½ÃÀ庸°í¼­
»óǰÄÚµå
1807558

ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ÄÄÆ÷³ÍÆ®, Àü·ÂÁ¤°Ý, Á¢¼Ó À¯Çü, ¼¿ Çü½Ä, ¿­°ü¸®, ¿¡³ÊÁö ¿ë·®, ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³, ¿ëµµ, ¼³Ä¡ À¯Çü, ¼ÒÀ¯ À¯Çüº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Residential Energy Storage Market by Component, Power Rating, Connectivity Type, Cell Format, Thermal Management, Energy Capacity, System Architecture, Application, Installation Type, Ownership Type - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 182 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀåÀº 2024³â¿¡ 141¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2025³â¿¡´Â 160¾ï 7,000¸¸ ´Þ·¯, CAGR 14.20%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 314¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 141¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 160¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 314¾ï 1,000¸¸ ´Þ·¯
CAGR(%) 14.20%

°¡Á¤¿ë ¹èÅ͸® ½Ã½ºÅÛ, ¼ÒÇÁÆ®¿þ¾î ¿ÀÄɽºÆ®·¹À̼Ç, ÁøÈ­ÇÏ´Â »ó¾÷Àû ¸ðµ¨ÀÌ ¾î¶»°Ô ÁÖÅà ¿¡³ÊÁö Àü·«°ú ÀÌÇØ°ü°èÀÚÀÇ °¡Ä¡¸¦ À籸¼ºÇϰí ÀÖ´ÂÁö¿¡ ´ëÇÑ ±ÇÀ§ÀÖ´Â °³¿ä

ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀåÀº ºÐ»êÇü Àü±âÈ­, Àç»ý¿¡³ÊÁö µµÀÔ, ¼ÒºñÀÚ ±ÇÇÑ ºÎ¿©ÀÇ ±³Â÷Á¡¿¡ À§Ä¡ÇÕ´Ï´Ù. ÃÖ±Ù ¹èÅ͸® È­ÇÐ, ÀιöÅÍ ¾ÆÅ°ÅØÃ³, ¼ÒÇÁÆ®¿þ¾î ±â¹Ý ¿¡³ÊÁö °ü¸® ºÐ¾ßÀÇ ¹ßÀüÀº °¡Á¤¿ë ¿¡³ÊÁö¸¦ ¼öµ¿ÀûÀÎ ¼Òºñ ¸ðµ¨¿¡¼­ ´Éµ¿ÀûÀ̰í ÃÖÀûÈ­ °¡´ÉÇÑ ÀÚ»êÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ±â¼úÀû º¯È­»Ó¸¸ ¾Æ´Ï¶ó ÁøÈ­ÇÏ´Â ¼ÒºñÀÚ ±â´ë, ±ÔÁ¦ Á¶Á¤, ºñÁî´Ï½º ¸ðµ¨ Çõ½ÅÀ» ¹Ý¿µÇϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀÌ °áÇÕµÇ¾î °¡Á¤ÀÌ ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ Âü¿©ÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

¹èÅ͸® È­ÇÐÀÇ ¹ßÀü, ±ÔÁ¦ º¯È­, »õ·Î¿î »ó¾÷Àû ¼ÒÀ¯ ±¸Á¶°¡ ÁÖ°Å¿ë ¿¡³ÊÁö ÀúÀåÀÇ ¿ªµ¿¼º°ú °æÀï ¿ìÀ§¸¦ ÀçÁ¤ÀÇÇÏ´Â ¹æ¹ý

ÁÖ°Å¿ë ¿¡³ÊÁö ÀúÀåÀÇ Àü¸ÁÀ» À籸¼ºÇϱâ À§ÇØ º¯ÇõÀûÀÎ ÈûÀÌ ¸ðÀ̰í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¸®Æ¬ Á¦Çü ¹× ½ÅÈï ³ªÆ®·ý À̿ Á¦Çü°ú °°Àº ¹èÅ͸® È­ÇÐ ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀº ¼º´É°ú ¾ÈÀü¼ºÀÇ Æ®·¹À̵å¿ÀÇÁ¸¦ È®´ëÇϰí, ¸ðµâ½Ä ½Ã½ºÅÛ ¼³°è ¹× ÇÏÀ̺긮µå ÀιöÅÍ ¾ÆÅ°ÅØÃ³´Â ¿Á»ó ž籤¹ßÀü ¹× Àü±âÀÚµ¿Â÷ ÃæÀü°úÀÇ ±ä¹ÐÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µ¿½Ã¿¡, º¸´Ù Á¤±³ÇÑ ½Ã½ºÅÛ ¸ð´ÏÅ͸µ ¹× ±â¼ú °æÁ¦ ºÐ¼® ÅøÀº ¼ø¼öÇÑ Çϵå¿þ¾î Â÷º°È­¿¡¼­ Á¾ÇÕÀûÀÎ ¼º´É ¹× ¼ö¸íÁֱ⠰æÁ¦·Î °¡Ä¡ Æ÷ÂøÀ» ÀüȯÇϰí ÀÖ½À´Ï´Ù.

