½ÃÀ庸°í¼­
»óǰÄÚµå
1807559

¼ö¼Ò »ý¼º ½ÃÀå : À¯Çü, Á¦Á¶ ¹æ¹ý, °ø±Þ¿ø, Á¦Ç°, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

Hydrogen Generation Market by Type, Production Method, Source, Product, Application, End-User Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼ö¼Ò »ý¼º ½ÃÀåÀº 2024³â¿¡´Â 1,545¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2025³â¿¡´Â 1,658¾ï 2,000¸¸ ´Þ·¯, CAGR 7.71%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 2,413¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 1,545¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 1,658¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 2,413¾ï ´Þ·¯
CAGR(%) 7.71%

¼¼°è ¿¡³ÊÁö ÀüȯÀ» ÃËÁøÇϰí Żź¼Ò Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ´Â ¼ö¼Ò ¹ßÀüÀÇ »õ·Î¿î ½Ã´ë¸¦ À§ÇÑ ¹ßÆÇÀ» ¸¶·Ã

¼¼°è ¿¡³ÊÁö ȯ°æÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¼ö¼Ò ¹ßÀüÀº ½ÇÇèÀûÀÎ Æ´»õ ºÐ¾ß¿¡¼­ Żź¼Ò Àü·«°ú ³Ý Á¦·Î ¾ß¸Á¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ÃàÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ Á¡Á¡ ´õ ¾ö°ÝÇÑ ¹èÃâ·® ¸ñÇ¥¸¦ ¼³Á¤ÇÔ¿¡ µû¶ó »ê¾÷ ÀÌÇØ°ü°èÀÚµéÀº ±âÁ¸ ÀÎÇÁ¶ó¿Í ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ´Â Àúź¼Ò ¿¬·á¸¦ äÅÃÇϰí, ź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â ¸íÈ®ÇÑ °æ·Î¸¦ Á¦½ÃÇØ¾ß ÇÕ´Ï´Ù. ÀÌ¿Í ÇÔ²² Àç»ý¿¡³ÊÁö ±â¼úÀÇ ¹ßÀüÀ¸·Î ºñ¿ë Àý°¨°ú È¿À²¼ºÀÌ Çâ»óµÇ¸é¼­ ±×¸° ¼ö¼Ò´Â ±âÁ¸ÀÇ È­¼® ±â¹Ý °øÁ¤¿¡ ´ëÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀº Áö¿øÁ¤Ã¥°ú ¹Î°üÀÇ ´ë±Ô¸ð ÅõÀÚ¿Í ÇÔ²² Çõ½Å Áֱ⸦ °¡¼ÓÈ­ÇÏ°í ±Ô¸ðÀÇ °æÁ¦¸¦ ÃËÁøÇÏ¸ç ½ÃÀå °æÀï ȯ°æÀ» Á¶¼ºÇϱâ À§ÇØ Áý¾àµÇ¾î ÀÖ½À´Ï´Ù.

¼ö¼Ò »ý»ê »ýŰ踦 ÀçÁ¤ÀÇÇϰí, Àü ¼¼°è »ó¾÷Àû ±Ô¸ðÀÇ µµÀÔÀ» °¡¼ÓÈ­Çϸç, Ã˸ŠÀÛ¿ëÀ» ÅëÇØ º¯È­¸¦ À̲ø¾î³¾ °ÍÀÔ´Ï´Ù.

ÃÖ±Ù ¼ö³â°£ ¼ö¼Ò »ý»ê ±â¼ú¿¡ ´ëÇÑ ÀÌÇØ°ü°èÀÚµéÀÇ Àνİú Àü°³ ¹æ½Ä¿¡ °Ýº¯ÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â Æ´»õ »ê¾÷ ¿ëµµ·Î¸¸ »ç¿ëµÇ´ø ¼ö¼Ò´Â ÀÌÁ¦ ±¹°¡ ¿¡³ÊÁö ·Îµå¸Ê, ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ¼­¾à, ´ÙÀÚ°£ ±âÈÄ º¯È­ Çù¾à¿¡¼­ Áß½ÉÀûÀÎ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö·Î ±¸µ¿µÇ´Â ÀüÇØÁ¶ ¼³°èÀÇ È¹±âÀûÀÎ ¹ßÀüÀ¸·Î ÇÁ·ÎÁ§Æ® °³¹ß ±â°£ÀÌ ´ÜÃàµÇ°í ÀÚº» ÁöÃâÀÌ °¨¼ÒÇß½À´Ï´Ù. µ¿½Ã¿¡, ´ë±Ô¸ð È®ÀåÀÇ À§ÇèÀ» ÁÙÀÌ°í ½ÃÀå ÁøÀÔÀ» ÃËÁøÇϱâ À§ÇÑ »õ·Î¿î ÀÚ±Ý Á¶´Þ ¸ÞÄ¿´ÏÁò°ú ¹Î°ü ÆÄÆ®³Ê½ÊÀÌ µîÀåÇß½À´Ï´Ù.

