시장보고서
상품코드
1807588

리튬이온 배터리 양극재료 시장 : 재료 유형, 폼팩터, 합성 프로세스, 코팅 유형, 용도별 - 세계 예측(2025-2030년)

Lithium-Ion Battery Cathode Material Market by Material Type, Form Factor, Synthesis Process, Coating Type, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 193 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

리튬이온 배터리 양극재료 시장은 2024년에는 253억 3,000만 달러에 달하며, 2025년에는 276억 9,000만 달러, CAGR 10.09%로 성장하며, 2030년에는 451억 1,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 253억 3,000만 달러
추정연도 2025 276억 9,000만 달러
예측연도 2030 451억 1,000만 달러
CAGR(%) 10.09%

차세대 리튬이온 배터리의 성능과 지속가능성을 형성하는 음극 재료의 중요한 역할을 밝힙니다.

리튬이온 배터리 음극 재료의 진화는 에너지 밀도, 수명, 안전성을 향상시켜 소비자 및 산업 용도에 전력을 공급하는 데 도움을 주었습니다. 전기 화학적 성능의 핵심인 양극의 배합은 배터리 시스템의 효율, 비용 및 환경적 영향을 결정합니다. 지난 10년간 재료공학과 공정 혁신의 발전으로 코발트 저감 화학물질, 안정화 니켈이 풍부한 화합물, 인산염 기반 대체물질이 크게 개선되어 각각 명확한 시장 요구와 규제 압력에 대응하고 있습니다.

리튬이온 이차전지 양극재 혁신을 주도하는 공급망의 진화와 환경 문제의 중요성

기술 혁신, 공급망 재편, 환경 관리의 융합이 양극재 개발의 규칙을 바꾸고 있습니다. 첨단 공침 제어 및 최적화된 수열 공정과 같은 고정밀 합성 기술의 혁신은 더 높은 탭 밀도와 더 균일한 전극 코팅을 달성하는 입자 형태를 가능하게 합니다. 동시에, 진화하는 가공 루트는 니켈 활용도를 개선하고 더 풍부한 철 기반 화학 물질을 도입하여 희귀한 핵심 원소에 대한 의존도를 낮추고 있습니다.

미국의 새로운 관세가 2025년 중요 양극재 및 산업 경쟁력에 미치는 누적 영향 평가

수입 니켈, 코발트 및 전구체 재료에 대한 2025년 미국의 새로운 관세 부과로 인해 양극 제조업체들은 비용 구조와 공급업체 전략을 재구성해야 하는 등 여러 가지 부담을 안게 되었습니다. 추가 관세 부과에 직면한 많은 기업이 국내 정제 파트너십을 구축하고 북미의 다운스트림 역량에 투자함으로써 공급망 일부를 현지화하려는 노력을 가속화하고 있습니다. 이러한 구조조정은 관세 변동에 대한 노출을 줄이기 위한 것이지만, 동시에 상당한 자본 배분과 규제에 대한 대응을 필요로 합니다.

재료의 종합적인 세분화를 통해 전략적 인사이트를 얻는 형성 요소 합성 공정 코팅의 유형 및 용도 합성 공정 코팅 유형 및 용도

시장 상황을 다각도로 분석하면 미묘한 이해를 얻을 수 있습니다. 적합성에 영향을 미칩니다. 폼팩터로 눈을 돌리면, 코인 셀, 원통형 셀, 파우치형 셀, 사각형 셀의 구성에 따라 성능 요구사항이 다르며, 부피 효율성, 기계적 견고성, 열 관리 특성에 따라 가전제품, 자동차, 고정형 스토리지 용도에 가장 적합한 설계가 결정됩니다.

미국, 유럽, 중동/아프리카, 아시아태평양의 양극재 지역 역학 및 촉진요인 분석

지역별 시장 역학은 북미, 남미, 유럽, 중동 및 아프리카, 아시아태평양별로 크게 다른 성장 촉진요인과 과제를 강조하고 있습니다. 북미와 남미에서는 전기자동차 조립 공장에 대한 투자가 활발해지면서 이 지역의 양극재 생산 및 정제 능력 확대에 박차를 가하고 있습니다. 청정 에너지 인프라를 지원하는 정부의 인센티브는 에너지 저장 시스템에 대한 수요를 더욱 자극하고, 국내 연구 기관과 민간 부문의 혁신가들이 차세대 배합을 위해 협력하는 생태계를 조성하고 있습니다.