ÁÖ°Å¿ë ¿¡³ÊÁö ÀúÀå ºÎǰ Ä«Å×°í¸® Àü¹ÝÀÇ Á¶´Þ, °ø±Þ¸Á º¹¿ø·Â, 2025³â °ü¼¼°¡ Àü·«Àû Á¶´Þ °áÁ¤¿¡ ¹ÌÄ¡´Â ¿µÇâ Æò°¡

2025³â¿¡ µµÀÔµÈ °ü¼¼ ȯ°æÀº ÁÖÅÿë Àü±â ÀúÀå ºÎǰ°ø±Þ¸Á°ú Á¶´Þ Àü·«¿¡ ¸¶ÂûÀ» ÀÏÀ¸Ä×½À´Ï´Ù. °ü¼¼´Â ƯÁ¤ ¼öÀÔ ¸ðµâ ¹× ¼­ºê ¾î¼Àºí¸®ÀÇ »ó·ú ºñ¿ëÀ» »ó½Â½ÃÄ×°í, °Å·¡Ã³ »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü¿Í ÅëÇÕ¾÷ü´Â Á¶´Þ ¹ßÀÚ±¹ ¹× °ø±Þ¾÷ü °è¾àÀ» Àç°ËÅäÇϵµ·Ï À¯µµÇß½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ ¸¹Àº Âü¿© ±â¾÷Àº °ø±Þ¾÷ü ´Ùº¯È­¸¦ °¡¼ÓÈ­Çϰí, °¡´ÉÇϸé ÇöÁö »ý»ê ºÎǰ Á¶´ÞÀ» ´Ã¸®°í, °ü¼¼·Î ÀÎÇÑ ºñ¿ë º¯µ¿¿¡ ´ëÇÑ ³ëÃâÀ» ÁÙÀ̱â À§ÇØ ºÎǰ ¼ÛÀå(BOS) Àü·«À» Á¶Á¤Çß½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ÅëÇØ ±¸¼º ¿ä¼Ò ¼±ÅÃ, Á¤°Ý Ãâ·Â, ¼¿ ÇüÅÂ, ¼ÒÀ¯±Ç ¸ðµ¨ÀÌ Á¦Ç° Æ÷Áö¼Å´×°ú °í°´ °¡Ä¡¸¦ °áÁ¤ÇÏ´Â ¹æ¹ýÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀλçÀÌÆ® ÀÖ´Â ¼¼ºÐÈ­¸¦ ÅëÇØ Á¦Ç° Â÷º°È­¿Í ½ÃÀå ÁøÃâ Àü·«ÀÌ °¡Àå Áß¿äÇÑ Æ÷ÀÎÆ®°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° ¼³°è¸¦ ºÎǰ ±¸¼ºÀ̶ó´Â ·»Á ÅëÇØ º¼ ¶§, Çϵå¿þ¾î´Â ¹èÅ͸®, ÄÁÆ®·Ñ·¯, ÀιöÅÍ, ÆÄ¿ö ¹ÌÅͰ¡ °¢°¢ °íÀ¯ÇÑ Æ®·¹À̵å¿ÀÇÁ¸¦ Á¦½ÃÇϸç, ¿£Áö´Ï¾î¸µÀ» ÅëÇÑ Â÷º°È­ÀÇ ÁÖ¿äÇÑ ÀåÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¹èÅ͸®¿¡¼­ ³³ÃàÀüÁö, ´ÙÁß ¸®Æ¬À̿ ¹èÅ͸®, ½ÅÈï ³ªÆ®·ý À̿ ¹èÅ͸®ÀÇ È­ÇÐÀû ¼±ÅÃÀº »çÀÌŬ ¼ö¸í, ¾ÈÀü ¸Å°³ º¯¼ö, ¿­ ¿ä±¸ »çÇ׿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÇÑÆí, ¸®Æ¬Àλêö, »êÈ­¸Á°£, Ƽź»ê¿°, ´ÏÄÌÀ» ÁÖ¼ººÐÀ¸·Î ÇÏ´Â ¸®Æ¬À̿ °è¿­Àº ´Ù¾çÇÑ ¼º´É°ú ºñ¿ë ÇÁ·ÎÆÄÀÏÀ» Á¦°øÇÕ´Ï´Ù. Çϵå¿þ¾î¸¦ º¸¿ÏÇÏ°í ¼³Ä¡ ¹× ½Ã½ºÅÛ À¯Áöº¸¼ö¸¦ Æ÷ÇÔÇÑ ¼­ºñ½º°¡ °í°´ °¡Ä¡ÀÇ ¿¬¼Ó¼ºÀ» âÃâÇϰí, ½Ã½ºÅÛ ¸ð´ÏÅ͸µ, Á¦¾î, ±â¼ú °æÁ¦ ºÐ¼®À» À§ÇÑ ¼ÒÇÁÆ®¿þ¾î °èÃþÀÌ Àüü ½Ã½ºÅÛÀÇ ¼º°ú¸¦ ÃÖÀûÈ­ÇÏ´Â Á¢ÂøÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¹Ì±¹, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿ªµ¿¼º°ú Á¤Ã¥ ȯ°æÀÌ Ã¤Åà °æ·Î¿Í °ø±Þ¾÷ü Àü·«À» Çü¼º