2025³â ¹Ì±¹ ¼öÀÔ °ü¼¼°¡ ¼ö¼Ò ¹ßÀü °ø±Þ¸Á ¹× ÅõÀÚ ¿ªÇп¡ ¹ÌÄ¡´Â ¿µÇâ Æò°¡

2025³â ¼öÀÔ ÀüÇØÀåÄ¡¿Í ¼ö¼Ò ¿î¹Ý¼±¿¡ Ãß°¡ °ü¼¼¸¦ ºÎ°úÇϱâ·Î °áÁ¤ÇÑ °ÍÀº ±¸¸ÅÀÚ¿Í °ø±Þ¾÷ü ¸ðµÎ¿¡°Ô Àü·«Àû °èȹ¿¡ »õ·Î¿î º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. °ü¼¼ µµÀÔÀ¸·Î Á¦Á¶¾÷üµéÀº °ø±Þ °è¾àÀ» Àç°ËÅäÇϰí, ´ëü Á¶´Þ °æ·Î¸¦ ¸ð»öÇϰí, ´Ü°¡ »ó½ÂÀ» »ó¼âÇϱâ À§ÇØ ÇöÁö »ý»êÀ» Æò°¡ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀÎ ¿òÁ÷ÀÓÀº ÅõÀÚ È帧ÀÇ ÀçºÐ¹è·Î À̾îÁ³°í, ÀϺΠ°³¹ß¾÷üµéÀº ÇÁ·ÎÁ§Æ® °ÅÁ¡À» ±¹³» Á¦Á¶ °ÅÁ¡¿¡ ´õ °¡±õ°Ô ¹èÄ¡Çϰųª °ü¼¼ Á¦µµÀÇ ¿µÇâÀ» ¹ÞÁö ¾Ê´Â ½ÃÀå¿¡¼­ ºÎǰÀ» Á¶´ÞÇÏ´Â °ÍÀ» ¼±ÅÃÇß½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ´ÙÂ÷¿øÀû ¼¼ºÐÈ­º° ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¼ú, °æ·Î, »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ ¼ö¼Ò »ý»ê ¼ö¿ä µ¿ÀÎÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ¼ö¼Ò »ý»ê ¼ö¿ä´Â ±â¼ú À¯Çü, Á¦Á¶ °æ·Î, ¿ø·á Ãâó, Á¦Ç° Á¦°ø, Àû¿ë ¹üÀ§, ÃÖÁ¾»ç¿ëÀÚ ¾÷Á¾¿¡ µû¶ó ¿µÇâÀ» ¹Þ´Â´Ù´Â °ÍÀ» È®ÀÎÇß½À´Ï´Ù. ±â¼ú À¯Çüº°·Î ºÐ·ùÇϸé, ºí·ç ¼ö¼Ò´Â ±âÁ¸ °¡½º ³×Æ®¿öÅ©¿ÍÀÇ È£È¯¼ºÀ¸·Î ÀÎÇØ °úµµ±âÀû ¼Ö·ç¼ÇÀ¸·Î °è¼Ó ±â´ÉÇÏ´Â ¹Ý¸é, ±×¸° ¼ö¼Ò´Â ź¼Ò ¹èÃâÀÌ ¾ø´Â ½Å·Ú¼ºÀ¸·Î ÀÎÇØ ºü¸£°Ô ÁöÁö¹Þ°í ÀÖÀ¸¸ç, ȸ»ö ¼ö¼Ò´Â ·¹°Å½Ã »ê¾÷ ȯ°æ¿¡¼­µµ »ì¾Æ³²°í ÀÖ½À´Ï´Ù. Á¦Á¶ °æ·Î¸¦ °ËÁõÇÏ¸é »ý¹°ÇÐÀû °øÁ¤, ž翭 Á÷Á¢ ¼öºÐ ºÐÇØ, ÀüÇØ ½Ã½ºÅÛ, ¿­È­ÇÐ °æ·ÎÀÇ °íÀ¯ÇÑ ÀåÁ¡°ú ¼º¼÷µµ¸¦ È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¿ª °íÀ¯ÀÇ ¼ö¼Ò »ý»ê ȯ°æ°ú Áö¿ªÀû ¼ºÀå°ú ±¹°æÀ» ÃÊ¿ùÇÑ ½Ã³ÊÁö¸¦ ÃËÁøÇÏ´Â °øµ¿ ±¸»óÀ» ¸ð»ö