세계 리튬이온 배터리 공급망을 형성하는 주요 양극재 제조업체 및 전략적 구상 프로파일링(영문)

양극 재료의 경쟁 환경은 기존 화학 대기업, 전문 제조업체 및 혁신적인 신생 기업의 조합으로 특징 지워지며, 각 기업은 시장 점유율을 확보하기 위해 고유 한 전략을 개발하고 있습니다. 대형 종합화학기업은 광범위한 정제 사업과 세계 유통망을 활용하여 고순도 전구체 및 코팅 활물질을 여러 지역에 공급하고 있습니다. 이들 기존 기업은 비용 경쟁력을 지원하는 규모의 경제를 실현할 수 있는 프로세스 강화에 지속적으로 투자하고 있습니다.

양극재 시장에서의 경쟁 압력을 극복하고 새로운 비즈니스 기회를 활용하기 위한 업계 기업의 행동 지침

업계 리더들은 공급망 리스크를 줄이면서 새로운 성장 기회를 포착하기 위해 다각적인 접근 방식을 우선시해야 합니다. 차세대 고니켈 및 철 기반 양극 화학물질의 연구개발에 투자함으로써 성능 향상을 이끌어내고, 제한된 원자재에 대한 의존도를 줄일 수 있습니다. 채굴 및 정련 사업체와의 전략적 파트너십을 통해 수직적 통합을 강화함으로써 중요한 원료에 대한 접근성을 높이고 비용 가시성을 향상시킬 수 있습니다.

1차 전문 지식과 2차 분석을 통합하여 양극 시장 동향을 파악할 수 있는 강력한 다원적 조사 방법론의 개요

본 조사는 1차 조사와 2차 조사를 결합한 통합적 조사방법을 통해 얻은 결과를 통합한 것입니다. 재료 과학자, 배터리 제조업체 및 공급망 경영진과의 전문가 인터뷰를 통해 성능 트레이드오프, 비용 동인 및 기술 로드맵에 대한 직접적인 관점을 제공했습니다. 이러한 질적 입력은 새로운 합성 기술 및 코팅의 혁신성을 검증하기 위해 동료평가 저널, 특허 출원 및 업계 백서에 대한 심층적인 검토를 통해 보완되었습니다.

진화하는 리튬이온 양극재 환경에서 의사결정권자를 안내하는 주요 인사이트과 전략적 팁을 정리했습니다.

리튬이온 배터리 양극 재료의 상황은 기술 발전, 정책 개발, 시장 역학이 교차하여 경쟁 역학을 재구성하는 매우 중요한 변곡점에 있습니다. 니켈이 풍부하고 인산염 기반 배합으로의 명확한 전환은 성능 향상과 자원 관리 목표를 모두 반영합니다. 동시에, 새로 도입된 관세는 공급망 재조합을 촉진하고 국내 정제 및 재활용 능력에 대한 투자를 촉진하여 더 높은 탄력성과 지속가능성을 약속합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 리튬이온 배터리 양극재료 시장 : 소재 유형별

  • 코발트산리튬
  • 인산철리튬
  • 리튬 니켈 코발트 알루미늄 산화물
  • 리튬 니켈 망간 코발트 산화물

제9장 리튬이온 배터리 양극재료 시장 : 폼팩터별

  • 코인 셀
  • 원통형 셀
  • 파우치 셀
  • 프리즈마틱 셀

제10장 리튬이온 배터리 양극재료 시장 : 합성 프로세스별

  • 공심
  • 열수

제11장 리튬이온 배터리 양극재료 시장 : 코팅 유형별

  • 알루미늄 코팅
  • 비코팅

제12장 리튬이온 배터리 양극재료 시장 : 용도별

  • 가전
    • 노트북
    • 스마트폰
    • 태블릿
  • 전기자동차
  • 에너지 저장 시스템
    • 상업용
    • 주택용
    • 유틸리티 스케일
  • 의료기기
  • 전동 공구