Áö¿ªÀû ¿ªÇаü°è´Â Å©°Ô ´Ù¸£¸ç, ±â¼ú äÅÃÀÇ °æ·Î, ±ÔÁ¦¿¡ ´ëÇÑ °ü¿©, ºñÁî´Ï½º ¸ðµ¨ÀÇ ½ÇÇö °¡´É¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÁÖÅà Àå·Á ÇÁ·Î±×·¥, ÁÖÁ¤ºÎ Â÷¿øÀÇ Åº·Â¼º ±¸»ó, Àü·Âȸ»çÀÇ ½Ã¹ü ÇÁ·Î±×·¥ µîÀÌ °áÇÕµÇ¾î ¹é¾÷ ¹× ±×¸®µå Áö¿ø ±â´ÉÀ» ¿ì¼±½ÃÇÏ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Ç㸮ÄÉÀÎÀ̳ª »êºÒ¿¡ Ãë¾àÇÑ Áö¿ªÀÇ ÁÖÅà ¼ÒÀ¯ÁÖµéÀº Á¤Àü °ü¸®¿Í ½Å¼ÓÇÑ º¹±¸°¡ °¡´ÉÇÑ ½Ã½ºÅÛÀ» Á¡Á¡ ´õ Áß¿äÇÏ°Ô ¿©±â°í ÀÖÀ¸¸ç, ÀϺΠÁÖ¿¡¼­´Â Áö¿ª Á¦Á¶ ¿ª·®À» °­È­Çϱâ À§ÇØ ±¹³» °ø±Þ¸Á°ú Àμ¾Æ¼ºê ÇÁ·Î±×·¥¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀû Â÷º°È­, Ź¿ùÇÑ ¼­ºñ½º, ä³Î ÆÄÆ®³Ê½ÊÀÌ ÁÖ°Å¿ë ½ºÅ丮ÁöÀÇ °æÀï ¿ìÀ§¿Í Àå±âÀû ¼ºÀåÀ» ¾î¶»°Ô Çü¼ºÇϴ°¡?

¾÷°è³» °æÀï ¿ªÇÐÀº ±â¼ú Â÷º°È­, ¼­ºñ½º Á¦°ø, ä³Î µµ´Þ ¹üÀ§¶ó´Â ¼¼ °¡Áö ÃàÀÌ ¼­·Î ¾ôÇô ÀÖ½À´Ï´Ù. ÁÖ¿ä Çϵå¿þ¾î Á¦Á¶¾÷üµéÀº ¹èÅ͸® È­ÇÐÀÇ Àü¹®È­, ÀιöÅÍ È¿À²È­, °­·ÂÇÑ ¾ÈÀü ½Ã½ºÅÛ µîÀ» ÅëÇØ ±â¼úÀû ¿ìÀ§¸¦ È®º¸ÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ½Ç½Ã°£ ½Ã½ºÅÛ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ±â¼ú °æÁ¦ ÃÖÀûÈ­¸¦ Á¦°øÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ÇÁ·Î¹ÙÀÌ´õ´Â ¿ì¼öÇÑ ¼ö¸íÁֱ⠼º´É°ú °í°´ ROI¸¦ ÀÔÁõÇϰíÀÚ ÇÏ´Â Çϵå¿þ¾î °ø±Þ¾÷ü¿¡°Ô ÇʼöÀûÀÎ ÆÄÆ®³Ê°¡ µÇ°í ÀÖ½À´Ï´Ù.

°ø±Þ¸Á °­°Ç¼º °­È­, ¼ÒÇÁÆ®¿þ¾î °¡Ä¡ ÅëÇÕ, ¼ÒÀ¯±Ç ¼±ÅÃ±Ç È®´ë, ±×¸®µå ¼­ºñ½º ±âȸ¿Í ¿¬°èÇϱâ À§ÇÑ °ø±Þ¾÷ü¸¦ À§ÇÑ ½ÇÁúÀûÀÎ Àü·«Àû Çʼö »çÇ×

¾÷°è ¸®´õ´Â ½ÃÀå¿¡¼­ÀÇ ÁöÀ§¸¦ È®º¸Çϰí Áö¼ÓÀûÀÎ °¡Ä¡¸¦ âÃâÇϱâ À§ÇØ Çö½ÇÀûÀÌ°í ¿µÇâ·Â ÀÖ´Â ÀÏ·ÃÀÇ ÇൿÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ù°, ¹«¿ª Á¤Ã¥ ¸®½ºÅ©°¡ ÀÖ´Â ÇÙ½É ºÎǰÀ» ½Äº°Çϰí, °ø±Þó¸¦ ´Ùº¯È­Çϰųª, ¸®µåŸÀÓ°ú °ü¼¼ÀÇ ¿µÇâÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ´Â °æ¿ì Á¶¸³À» ±ÙÇØ·Î ÀÌÀüÇÏ´Â µî °ø±Þ¸Á °­°Ç¼º¿¡ ¼±ÅÃÀûÀ¸·Î ÅõÀÚÇÕ´Ï´Ù. ÀÌ ´Ü°è´Â ¾ÈÀüÀ̳ª º¸Áõ ¾à¼ÓÀ» ÈѼÕÇÏÁö ¾Ê°í ºÎǰÀ» À¯¿¬ÇÏ°Ô ´ëüÇÒ ¼ö ÀÖ´Â °è¾à ±¸Á¶¿Í °áÇյǾî¾ß ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚ ÀÎÅͺä, ±â¼ú °ËÁõ, Á¤Ã¥ ºÐ¼®À» °áÇÕÇÑ ¾ö°ÝÇÑ È¥ÇÕ ¹æ¹ý·Ð Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ ½ÇÇà °¡´ÉÇÏ°í °ËÁõ °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ ¾ò´Â´Ù.