Áö¿ª ¿ªÇÐÀº ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ÀÎÇÁ¶ó Áغñ »óÅÂ, ÀÚ¿øÀÇ °¡¿ë¼º µî¿¡ µû¶ó °¢±â ´Ù¸¥ ÇüÅ·Π¼ö¼Ò »ý»êÀÇ ±ËÀûÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ´ë·ú¿¡¼­´Â °­·ÂÇÑ Á¤Ã¥Àû Àμ¾Æ¼ºê¿Í ½ÅÈï Ŭ·¯½ºÅÍ »ýŰ谡 ºí·ç ¼ö¼Ò »ý»ê ½Ã¼³ÀÇ È®Àå°ú ÇÔ²² ±×¸° ¼ö¼Ò ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®ÀÇ Ã˸ÅÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹ÌÀÇ ÀÌÇØ°ü°èÀÚµéÀº ¹«¿ª Á¶Ä¡, °èÅ뿬°è ±âÁØ, ÅõÀÚ Àμ¾Æ¼ºê°¡ º¹ÀâÇÏ°Ô ¾ôÇô ±â¼ú ÇÁ·Î¹ÙÀÌ´õ¿Í ÇÁ·ÎÁ§Æ® °³¹ßÀڵ鿡°Ô °æÀïÀûÀΠȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

°æÀïÀû Â÷º°È­¿Í ½ÃÀå ¸®´õ½ÊÀ» Çü¼ºÇÒ ¼ö ÀÖ´Â ¼ö¼Ò ¹ßÀüÀÇ ÁÖ¿ä ±â¾÷°ú Àü·«Àû Á¦ÈÞ¸¦ ½Äº°

¼ö¼Ò ¹ßÀüÀÇ ÁÖ¿ä °³¹ß ±â¾÷Àº ±âÁ¸ »ê¾÷ °¡½º ±â¾÷, ±â¼ú Çõ½Å ±â¾÷, ½ÅÈï ¼ø¼ö »ç¾÷ °³¹ß ±â¾÷¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. ÀÌ ÀüÅë ÀÖ´Â °¡½º °ø±Þ¾÷ü´Â ´ë±Ô¸ð »ý»ê, À¯Åë¸Á, ÇÁ·ÎÁ§Æ® ÆÄÀ̳½½Ì¿¡ ´ëÇÑ ¼ö½Ê ³âÀÇ °æÇèÀ» ¹ÙÅÁÀ¸·Î Àå±âÀûÀÎ ¿ÀÇÁ Å×ÀÌÅ© °è¾àÀ» È®º¸ÇÏ¿© ¾ß½ÉÂù ÀüÇØÁ¶ Á¦Á¶ È®Àå¿¡ ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸±â°ü¿¡¼­ ½ºÇɾƿôÇÑ ±â¼ú Àü¹®°¡´Â Â÷¼¼´ë Ã˸Å, ¸ðµâÇü ÀüÇØÁ¶ ¼³°è, ÷´Ü ¼ÒÀç¿¡ ÁýÁßÇÏ¿© ¼º´É Çâ»ó°ú ºñ¿ë Àý°¨À» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

¾÷°è ÀÇ»ç°áÁ¤±ÇÀÚµéÀÌ ¼ö¼Ò »ý»ê ºÎ¹®ÀÇ È¸º¹·Â, ¼öÀͼº, ¼ºÀ强À» °­È­Çϱâ À§ÇÑ Àü·«Àû °úÁ¦