제13장 아메리카의 리튬이온 배터리 양극재료 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 리튬이온 배터리 양극재료 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 리튬이온 배터리 양극재료 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • AGC Inc.
    • Arkema S.A.
    • BASF SE
    • Beijing Easpring Material Technology Co., Ltd.
    • CBAK Energy Technology, Inc.
    • Fujitsu Limited
    • Hitachi Chemical Co. Ltd
    • Huayou Cobalt Co., Ltd.
    • JFE Chemical Corporation
    • Johnson Matthey plc
    • LG Chem Ltd.
    • Mitsubishi Chemical Corporation
    • Mitsui Mining & Smelting Co., Ltd.
    • NEI Corporation
    • Nichia Corporation
    • Ningbo Shanshan Co., Ltd.
    • POSCO HOLDINGS
    • Sumitomo Metal Mining Co., Ltd.
    • Targray Technology International Inc.
    • Toda Kogyo Corp.
    • Umicore
    • Varta AG

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택

제20장 리서치 기사

제21장 부록

KSA 25.09.16

The Lithium-Ion Battery Cathode Material Market was valued at USD 25.33 billion in 2024 and is projected to grow to USD 27.69 billion in 2025, with a CAGR of 10.09%, reaching USD 45.11 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 25.33 billion
Estimated Year [2025] USD 27.69 billion
Forecast Year [2030] USD 45.11 billion
CAGR (%) 10.09%

Unveiling the Critical Role of Cathode Materials in Shaping Next Generation Lithium-Ion Battery Performance and Sustainability

The evolution of lithium-ion battery cathode materials has been instrumental in powering both consumer and industrial applications with enhanced energy density, longevity, and safety. As the heart of electrochemical performance, cathode formulations dictate the efficiency, cost, and environmental footprint of battery systems. Over the past decade, advances in material engineering and process innovation have propelled significant improvements in cobalt-reduced chemistries, stabilized nickel-rich compounds, and phosphate-based alternatives, each responding to distinct market demands and regulatory pressures.

In this context, industry stakeholders are navigating a rapidly shifting terrain where sustainability imperatives, raw material availability, and geopolitical factors converge to redefine competitive dynamics. Transitioning from traditional lithium cobalt oxide toward next-generation lithium nickel manganese cobalt oxide and lithium nickel cobalt aluminum oxide compositions reflects a broader push for higher nickel content to achieve superior energy densities. Simultaneously, the rise of lithium iron phosphate underscores a growing emphasis on thermal stability and cost containment, particularly in large-format applications.

This introduction sets the stage for a granular exploration of transformative trends, tariff impacts, segmentation insights, regional dynamics, competitive landscapes, and strategic recommendations. By weaving together the latest market intelligence and expert perspectives, the sections that follow illuminate the critical drivers and barriers shaping the future of cathode materials and provide an authoritative roadmap for decision-makers seeking to capitalize on emerging opportunities.

Examining the Convergence of Technological Breakthroughs Supply Chain Evolution and Environmental Imperatives Driving Cathode Material Innovation in Lithium-Ion Batteries

A confluence of technological innovation, supply chain realignment, and environmental stewardship is rewriting the rules for cathode material development. Breakthroughs in high-precision synthesis techniques, such as advanced co-precipitation controls and optimized hydrothermal processes, are enabling particle morphologies that deliver higher tap densities and more uniform electrode coatings. At the same time, evolving processing routes are reducing reliance on scarce critical elements by improving nickel utilization and incorporating more abundant iron-based chemistries.

Supply chain evolution has emerged as a pivotal force, with upstream partnerships forming to secure ethically sourced lithium and refined nickel. Strategic alliances between material producers, mining firms, and battery manufacturers are accelerating vertical integration, ensuring greater control over raw material quality and cost. Concurrently, the imperative to decarbonize production has driven expansion in renewable energy-powered facilities and closed-loop recycling programs, reflecting an intensified focus on circular economy principles.

Investor sentiment and regulatory frameworks are further propelling sustainability-oriented shifts. Stricter emissions standards and carbon footprint disclosures are incentivizing manufacturers to adopt aluminum coating technologies that extend cycle life and reduce electrolyte decomposition. As a result, the market is witnessing a transformative realignment where technological, environmental, and financial priorities converge to drive cathode material innovation at unprecedented speed.

Assessing the Cumulative Impact of New United States Tariffs on Critical Cathode Materials and Industry Competitiveness in 2025

The introduction of new United States tariffs in 2025 on imported nickel, cobalt, and precursor materials has imposed a multifaceted burden on cathode manufacturers, reshaping cost structures and supplier strategies. Faced with incremental duties, many firms have accelerated efforts to localize portions of the supply chain by forging domestic refining partnerships and investing in North American downstream capacity. This reconfiguration aims to mitigate exposure to tariff volatility but also requires substantial capital allocation and regulatory navigation.