º» Á¶»ç¿¡¼­´Â Á¤¼ºÀû ¹æ¹ý°ú Á¤·®Àû ¹æ¹ýÀ» °áÇÕÇÏ¿© ±ÕÇü ÀâÈù °ËÁõ °¡´ÉÇÑ ºÐ¼®À» ½Ç½ÃÇß½À´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â Á¦Á¶¾÷ü, ÅëÇÕ¾÷ü, ¼ÒÇÁÆ®¿þ¾î °ø±Þ¾÷ü, À¯Æ¿¸®Æ¼ »ç¾÷ÀÚ, Á¤Ã¥ ÀÌÇØ°ü°èÀÚ¿ÍÀÇ ±¸Á¶Àû ÀÎÅͺ並 ÅëÇØ °ø±Þ¸Á ¿ªÇÐ, ±ÔÁ¦ÀÇ ¿µÇâ, ÁøÈ­ÇÏ´Â »ó¾÷Àû ¸ðµ¨¿¡ ´ëÇÑ »ý»ýÇÑ °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â »õ·Î¿î µ¿Çâ°ú ±â¼úÀû ÁÖÀåÀ» °ËÁõÇϱâ À§ÇØ °ø½Ä ¹®¼­, Ç¥ÁØ ¹®¼­, ±â¼ú ¹é¼­, ±ÔÁ¦ ´ç±¹ÀÇ ¹ßÇ¥, ¾÷°è ³í¹®À» Á¶»çÇÏ¿© ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ º¸¿ÏÇß½À´Ï´Ù.

Àü·«Àû ¿ì¼±¼øÀ§¿Í ÁøÈ­ÇÏ´Â ÁÖ°Å¿ë ¿¡³ÊÁö ÀúÀå »ýŰ迡¼­ °¡Ä¡¸¦ âÃâÇϱâ À§ÇØ ÇÊ¿äÇÑ ÅëÇÕ ¿ª·®À» ÃßÃâÇÑ °á·ÐÀÇ ÅëÇÕ

ÁÖ°Å¿ë ¿¡³ÊÁö ÀúÀåÀº Á¦Ç°, ¼­ºñ½º, ä³Î Â÷¿ø¿¡¼­ Àü·«Àû ¼±ÅÃÀÌ ½ÂÀÚ¸¦ Á¤ÀÇÇÏ´Â ´Ü°è¿¡ Á¢¾îµé°í ÀÖ½À´Ï´Ù. ÷´Ü È­Çй°Áú, ÁøÈ­ÇÏ´Â ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³, ¼ÒÇÁÆ®¿þ¾î ±â¹Ý ÃÖÀûÈ­ÀÇ »óÈ£ ÀÛ¿ëÀ¸·Î Â÷º°È­ÀÇ À庮ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¹«¿ª Á¤Ã¥°ú °ü¼¼ÀÇ ¹ßÀüÀº ź·ÂÀûÀÎ °ø±Þ¸Á°ú À¯¿¬ÇÑ Á¶´Þ Àü·«ÀÇ Çʿ伺À» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶Ù¾î³­ Çϵå¿þ¾î¸¦ °­·ÂÇÑ ¼ÒÇÁÆ®¿þ¾î ¿ª·®, ¾ö°ÝÇÑ ¼­ºñ½º, Çõ½ÅÀûÀÎ ¼ÒÀ¯ ¸ðµ¨°ú °áÇÕÇÏ´Â ½ÃÀå ÁøÃâ±â¾÷Àº Àå±âÀûÀÎ °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖ´Â °¡Àå ÁÁÀº À§Ä¡¿¡ ¼­°Ô µÉ °ÍÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¹èÅ͸®
      • ³³ÃàÀüÁö
      • Flooded
      • Sealed
      • Èí¼ö À¯¸® ¸ÅÆ®(AGM)
      • °Ö
      • ¸®Æ¬À̿ ¹èÅ͸®
      • Àλêö¸®Æ¬(LFP)
      • ¸Á°£»ê¸®Æ¬(LMO)
      • Ƽź»ê ¸®Æ¬(LTO)
      • ´ÏÄÌ ÄÚ¹ßÆ® ¾Ë·ç¹Ì´½(NCA)
      • ´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®(NMC)
      • ³ªÆ®·ý ÀÌ¿Â
    • ÄÁÆ®·Ñ·¯
    • ÀιöÅÍ
    • ÆÄ¿ö ¹ÌÅÍ
  • ¼­ºñ½º
    • ÀνºÅç
    • ½Ã½ºÅÛ Á¤ºñ¿Í Áö¿ø
  • ¼ÒÇÁÆ®¿þ¾î
    • ½Ã½ºÅÛ ¸ð´ÏÅ͸µ & Á¦¾î
    • ±â¼ú °æÁ¦ ºÐ¼® Åø

Á¦9Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : Ãâ·Â Á¤°Ýº°

  • 10-20kW
  • 10KW ¹Ì¸¸
  • 20KW ÀÌ»ó

Á¦10Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : Á¢¼Ó À¯Çüº°

  • ¿ÀÇÁ±×¸®µå
  • ¿Â±×¸®µå

Á¦11Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ¼¿ Çü½Äº°

  • ¿øÅëÇü
  • ÆÄ¿ìÄ¡
  • ÇÁ¸®Áƽ

Á¦12Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ¿­°ü¸®

  • °ø·©½Ä
  • ¾×·©½Ä
  • ÆÐ½Ãºê

Á¦13Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ¿¡³ÊÁö ¿ë·®º°

  • 10-15kWh
  • 15-20kWh
  • 5-10kWh
  • 20kWh ÀÌ»ó
  • 5kWh ÀÌÇÏ

Á¦14Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³º°

  • AC °áÇÕ
  • DC °áÇÕ
  • ÇÏÀ̺긮µå ÀιöÅÍ ½Ã½ºÅÛ

Á¦15Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ¿ëµµº°

  • ¹é¾÷ Àü¿ø
  • EV ÃæÀü Áö¿ø
  • ¿ÀÇÁ±×¸®µå »ýȰ
  • ÇÇÅ© ½¦À̺ù
  • ÀÚ°¡ ¼Òºñ ÃÖÀûÈ­
  • ½Ã°£´ëº° ºÎÇÏ ½ÃÇÁÆ®