¾÷°è ¸®´õµéÀº ±×¸° ¼ö¼Ò ÇÁ·ÎÁ§Æ®¸¦ À§ÇÑ Àúºñ¿ëÀÇ ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇϱâ À§ÇØ Àç»ý¿¡³ÊÁö °³¹ß¾÷ü¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» ¿ì¼±½ÃÇØ¾ß Çϸç, µ¿½Ã¿¡ ºí·ç ¼ö¼ÒÀÇ ½ÇÇà °¡´É¼ºÀ» ³ôÀ̱â À§ÇØ Åº¼Ò Æ÷Áý¸¦ ÅëÇÕÇÏ´Â °ÍÀ» °í·ÁÇØ¾ß ÇÕ´Ï´Ù. ¸ðµâ½Ä ÀüÇØÁ¶ ¾ÆÅ°ÅØÃ³¸¦ äÅÃÇÏ¿© ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰí, ¼ö¿ä ½ÅÈ£¿¡ µû¶ó ´Ü°èÀûÀ¸·Î ¿ë·®À» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î Áß¿äÇÑ °ÍÀº ÀÎÇã°¡, °èÅ뿬°è, ¿ä±Ý Çù»óÀ» °£¼ÒÈ­Çϰí ÇÁ·ÎÁ§Æ®ÀÇ ÇÕ¸®ÀûÀÎ ½ÇÇàÀ» º¸ÀåÇϱâ À§ÇØ Á¤Ã¥ ÀÔ¾ÈÀÚ ¹× °èÅë ¿î¿µÀÚ¿ÍÀÇ °ü°è¸¦ ±¸ÃàÇÏ´Â °ÍÀÔ´Ï´Ù.

ºÐ¼®ÀÇ ¾ö¹Ð¼ºÀ» º¸ÀåÇϱâ À§ÇØ 1Â÷ Á¶»ç¿Í 2Â÷ µ¥ÀÌÅ͸¦ ÅëÇÕÇÑ °ß°íÇÑ ´ÙÃþ Á¶»ç ¹æ¹ýÀ» »ó¼¼ÇÏ°Ô ¼³¸í

º» ºÐ¼®Àº 1Â÷ °ü°èÀÚ ÀÎÅͺä, ±¤¹üÀ§ÇÑ 2Â÷ ¹®Çå Á¶»ç, ÇöÀå °üÂûÀ» °áÇÕÇÑ ¾ö°ÝÇÏ°í ´Ù°¢ÀûÀÎ Á¶»ç °úÁ¤À» ÅëÇØ ¾òÀº °á°ú¸¦ ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. 1Â÷ Á¶»ç¿¡´Â ±â¼ú °³¹ßÀÚ, ÃÖÁ¾»ç¿ëÀÚ °æ¿µÁø, Á¤Ã¥ ÀÔ¾ÈÀÚ¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺ䰡 Æ÷ÇԵǸç, ÇÁ·ÎÁ§Æ® Ÿ´ç¼º, ºñ¿ë µ¿Çâ, ±ÔÁ¦ µ¿Çâ¿¡ ´ëÇÑ »ý»ýÇÑ °üÁ¡À» Á¦°øÇÕ´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â ±â¼ú ³í¹®, Á¤ºÎ ¹é¼­, »ê¾÷ ÀâÁö¸¦ ü°èÀûÀ¸·Î °ËÅäÇÏ¿© »õ·Î¿î ±â¼ú ·Îµå¸Ê°ú Á¤Ã¥ ÀüȯÀ» °ËÁõÇÕ´Ï´Ù.

±â¼ú º¯È­, Á¤Ã¥Àû ¿µÇâ, °øµ¿ ÃËÁø¿äÀο¡ ´ëÇÑ ÁÖ¿ä Á¶»ç °á°ú¸¦ ÅëÇÕÇÏ¿© ¼ö¼Ò »ý»ê ½ÃÀå Àü¸Á µ¿ÇâÀ» Á¤ÀÇ

±â¼ú Çõ½Å, Á¤Ã¥ Áö¿ø, ½ÃÀåÀÇ ÈûÀÌ ¿¡³ÊÁö ½Ã½ºÅÛÀ» ÀçÁ¤ÀÇÇÏ´Â Áß¿äÇÑ ±â·Î¿¡ ¼­ ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®¿¡¼­ ¾òÀº ÀλçÀÌÆ®´Â ÀüÅëÀûÀΠȸ»ö ¼ö¼Ò¿¡¼­ ³ì»ö ¹× û»ö °æ·Î·ÎÀÇ Àüȯ, ¹«¿ª Á¤Ã¥ÀÇ º¯È­·Î ÀÎÇÑ Àü·«Àû ÀçÁ¶Á¤, ÅõÀÚ ¿ì¼±¼øÀ§¸¦ Çü¼ºÇÏ´Â ¹Ì¹¦ÇÑ ¼¼ºÐÈ­¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¿ªº° ³»·¯Æ¼ºê´Â ÀÚ¿ø º¸À¯·®°ú ±ÔÁ¦ ȯ°æ¿¡ ¸Â´Â Á¢±Ù¹ýÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¼ö¼Ò »ý¼º ½ÃÀå : À¯Çüº°