Moreover, the cumulative effect of these levies has reverberated throughout global procurement networks, prompting original equipment manufacturers to reevaluate sourcing agreements and buffer inventories. While tariffs have elevated near-term material costs, they have concurrently incentivized process efficiencies and alternative chemistries that reduce dependence on high-tariff inputs. Lithium iron phosphate and manganese-rich formulations have gained traction as manufacturers seek to balance performance with tariff-driven cost pressures.

Despite the short-term challenges posed by elevated landed costs, the tariff landscape has catalyzed investment in recycling infrastructures that recapture critical metals from spent cells. These developments are contributing to a more resilient and domestically anchored supply chain, positioning the industry to adapt to future policy shifts. Taken together, the tariff impact underscores the importance of strategic agility, robust risk management, and diversified sourcing to sustain competitiveness in the evolving cathode materials market.

Deriving Strategic Insights from Comprehensive Segmentation of Materials Form Factors Synthesis Processes Coating Types and Application Verticals

A nuanced understanding of the market emerges when dissecting the landscape across multiple analytical dimensions. Based on material type, the analysis encompasses lithium cobalt oxide, lithium iron phosphate, lithium nickel cobalt aluminum oxide, and lithium nickel manganese cobalt oxide, each presenting unique electrochemical profiles, cost considerations, and safety attributes that influence suitability for distinct end-use scenarios. Shifting to form factor, performance requirements diverge among coin cell, cylindrical cell, pouch cell, and prismatic cell configurations, where volumetric efficiency, mechanical robustness, and thermal management characteristics determine the optimal design for consumer electronics, automotive, and stationary storage applications.

Delving deeper into synthesis process distinctions reveals how co-precipitation and hydrothermal methods shape particle size distribution, tap density, and surface morphology-factors that underpin capacity retention and rate capability. Coating type segmentation differentiates between aluminum coated and uncoated materials, highlighting how protective layers inhibit transition metal dissolution, extend cycle life, and enhance high-voltage stability. Finally, application segmentation threads through consumer electronics-spanning laptops, smartphones, and tablets-and broadens into electric vehicles, energy storage systems across commercial, residential, and utility scale environments, as well as medical devices and power tools. This layered segmentation matrix enables stakeholders to pinpoint high-impact opportunities, tailor development roadmaps, and align product portfolios with evolving performance benchmarks and customer requirements.

Unearthing Regional Dynamics and Growth Drivers Across the Americas Europe Middle East Africa and Asia-Pacific for Cathode Materials

Regional market dynamics underscore a tapestry of growth drivers and challenges that vary significantly across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, heightened investment in electric vehicle assembly plants has catalyzed expansion of local cathode material production and refining capacity. Government incentives supporting clean energy infrastructure have further stimulated demand for energy storage systems, creating an ecosystem where domestic research institutes and private sector innovators collaborate on next-generation formulations.

In Europe Middle East & Africa, policy frameworks focused on carbon neutrality and stringent battery recycling mandates have spurred material upgrades and end-of-life management initiatives. Strategic alliances between European automakers and local material producers aim to secure low-carbon feedstocks, while emerging markets in the Middle East explore solar-powered manufacturing facilities to reduce supply chain emissions. Regulatory alignment across the European Union, Gulf Cooperation Council, and African Continental Free Trade Area is fostering a more cohesive approach to standards and technology transfer.

The Asia-Pacific region remains the epicenter of cathode material production, driven by integrated value chains in China, South Korea, Japan, and Southeast Asia. Established refining hubs and large-scale synthesis facilities continue to scale output, even as market leaders diversify into downstream cell manufacturing. Concurrently, governments are channeling subsidies toward advanced material research and repurposing existing chemical plants for battery feedstock synthesis, reinforcing the region's strategic importance in global supply networks.

Profiling Leading Cathode Material Manufacturers and Their Strategic Initiatives Shaping Global Lithium-Ion Battery Supply Chains

The competitive landscape for cathode materials is marked by a combination of established chemical conglomerates, specialized producers, and innovative startups, each deploying unique strategies to capture market share. Major diversified chemical companies leverage extensive refining operations and global distribution networks to supply high-purity precursors and coated active materials across multiple geographies. These incumbents continue to invest in process intensification, yielding economies of scale that underpin cost competitiveness.