Á¦16Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • ½Å±Ô ¼³Ä¡
  • °³Á¶

Á¦17Àå ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå : ¼ÒÀ¯±Ç À¯Çüº°

  • °í°´ ¼ÒÀ¯
  • ¼­µåÆÄƼ ¼ÒÀ¯
    • ¸®½º
    • ¼­ºê½ºÅ©¸³¼Ç

Á¦18Àå ¾Æ¸Þ¸®Ä«ÀÇ ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦19Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦20Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦21Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Eaton Corporation PLC
    • Enphase Energy, Inc.
    • Generac Holdings, Inc.
    • Huawei Technologies Co., Ltd.
    • LG Corporation
    • Panasonic Holdings Corporation
    • SAMSUNG SDI CO., LTD.
    • Schneider Electric SE
    • Siemens AG
    • SMA Solar Technology AG
    • Sungrow Power Supply Co., Ltd
    • Tesla, Inc.

Á¦22Àå ¸®¼­Ä¡ AI

Á¦23Àå ¸®¼­Ä¡ Åë°è

Á¦24Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦25Àå ¸®¼­Ä¡ ±â»ç

Á¦26Àå ºÎ·Ï

KSA 25.09.16

The Residential Energy Storage Market was valued at USD 14.15 billion in 2024 and is projected to grow to USD 16.07 billion in 2025, with a CAGR of 14.20%, reaching USD 31.41 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 14.15 billion
Estimated Year [2025] USD 16.07 billion
Forecast Year [2030] USD 31.41 billion
CAGR (%) 14.20%

An authoritative overview of how household battery systems, software orchestration, and evolving commercial models are reshaping residential energy strategies and stakeholder value

Residential energy storage sits at the intersection of distributed electrification, renewable adoption, and consumer empowerment. Recent advancements in battery chemistry, inverter architecture, and software-driven energy management have transformed household energy from a passive consumption model into an active, optimizable asset. These shifts are not only technological; they reflect evolving consumer expectations, regulatory adjustments, and business model innovation that together reshape how homes participate in energy systems.

At the household level, storage systems enable homeowners to increase self-consumption of onsite generation, improve resilience during grid disruptions, and optimize costs under time-of-use tariffs. At the grid level, aggregated residential storage can provide flexibility services, reduce peak demand, and support higher renewable penetration. Manufacturers, integrators, financiers, and utilities are thus recalibrating product offerings and commercial terms to capture value across both customer-facing and grid-facing use cases.

This analysis synthesizes technology, policy, and commercial trends to equip stakeholders with the clarity needed for near-term decisions and longer-term strategy. By tracing the interplay of hardware, software, and services, the narrative highlights where the biggest sources of differentiation are emerging and where strategic investments can yield defensible positions in a rapidly evolving ecosystem.

How advances in battery chemistry, regulatory changes, and new commercial ownership structures are jointly redefining residential energy storage dynamics and competitive advantage

Transformative forces are converging to reshape the residential energy storage landscape. Advances in battery chemistries such as diverse lithium formulations and emerging sodium-ion variants are expanding performance and safety trade-offs, while modular system designs and hybrid inverter architectures are enabling tighter integration with rooftop solar and electric vehicle charging. At the same time, more sophisticated system monitoring and techno-economic analysis tools are shifting value capture from pure hardware differentiation to holistic performance and lifecycle economics.

Regulatory evolution is another major driver. Interconnection simplifications, incentives tied to resilience and demand response participation, and evolving meter and tariff structures have lowered friction for adoption while opening new revenue streams for aggregated assets. Utilities and aggregators are increasingly experimenting with residential storage as a resource for distribution-level services, shifting conversations from isolated installations to portfolio-level dispatch and coordination.

Commercially, ownership and financing models are diversifying. Customer-owned systems remain core for homeowners seeking long-term value and autonomy, while third-party offerings such as leases and subscription models lower upfront barriers and catalyze adoption among price-sensitive segments. Service providers are layering installation, maintenance, and software-as-a-service offerings to increase customer lifetime value and improve system performance over time.

Finally, climate-driven imperatives and extreme weather events have elevated resilience as a primary purchase driver in many geographies. Consumers now weigh reliability as heavily as cost savings, prompting suppliers to design systems optimized for backup duration and rapid, reliable switchover. Together, these technological, regulatory, and commercial shifts are forging a more dynamic and fragmented market in which agility, integration capability, and trust become critical competitive advantages.

Assessing the 2025 tariff impact on procurement, supply chain resilience, and strategic sourcing decisions across residential energy storage component categories

The tariff environment introduced in 2025 has introduced friction into supply chains and procurement strategies for residential energy storage components. Tariffs increased the landed cost of certain imported modules and subassemblies, prompting original equipment manufacturers and integrators to reassess sourcing footprints and supplier contracts. In response, many participants accelerated supplier diversification, increased procurement of locally manufactured components where feasible, and adjusted bill-of-materials strategies to mitigate exposure to tariff-driven cost volatility.