  • ºí·ç ¼ö¼Ò
  • ±×¸° ¼ö¼Ò
  • ±×·¹ÀÌ ¼ö¼Ò

Á¦9Àå ¼ö¼Ò »ý¼º ½ÃÀå : Á¦Á¶ ¹æ¹ýº°

  • »ý¹°ÇÐÀû
  • Á÷Á¢ ž翡³ÊÁö ¼öºÐÇØ
  • ÀüÇØ
  • ¿­È­ÇÐ

Á¦10Àå ¼ö¼Ò »ý¼º ½ÃÀå : ¼Ò½ºº°

  • È­¼®¿¬·á ±â¹Ý
  • Àç»ý¿¡³ÊÁö¿ø ±â¹Ý
    • Áö¿­ ±â¹Ý
    • dz·Â°ú ž翡³ÊÁö ±â¹Ý

Á¦11Àå ¼ö¼Ò »ý¼º ½ÃÀå : Á¦Ç°º°

  • ¼ö¼Ò¿¬·áÀüÁö
  • ¼ö¼Ò ¹ß»ý±â
  • ¼ö¼Ò ÀúÀå ÅÊÅ©

Á¦12Àå ¼ö¼Ò »ý¼º ½ÃÀå : ¿ëµµº°

  • ¾Ï¸ð´Ï¾Æ »ý»ê
  • ¿¡³ÊÁö ÀúÀå°ú ±×¸®µå ÁÖÀÔ
  • ¸Þź¿Ã »ý»ê
  • Á¤À¯
  • ¹ßÀü

Á¦13Àå ¼ö¼Ò »ý¼º ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ ¾÷°èº°

  • È­ÇÐÁ¦Ç°
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • ¼®À¯ ¹× °¡½º
  • ±³Åë±â°ü

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼ö¼Ò »ý¼º ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼ö¼Ò »ý¼º ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ö¼Ò »ý¼º ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Air Liquide S.A.
    • Ally Hi-Tech Co., Ltd.
    • Air Products and Chemicals, Inc.
    • AquaHydrex, Inc.
    • Ballard Power Systems Inc.
    • Caloric Anlagenbau GmbH
    • Claind S.r.l.
    • Cummins Inc.
    • Enapter S.r.l.
    • ErreDue SpA
    • FuelCell Energy, Inc.
    • Hiringa Energy Limited
    • HyGear
    • Hyster-Yale Materials Handling, Inc.
    • Iwatani Corporation
    • Linde PLC
    • Mahler AGS GmbH by by BME Group
    • McPhy Energy S.A.
    • Messer Se & Co. KGaA
    • Nel ASA
    • NewHydrogen, Inc.
    • Nippon Sanso Holdings Corporation
    • Plug Power Inc.
    • Teledyne Energy Systems, Inc.
    • Xebec Adsorption Inc.
    • ABB Ltd.
    • Casale SA
    • Parker Hannifin Corporation

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSA

The Hydrogen Generation Market was valued at USD 154.52 billion in 2024 and is projected to grow to USD 165.82 billion in 2025, with a CAGR of 7.71%, reaching USD 241.30 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 154.52 billion
Estimated Year [2025] USD 165.82 billion
Forecast Year [2030] USD 241.30 billion
CAGR (%) 7.71%

Setting the Stage for a New Era of Hydrogen Generation That Propels Global Energy Transition and Accelerates Decarbonization Innovation

The rapid evolution of the global energy landscape has elevated hydrogen generation from experimental niche to pivotal pillar in decarbonization strategies and net-zero ambitions. As governments set increasingly stringent emissions targets, industrial stakeholders are compelled to embrace low-carbon fuels that integrate seamlessly with existing infrastructure while offering clear pathways to reduce carbon footprints. In parallel, advancements in renewable energy technologies have unlocked cost reductions and efficiency gains, positioning green hydrogen as a viable alternative to conventional fossil-based processes. Alongside supportive policies and sizable public and private investments, these factors converge to accelerate innovation cycles, drive economies of scale and nurture a competitive market environment.

Transitioning from early demonstration projects to commercial-scale deployments, hydrogen generation is emerging as both a technological enabler and strategic lever for energy security. Whether fueling heavy transportation, balancing grid intermittency or serving as a feedstock in chemical synthesis, hydrogen's versatility promises to reshape supply chains across multiple industries. This introduction frames the ensuing analysis by outlining key drivers, technological trajectories and stakeholder dynamics that are ushering in a new era of hydrogen generation-an era characterized by collaboration, rapid iteration and an acute focus on sustainability imperatives.