Specialized cathode producers differentiate through proprietary material formulations and strategic partnerships with cell manufacturers. Their focus on tailored nickel-rich and phosphate-based chemistries enables rapid response to specific performance criteria, from cycle life improvements to thermal resilience. Concurrently, emerging entrants backed by venture capital are pioneering sustainable synthesis routes, such as direct lithium extraction and low-temperature hydrothermal methods, which promise reduced energy consumption and minimized environmental impact.

Collaborations between material innovators and original equipment manufacturers are accelerating time-to-market for next-generation cathodes. Co-development agreements and joint demonstration projects validate performance under real-world conditions, creating pathways for scale-up. At the same time, mergers and acquisitions remain an active tool for expanding geographic footprint and integrating complementary capabilities, ensuring that leading players are well-positioned to meet the evolving demands of mobility, grid storage, and portable electronics sectors.

Actionable Imperatives for Industry Players to Navigate Competitive Pressures and Capitalize on Emerging Opportunities in Cathode Material Market

Industry leaders must prioritize a multifaceted approach to capture emerging growth opportunities while mitigating supply chain risks. Investing in research and development for next-generation high-nickel and iron-based cathode chemistries can unlock performance gains and reduce dependence on constrained raw materials. Enhancing vertical integration through strategic partnerships with mining and refining entities will ensure more secure access to critical feedstocks and improve cost visibility.

Furthermore, manufacturers should accelerate adoption of aluminum coating and advanced surface treatments to boost material life cycles and meet increasingly stringent application requirements. Strengthening regional production hubs, particularly in jurisdictions imposing tariffs or import restrictions, will enhance operational resilience. At the same time, expanding in-house recycling capabilities and establishing take-back frameworks will support circular economy objectives and provide a hedge against price volatility.

To stay ahead of competitive pressures, firms need to leverage data analytics and digital twins for process optimization, enabling agile adjustments in response to shifting demand patterns. Engaging in cross-sector collaborations-ranging from automotive consortia to grid storage alliances-will facilitate knowledge sharing and co-innovation. By aligning strategic initiatives across technology, supply chain, and sustainability agendas, industry players can build robust platforms for long-term success in the dynamic cathode materials market.

Outlining a Robust Multi-Method Research Methodology Integrating Primary Expertise and Secondary Analysis to Illuminate Cathode Market Trends

This research synthesizes insights from an integrative methodology combining primary and secondary research. Expert interviews with material scientists, battery manufacturers, and supply chain executives provided firsthand perspectives on performance trade-offs, cost drivers, and technology roadmaps. These qualitative inputs were complemented by a detailed review of peer-reviewed journals, patent filings, and industry white papers to validate emerging synthesis techniques and coating innovations.

Quantitative data was sourced from corporate financial reports, trade statistics, and government publications to map production volumes, import-export flows, and tariff schedules. Comparative analysis of manufacturing footprints and cost structures leveraged publicly reported metrics and proprietary process simulations. Triangulation of these diverse data sets enabled identification of regional capacity gaps, technology adoption curves, and investment hotspots.

The research framework also incorporated scenario planning to assess potential policy shifts, raw material disruptions, and technological breakthroughs. Sensitivity analyses evaluated the impact of input cost fluctuations, tariff changes, and recycling uptake on supply chain resilience. By integrating rigorous data validation with expert vetting, the study delivers a holistic view of the cathode material landscape, equipping stakeholders with actionable intelligence and strategic foresight.

Synthesizing Key Findings and Strategic Takeaways to Guide Decision Makers in the Evolving Lithium-Ion Cathode Material Landscape

The landscape of lithium-ion battery cathode materials is at a pivotal inflection point where technological advances, policy developments, and market forces intersect to reshape competitive dynamics. A clear shift toward nickel-rich and phosphate-based formulations reflects both performance aspirations and resource stewardship goals. At the same time, newly implemented tariffs have catalyzed supply chain realignment, spurring investment in domestic refining and recycling capabilities that promise greater resilience and sustainability.

Segmenting the market by material chemistry, form factor, synthesis process, coating type, and application vertical reveals nuanced demand patterns and opportunity pockets. Regional insights further underscore the imperative for geographically diverse strategies, as each macro-region exhibits distinct regulatory landscapes, incentive structures, and infrastructure maturity. Leading manufacturers are responding with integrated value chain models and co-development partnerships that accelerate innovation while maintaining cost competitiveness.