For system designers, the tariff impact was felt unevenly across component categories. Price-sensitive commoditized subcomponents experienced the most immediate cost pressure, while high-value, differentiated subsystems with fewer global suppliers showed more resilience. Consequently, some manufacturers shifted emphasis toward vertical integration of key elements such as battery module assembly, inverter control firmware, and thermal management subassemblies to preserve margin and ensure continuity of supply.

Across the value chain, service providers and distributors adopted a mix of tactical and strategic measures. Tactically, longer lead times and inventory buffering became common to avoid supply disruptions. Strategically, several players deepened partnerships with domestic suppliers and looked for cross-border assembly opportunities that would qualify for tariff relief under local-content provisions. Meanwhile, software and service contracts were restructured in a few cases to allow for flexible pricing adjustments tied to component cost indices.

Policy responses also emerged as stakeholders lobbied for exemptions and support for domestic manufacturing investment. Regulators and economic development bodies in multiple states and jurisdictions signaled incentives and grant programs aimed at boosting local capacity for battery cells, inverters, and balance-of-system manufacturing. These measures have begun to reorient long-term capital deployment and project planning, though the full effects on supply chain localization and cost structures will unfold over several years.

Comprehensive segmentation insight revealing how component choices, power ratings, cell formats, and ownership models determine product positioning and customer value

Insightful segmentation reveals where product differentiation and go-to-market tactics matter most. When product design is viewed through the lens of component composition, hardware remains the principal arena for engineering differentiation with batteries, controllers, inverters, and power meters each presenting unique trade-offs. Within batteries, chemistry choices between lead-acid variants, multiple lithium-ion formulations, and emerging sodium-ion influence cycle life, safety parameters, and thermal needs. Lead-acid options like flooded and sealed formats, and sealed subtypes such as AGM and gel, continue to persist in low-cost, short-duration backup niches, while lithium-ion families such as lithium iron phosphate, manganese oxide, titanate, and nickel-dominant chemistries serve diverse performance and cost profiles. Complementing hardware, services encompassing installation and system maintenance create continuity of customer value, and software layers for system monitoring, control, and techno-economic analysis increasingly serve as the glue that optimizes whole-system outcomes.

Power rating segmentation drives different deployment logic and customer propositions. Systems designed for sub-10 kilowatt households prioritize compactness and straightforward integration, while 10-20 kilowatt platforms address larger single-family homes and multi-modal energy needs; ratings above 20 kilowatts are often tailored to high-demand residences or clustered installations that blur the line toward commercial-scale management. Connectivity type shapes operational strategy: off-grid solutions emphasize autonomy and energy density, while on-grid architectures focus on export management, tariff arbitrage, and grid services.

Cell format and thermal management choices are tightly coupled to lifecycle performance and safety. Cylindrical, pouch, and prismatic cell formats impose different mechanical design considerations and thermal dissipation approaches, which in turn influence whether air-cooled, liquid-cooled, or passive thermal management is most appropriate. Energy capacity segmentation further refines product positioning; offerings spanning less than or equal to five kilowatt-hours through bands such as 5-10, 10-15, 15-20, and above 20 kilowatt-hours accommodate use cases ranging from brief backup to extended resilience and load shifting.

System architecture is another powerful differentiator. AC-coupled systems provide retrofit flexibility and ease of integration with existing inverters, DC-coupled architectures optimize charge/discharge efficiency for new builds paired with PV generation, and hybrid inverter systems deliver dynamic control between multiple inputs and storage. Application segmentation clarifies customer value propositions: backup power supply and off-grid living emphasize reliability, EV charging support and peak shaving focus on load management, while self-consumption optimization and time-of-use load shifting prioritize economic optimization. Finally, installation and ownership types shape procurement and service strategies; new installations allow for integrated design optimizations whereas retrofits require careful interfacing with legacy systems, and ownership choices between customer-owned and third-party owned models, including lease and subscription variants, govern cash flow, customer acquisition, and long-term service commitments.

Regional dynamics and policy landscapes across the Americas, Europe Middle East Africa, and Asia-Pacific that shape adoption pathways and supplier strategies

Regional dynamics vary considerably and influence technology adoption pathways, regulatory engagement, and business model viability. In the Americas, a blend of residential incentive programs, state-level resilience initiatives, and utility pilot programs has accelerated demand for systems that prioritize backup and grid-support capabilities. Homeowners in hurricane-prone and wildfire-affected regions increasingly value systems that deliver reliable outage management and rapid restoration, while certain states are actively investing in domestic supply chains and incentive programs to bolster regional manufacturing capacity.

Europe, the Middle East & Africa displays a heterogeneous mix of drivers. European markets emphasize integration with ambitious renewable targets, smart-grid pilots, and time-of-use tariff frameworks that reward aggregation and demand-side flexibility. Regulatory clarity around interconnection and vehicle-to-home architectures in parts of Europe fosters innovation in both hardware and software layers. In the Middle East, growing interest in off-grid and hybrid systems-due to both high solar insolation and limited grid reach in some areas-creates niches for robust thermal management and high-efficiency inverters. Across parts of Africa, microgrid and off-grid solutions coupled with resilient storage are vital for electrification goals, with commercial models that blend pay-as-you-go financing and local service networks.

Asia-Pacific markets present a wide range of maturity and strategic focus. Some markets emphasize rapid residential adoption supported by large-scale solar deployment and forward-looking tariff design, while others concentrate on manufacturing scale-up, particularly in battery and inverter production. National industrial policies and local content incentives in several countries have catalyzed production investments, influencing global supply chain flows. Across the region, high urban density in certain markets pushes product innovation toward compact, passive-cooled systems and integrated energy-management platforms suited to multifamily and high-rise applications.