Unveiling the Catalytic Transformations Redefining Hydrogen Generation Ecosystems and Accelerating Commercial-Scale Adoption Worldwide

Recent years have seen seismic shifts in how stakeholders perceive and deploy hydrogen generation technologies. Once relegated to niche industrial applications, hydrogen now occupies a central position in national energy roadmaps, corporate sustainability pledges and multilateral climate agreements. Breakthroughs in electrolyzer design, powered by renewable electricity, have compressed project development timelines and driven down capital expenditure requirements. Concurrently, new financing mechanisms and public-private partnerships have emerged to derisk large-scale deployments and stimulate market entry.

This transformation is further underscored by the rise of integrated value chains, where hydrogen production is interwoven with renewable power generation, carbon capture and storage initiatives, and end-use applications ranging from heavy transport to grid stabilization. As off-taker agreements become more sophisticated, project viability has improved, enabling more ambitious undertakings and diversified business models. Through these catalytic shifts, hydrogen generation is transitioning from demonstration corridors to dynamic ecosystems, setting the stage for sustained growth, value creation and lasting impact on the global decarbonization agenda.

Evaluating the Far-Reaching Consequences of 2025 United States Import Tariffs on Hydrogen Generation Supply Chains and Investment Dynamics

The decision in 2025 to implement additional duties on imported electrolysis equipment and hydrogen carriers has introduced fresh complexities into strategic planning for both buyers and suppliers. Tariffs have driven manufacturers to reassess supply agreements, explore alternative sourcing corridors and evaluate localized production to offset increased unit costs. This dynamic has triggered a redistribution of investment flows, with some developers opting to shift project sites closer to domestic manufacturing bases or to source components from markets unaffected by the tariff regime.

In response, market participants have intensified collaborative R&D efforts to optimize electrolyzer performance and reduce reliance on imported modules. The tariff landscape has also spurred innovation in modular, scalable designs that lend themselves to localized assembly. Over time, these adaptations may yield enhanced resilience, enabling stakeholders to navigate trade policy fluctuations more effectively. Although short-term cost pressures are palpable, the cumulative impact of the 2025 tariffs is galvanizing a strategic recalibration toward supply chain diversification and vertical integration, ultimately reshaping competitive dynamics in hydrogen generation.

Comprehensive Multi-Dimension Segmentation Insight Illuminating Hydrogen Generation Demand Drivers Across Technologies, Pathways, and Industries

A granular segmentation analysis reveals that hydrogen generation demand is influenced by technology type, production pathway, feedstock origin, product offerings, application scope and end-user verticals. When grouping by technology classification, blue hydrogen continues to serve as a transitional solution owing to its compatibility with existing gas networks, while green hydrogen is rapidly gaining traction thanks to its zero-carbon credentials, and grey hydrogen persists in legacy industrial settings. Examining production pathways highlights the unique advantages and maturity levels of biological processes, direct solar water splitting, electrolytic systems and thermochemical routes; each method presents distinct cost structures, efficiency benchmarks and project timelines.

Categorizing by feedstock source underscores a bifurcation between fossil fuel-based hydrogen generation and solutions anchored in renewable inputs, with the latter drawing from geothermal reservoirs as well as wind and solar farms to power electrolysis units. From a product perspective, hydrogen fuel cells are emerging as critical enablers of mobility applications, hydrogen generators offer flexible on-site supply for industrial off-takers, and storage tanks address the logistical challenge of transporting and buffering this low-density gas. In mapping application domains, the spectrum extends from ammonia and methanol synthesis to energy storage, grid injection, petroleum refining and power generation, each segment exhibiting unique demand drivers and regulatory considerations. Finally, evaluating end-user industries reveals differentiated uptake across chemical manufacturing, energy and utilities, oil and gas, and transportation sectors, with each vertical forging partnerships and project configurations tailored to its decarbonization goals and operational constraints.

Exploring Distinct Regional Hydrogen Generation Landscapes and Collaborative Initiatives Driving Localized Growth and Cross-Border Synergies

Regional dynamics shape the trajectory of hydrogen generation in distinct ways, driven by regulatory frameworks, infrastructure readiness and resource availability. In the Americas, robust policy incentives and emerging cluster ecosystems are catalyzing green hydrogen pilot projects alongside expansion of blue hydrogen production facilities. Stakeholders in North and South America navigate a complex interplay of trade measures, grid interconnection standards and investment incentives, fostering a competitive environment for technology providers and project developers.

