiDream Inc.
    • 16.3.22. Radiopharm Theranostics Limited
    • 16.3.23. SHINE Technologies, LLC
    • 16.3.24. Siemens Healthineers AG
    • 16.3.25. Sinotau Pharmaceuticals Group
    • 16.3.26. South African Nuclear Energy Corporation
    • 16.3.27. State Atomic Energy Corporation Rosatom
    • 16.3.28. Thor Medical AS by Nordic Nanovector ASA

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