How technology differentiation, service excellence, and channel partnerships converge to shape competitive advantage and long-term growth in residential storage

Competitive dynamics within the industry are governed by three intertwined axes: technology differentiation, service delivery, and channel reach. Leading hardware manufacturers focus on establishing technological advantage through battery chemistry specialization, inverter efficiency, and robust safety systems. At the same time, software providers that deliver real-time system monitoring, predictive maintenance, and techno-economic optimization have become essential partners for hardware suppliers seeking to demonstrate superior lifecycle performance and customer ROI.

Service providers and installers differentiate on the quality and reliability of installation, speed of commissioning, and the depth of ongoing maintenance services. Partnerships between manufacturers and national installer networks have become a common strategy to scale deployments while maintaining quality control. In parallel, third-party owners and finance players are innovating contract structures that reduce upfront costs for consumers while aligning incentives for performance and long-term maintenance.

Channel strategy also influences competitive advantage. Companies with strong relationships across dealer networks, utility partnerships, and residential construction channels secure broader access to end customers and grid integration programs. Firms that can combine product reliability with seamless digital onboarding, effective warranty fulfillment, and clear performance guarantees gain trust in a market where safety and resilience are paramount. Finally, collaboration across the ecosystem-between component suppliers, integrators, utilities, and software vendors-often yields superior system-level outcomes and unlocks new revenue streams through aggregated services and grid participation.

Practical strategic imperatives for suppliers to bolster supply chain resilience, embed software value, expand ownership options, and align with grid service opportunities

Industry leaders should prioritize a set of pragmatic, high-impact actions to secure market position and create durable value. First, invest selectively in supply chain resilience by identifying critical components at risk from trade policy and diversifying sourcing or nearshoring assembly where it materially reduces lead-time and tariff exposure. This step should be paired with contract structures that allow flexibility in component substitution without compromising safety or warranty commitments.

Second, shift product strategy from component-only differentiation to integrated system value by embedding software-driven monitoring, predictive maintenance, and techno-economic analytics into product offerings. These capabilities will enable better customer outcomes, smoother warranty management, and additional revenue through subscription services. Third, develop ownership-flexible commercial models that accommodate customer-owned, lease, and subscription preferences; value-based contracts that share performance upside with customers and aggregators can accelerate adoption in price-sensitive segments.

Fourth, align product roadmaps with emerging application needs such as EV charging support and grid-service participation. Designing systems with modularity for scaling, and hybrid inverter architectures for multi-input management, will increase relevance across diverse use cases. Fifth, forge utility and aggregator partnerships to pilot and scale portfolio-level dispatch strategies and to validate revenue models tied to grid services. Lastly, invest in customer education and trust-building measures that emphasize safety certifications, transparent performance data, and proven installation quality, as these factors increasingly influence purchasing decisions.

A rigorous mixed-methods research framework combining stakeholder interviews, technical validation, and policy analysis to produce actionable and verifiable insights

This research combines qualitative and quantitative methods to deliver a balanced, verifiable analysis. Primary research included structured interviews with manufacturers, integrators, software vendors, utilities, and policy stakeholders to capture firsthand perspectives on supply chain dynamics, regulatory impacts, and evolving commercial models. Secondary research complemented these insights by reviewing public filings, standards documentation, technical whitepapers, regulatory announcements, and industry press to validate emerging trends and technological claims.

Technical evaluation of component and system technologies relied on cross-referenced data from certification agencies, product technical specifications, and independent test reports. Policy and tariff analysis was grounded in publicly available legislative texts, regulatory orders, and government procurement programs. The synthesis employed scenario mapping to explore plausible supply chain and policy trajectories, and sensitivity testing to understand how tariff-induced cost shifts and technology substitutions could influence procurement and integration decisions. Throughout, findings were triangulated across multiple sources to ensure robustness and to minimize reliance on any single data point.

Concluding synthesis that distills strategic priorities and the integrated capabilities required to capture value in the evolving residential energy storage ecosystem

Residential energy storage is entering a phase where strategic choices will define winners across product, service, and channel dimensions. The interplay of advanced chemistries, evolving system architectures, and software-led optimization is raising the bar for differentiation. At the same time, trade policy and tariff developments have accelerated the need for resilient supply chains and flexible sourcing strategies. Market participants that integrate hardware excellence with strong software capabilities, service rigor, and innovative ownership models will be best positioned to capture long-term value.

Moving forward, stakeholders should treat residential storage not merely as a collection of components but as a service-enabled system that interfaces with customers and grids. Those who invest in interoperability, performance transparency, and trusted installation networks will reduce friction and increase adoption. Ultimately, the most successful organizations will be those that couple technical competence with commercial creativity and policy savvy to unlock the full potential of distributed storage as both a household asset and a grid resource.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Increasing integration of solar PV systems with residential energy storage solutions
  • 5.2. Technological advancements in battery storage enhancing efficiency and lifespan
  • 5.3. Government incentives and subsidies boosting the residential energy storage market
  • 5.4. Significant role of energy independence and security in driving residential storage demand
  • 5.5. Emerging trends in smart home energy management systems and storage integration
  • 5.6. Shifting consumer preferences toward sustainable and eco-friendly energy solutions
  • 5.7. Expansion of virtual power plants and their connection to residential storage
  • 5.8. Surge in time-of-use tariff arbitrage strategies driving increased residential storage installations
  • 5.9. Emergence of AI-driven predictive analytics for residential battery performance and maintenance planning