Moving across Europe, the Middle East and Africa, ambitious decarbonization targets and cross-border infrastructure corridors are creating synergies among wind-rich coastal states, solar-intensive deserts and industrial heartlands seeking to decarbonize heavy manufacturing. Regulatory harmonization efforts are maturing, underpinning multinational initiatives that link hydrogen hubs from Northern Europe through the Gulf and into North Africa. In the Asia-Pacific region, the abundance of low-cost renewable resources is complemented by rapidly scaling electrolyzer production capacity and proactive government roadmaps, driving both domestic deployments and export-oriented projects. Together, these regional narratives illustrate how localized strategies and global collaboration are shaping a diversified, resilient hydrogen market.

Identifying Leading Hydrogen Generation Players and Strategic Alliances Shaping Competitive Differentiation and Market Leadership

Leading players in hydrogen generation span established industrial gas corporations, technology innovators and emerging pure-play developers. Established gas suppliers leverage decades of experience in large-scale production, distribution networks and project financing to secure long-term off-take agreements and fund ambitious electrolyzer manufacturing expansions. Technology specialists, often spin-outs from research institutions, focus on next-generation catalysts, modular electrolyzer designs and advanced materials to drive performance improvements and cost reductions.

Meanwhile, pure-play hydrogen project developers differentiate themselves through vertically integrated strategies that combine renewable power procurement, electrolyzer deployment and supply chain management under a single corporate umbrella. Collaboration between incumbents and disruptors is increasingly common, with joint ventures and licensing agreements serving as vehicles to accelerate technology commercialization and market entry. Across these competitive landscapes, success hinges on the ability to navigate regulatory complexities, optimize operational efficiency and align product offerings with evolving customer requirements.

Strategic Imperatives for Industry Decision-Makers to Enhance Resilience, Profitability, and Growth in the Hydrogen Generation Sector

Industry leaders should prioritize partnerships with renewable energy developers to secure low-cost, stable power supplies for green hydrogen projects while simultaneously exploring carbon capture integration to enhance blue hydrogen viability. Adopting modular electrolyzer architectures can accelerate time to market and allow for incremental capacity scaling in response to demand signals. Equally important is cultivating relationships with policy makers and grid operators to streamline permitting, grid interconnection and tariff negotiations, ensuring streamlined project execution.

To maintain a competitive edge, organizations must invest in continuous R&D that targets catalyst improvements, system efficiency gains and digitalization of operations through advanced monitoring and predictive maintenance solutions. At the same time, embracing flexible business models-such as tolling agreements or hydrogen offtake capacity reservations-can attract a broader base of partners, mitigate market risk and maximize asset utilization. By executing a holistic strategy that integrates technology innovation, supply chain resilience and stakeholder engagement, industry leaders can position themselves to capitalize on emerging hydrogen opportunities and drive sustainable growth.

Detailing a Robust Multi-Layered Research Methodology Integrating Primary Interviews and Secondary Data to Ensure Analytical Rigor

This analysis synthesizes insights derived from a rigorous, multi-pronged research process combining primary stakeholder interviews, extensive secondary literature reviews and in-field observations. Primary inputs include structured interviews with technology developers, end-user executives and policy makers, providing firsthand perspectives on project feasibilities, cost dynamics and regulatory trends. Secondary research encompasses the systematic review of technical papers, government white papers and trade publications to validate emerging technology roadmaps and policy shifts.

Quantitative and qualitative data points were harmonized through thematic coding and cross-validation, ensuring consistency and accuracy. Triangulation methods were applied to reconcile variations in reported performance metrics and cost estimates, while subject-matter experts provided peer review of key findings. Geographic analysis leveraged regional policy databases and infrastructure mapping tools to isolate distinct market conditions. Throughout the research cycle, stringent data governance protocols safeguarded confidentiality and integrity, underpinning the robustness of the conclusions presented herein.

Synthesizing Key Findings on Technology Shifts, Policy Impacts, and Collaborative Drivers Defining the Future of Hydrogen Generation Market Dynamics

The hydrogen generation landscape stands at a critical crossroads where technological innovation, policy support and market forces converge to redefine energy systems. Insights from this analysis highlight the transition from legacy grey hydrogen towards green and blue pathways, the strategic recalibration induced by trade policy shifts, and the nuanced segmentation that shapes investment priorities. Regional narratives further underscore the importance of tailored approaches aligned with resource endowments and regulatory environments.