Looking ahead, stakeholders who embrace circular economy principles, deepen vertical integrations, and invest in advanced processes will secure the greatest strategic advantage. The interplay of material science breakthroughs, policy incentives, and digital optimization will continue to define the trajectory of cathode material evolution. By synthesizing these learnings, decision-makers can chart informed pathways to drive growth, reduce risk, and lead the transition to a sustainable energy ecosystem.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Accelerated commercialization of nickel-rich high energy density cathodes with reduced cobalt content
  • 5.2. Rapid adoption of lithium iron phosphate cathodes in electric vehicles driven by cost and safety advantages
  • 5.3. Advancements in solid state cathode materials enabling higher voltage and improved thermal stability
  • 5.4. Expansion of battery recycling infrastructure for recovery of critical cathode metals and circular economy integration
  • 5.5. Integration of AI-driven material discovery platforms to optimize cathode performance and lifespan
  • 5.6. Collaborative R&D partnerships between automakers and material suppliers to develop sustainable cathode chemistries
  • 5.7. Implementation of advanced cathode coatings to mitigate degradation at high charge rates and extend battery life
  • 5.8. Scale up of water-based cathode slurry production to reduce reliance on NMP solvents and lower environmental footprint
  • 5.9. Commercialization of binder-free 3D printed cathode architectures to enhance volumetric energy density and reduce inactive material content

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Lithium-Ion Battery Cathode Material Market, by Material Type

  • 8.1. Introduction
  • 8.2. Lithium Cobalt Oxide
  • 8.3. Lithium Iron Phosphate
  • 8.4. Lithium Nickel Cobalt Aluminum Oxide
  • 8.5. Lithium Nickel Manganese Cobalt Oxide

9. Lithium-Ion Battery Cathode Material Market, by Form Factor

  • 9.1. Introduction
  • 9.2. Coin Cell
  • 9.3. Cylindrical Cell
  • 9.4. Pouch Cell
  • 9.5. Prismatic Cell

10. Lithium-Ion Battery Cathode Material Market, by Synthesis Process

  • 10.1. Introduction
  • 10.2. Co-precipitation
  • 10.3. Hydrothermal

11. Lithium-Ion Battery Cathode Material Market, by Coating Type

  • 11.1. Introduction
  • 11.2. Aluminum Coated
  • 11.3. Uncoated

12. Lithium-Ion Battery Cathode Material Market, by Application

  • 12.1. Introduction
  • 12.2. Consumer Electronics
    • 12.2.1. Laptops
    • 12.2.2. Smartphones
    • 12.2.3. Tablets
  • 12.3. Electric Vehicle
  • 12.4. Energy Storage System
    • 12.4.1. Commercial
    • 12.4.2. Residential
    • 12.4.3. Utility Scale
  • 12.5. Medical Devices
  • 12.6. Power Tools

13. Americas Lithium-Ion Battery Cathode Material Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Lithium-Ion Battery Cathode Material Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Lithium-Ion Battery Cathode Material Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. AGC Inc.
    • 16.3.2. Arkema S.A.
    • 16.3.3. BASF SE
    • 16.3.4. Beijing Easpring Material Technology Co., Ltd.
    • 16.3.5. CBAK Energy Technology, Inc.
    • 16.3.6. Fujitsu Limited
    • 16.3.7. Hitachi Chemical Co. Ltd
    • 16.3.8. Huayou Cobalt Co., Ltd.
    • 16.3.9. JFE Chemical Corporation
    • 16.3.10. Johnson Matthey plc
    • 16.3.11. LG Chem Ltd.
    • 16.3.12. Mitsubishi Chemical Corporation
    • 16.3.13. Mitsui Mining & Smelting Co., Ltd.
    • 16.3.14. NEI Corporation
    • 16.3.15. Nichia Corporation
    • 16.3.16. Ningbo Shanshan Co., Ltd.
    • 16.3.17. POSCO HOLDINGS
    • 16.3.18. Sumitomo Metal Mining Co., Ltd.
    • 16.3.19. Targray Technology International Inc.
    • 16.3.20. Toda Kogyo Corp.
    • 16.3.21. Umicore
    • 16.3.22. Varta AG

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제