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Residential Energy Storage Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Batteries
      • 8.2.1.1. Lead-Acid Batteries
      • 8.2.1.1.1. Flooded
      • 8.2.1.1.2. Sealed
      • 8.2.1.1.2.1. Absorbent Glass Mat (AGM)
      • 8.2.1.1.2.2. Gel
      • 8.2.1.2. Lithium-ion Batteries
      • 8.2.1.2.1. Lithium Iron Phosphate (LFP)
      • 8.2.1.2.2. Lithium Manganese Oxide (LMO)
      • 8.2.1.2.3. Lithium Titanate (LTO)
      • 8.2.1.2.4. Nickel Cobalt Aluminum (NCA)
      • 8.2.1.2.5. Nickel Manganese Cobalt (NMC)
      • 8.2.1.3. Sodium-Ion
    • 8.2.2. Controllers
    • 8.2.3. Inverters
    • 8.2.4. Power Meters
  • 8.3. Services
    • 8.3.1. Installation
    • 8.3.2. System Maintenance & Support
  • 8.4. Software
    • 8.4.1. System Monitoring & Control
    • 8.4.2. Techno-Economic Analysis Tools

9. Residential Energy Storage Market, by Power Rating

  • 9.1. Introduction
  • 9.2. 10-20 KW
  • 9.3. Less than 10 KW
  • 9.4. More than 20 KW

10. Residential Energy Storage Market, by Connectivity Type

  • 10.1. Introduction
  • 10.2. Off-Grid
  • 10.3. On-Grid

11. Residential Energy Storage Market, by Cell Format

  • 11.1. Introduction
  • 11.2. Cylindrical
  • 11.3. Pouch
  • 11.4. Prismatic

12. Residential Energy Storage Market, by Thermal Management

  • 12.1. Introduction
  • 12.2. Air-Cooled
  • 12.3. Liquid-Cooled
  • 12.4. Passive

13. Residential Energy Storage Market, by Energy Capacity

  • 13.1. Introduction
  • 13.2. 10-15 kWh
  • 13.3. 15-20 kWh
  • 13.4. 5-10 kWh
  • 13.5. >20 kWh
  • 13.6. <=5 kWh

14. Residential Energy Storage Market, by System Architecture

  • 14.1. Introduction
  • 14.2. AC-Coupled
  • 14.3. DC-Coupled
  • 14.4. Hybrid Inverter System

15. Residential Energy Storage Market, by Application

  • 15.1. Introduction
  • 15.2. Backup Power Supply
  • 15.3. EV Charging Support
  • 15.4. Off-Grid Living
  • 15.5. Peak Shaving
  • 15.6. Self-Consumption Optimization
  • 15.7. Time-of-Use Load Shifting

16. Residential Energy Storage Market, by Installation Type

  • 16.1. Introduction
  • 16.2. New Installations
  • 16.3. Retrofits

17. Residential Energy Storage Market, by Ownership Type

  • 17.1. Introduction
  • 17.2. Customer Owned
  • 17.3. Third-Party Owned
    • 17.3.1. Lease
    • 17.3.2. Subscription

18. Americas Residential Energy Storage Market

  • 18.1. Introduction
  • 18.2. United States
  • 18.3. Canada
  • 18.4. Mexico
  • 18.5. Brazil
  • 18.6. Argentina

19. Europe, Middle East & Africa Residential Energy Storage Market

  • 19.1. Introduction
  • 19.2. United Kingdom
  • 19.3. Germany
  • 19.4. France
  • 19.5. Russia
  • 19.6. Italy
  • 19.7. Spain
  • 19.8. United Arab Emirates
  • 19.9. Saudi Arabia
  • 19.10. South Africa
  • 19.11. Denmark
  • 19.12. Netherlands
  • 19.13. Qatar
  • 19.14. Finland
  • 19.15. Sweden
  • 19.16. Nigeria
  • 19.17. Egypt
  • 19.18. Turkey
  • 19.19. Israel
  • 19.20. Norway
  • 19.21. Poland
  • 19.22. Switzerland

20. Asia-Pacific Residential Energy Storage Market

  • 20.1. Introduction
  • 20.2. China
  • 20.3. India
  • 20.4. Japan
  • 20.5. Australia
  • 20.6. South Korea
  • 20.7. Indonesia
  • 20.8. Thailand
  • 20.9. Philippines
  • 20.10. Malaysia
  • 20.11. Singapore
  • 20.12. Vietnam
  • 20.13. Taiwan

21. Competitive Landscape

  • 21.1. Market Share Analysis, 2024
  • 21.2. FPNV Positioning Matrix, 2024
  • 21.3. Competitive Analysis
    • 21.3.1. Eaton Corporation PLC
    • 21.3.2. Enphase Energy, Inc.
    • 21.3.3. Generac Holdings, Inc.
    • 21.3.4. Huawei Technologies Co., Ltd.
    • 21.3.5. LG Corporation
    • 21.3.6. Panasonic Holdings Corporation
    • 21.3.7. SAMSUNG SDI CO., LTD.
    • 21.3.8. Schneider Electric SE
    • 21.3.9. Siemens AG
    • 21.3.10. SMA Solar Technology AG
    • 21.3.11. Sungrow Power Supply Co., Ltd
    • 21.3.12. Tesla, Inc.

22. ResearchAI

23. ResearchStatistics

24. ResearchContacts

25. ResearchArticles

26. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