As key players refine their strategies and forge collaborative alliances, the market is poised for accelerated maturation. Success will hinge on the ability to balance cost optimization with sustainability objectives, leverage modular designs for agile deployment and navigate evolving regulatory frameworks skillfully. Ultimately, the path to large-scale, cost-competitive hydrogen generation will be paved by those who can integrate technology excellence with strategic foresight, forging a resilient industry that underpins the global clean energy transition.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Innovations in proton exchange membrane electrolyzers accelerate green hydrogen production
  • 5.2. Development of gigawatt-scale electrolysis facilities transforming renewable energy integration
  • 5.3. Advancements in solid oxide electrolyzer cells enable high-temperature hydrogen production on demand
  • 5.4. Blue hydrogen projects adopting carbon capture technologies to achieve near-zero emissions profiles
  • 5.5. Policy incentives and hydrogen certification standards driving global demand for low-carbon hydrogen
  • 5.6. Offshore wind-to-hydrogen initiatives expanding marine electrolysis plants in coastal regions
  • 5.7. Ammonia cracking and novel hydrogen carriers optimizing long-distance transport economics
  • 5.8. Deployment of modular electrolyzer stacks reducing capital costs and accelerating project timelines
  • 5.9. Integration of hydrogen storage solutions with renewable power plants for grid flexibility and resilience
  • 5.10. Private sector investment surges in hydrogen hubs linking production, storage, and industrial off-takers

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Hydrogen Generation Market, by Type

  • 8.1. Introduction
  • 8.2. Blue Hydrogen
  • 8.3. Green Hydrogen
  • 8.4. Grey Hydrogen

9. Hydrogen Generation Market, by Production Method

  • 9.1. Introduction
  • 9.2. Biological
  • 9.3. Direct Solar Water Splitting
  • 9.4. Electrolytic
  • 9.5. Thermochemical

10. Hydrogen Generation Market, by Source

  • 10.1. Introduction
  • 10.2. Fossil Fuel-Based
  • 10.3. Renewable Sources-Based
    • 10.3.1. Geothermal-Based
    • 10.3.2. Wind & Solar Energy-Based

11. Hydrogen Generation Market, by Product

  • 11.1. Introduction
  • 11.2. Hydrogen Fuel Cells
  • 11.3. Hydrogen Generators
  • 11.4. Hydrogen Storage Tanks

12. Hydrogen Generation Market, by Application

  • 12.1. Introduction
  • 12.2. Ammonia Production
  • 12.3. Energy Storage & Grid Injection
  • 12.4. Methanol Production
  • 12.5. Petroleum Refining
  • 12.6. Power Generation

13. Hydrogen Generation Market, by End-User Industry

  • 13.1. Introduction
  • 13.2. Chemical
  • 13.3. Energy & Utilities
  • 13.4. Oil & Gas
  • 13.5. Transportation

14. Americas Hydrogen Generation Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Hydrogen Generation Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Hydrogen Generation Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Air Liquide S.A.
    • 17.3.2. Ally Hi-Tech Co., Ltd.
    • 17.3.3. Air Products and Chemicals, Inc.
    • 17.3.4. AquaHydrex, Inc.
    • 17.3.5. Ballard Power Systems Inc.
    • 17.3.6. Caloric Anlagenbau GmbH
    • 17.3.7. Claind S.r.l.
    • 17.3.8. Cummins Inc.
    • 17.3.9. Enapter S.r.l.
    • 17.3.10. ErreDue SpA
    • 17.3.11. FuelCell Energy, Inc.
    • 17.3.12. Hiringa Energy Limited
    • 17.3.13. HyGear
    • 17.3.14. Hyster-Yale Materials Handling, Inc.
    • 17.3.15. Iwatani Corporation
    • 17.3.16. Linde PLC
    • 17.3.17. Mahler AGS GmbH by by BME Group
    • 17.3.18. McPhy Energy S.A.
    • 17.3.19. Messer Se & Co. KGaA
    • 17.3.20. Nel ASA
    • 17.3.21. NewHydrogen, Inc.
    • 17.3.22. Nippon Sanso Holdings Corporation
    • 17.3.23. Plug Power Inc.
    • 17.3.24. Teledyne Energy Systems, Inc.
    • 17.3.25. Xebec Adsorption Inc.
    • 17.3.26. ABB Ltd.
    • 17.3.27. Casale SA
    • 17.3.28. Parker Hannifin Corporation

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