시장보고서
상품코드
1807600

마이크로프로세서 및 GPU 시장 : 제품 유형, 배포 유형, 최종사용자, 판매 채널별 - 세계 예측(2025-2030년)

Microprocessor & GPU Market by Product Type, Deployment Type, End User, Sales Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

마이크로프로세서 및 GPU 시장은 2024년에는 1,068억 2,000만 달러에 달하며, 2025년에는 1,143억 1,000만 달러로 성장하며, CAGR은 7.32%, 2030년에는 1,633억 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 1,068억 2,000만 달러
추정연도 2025 1,143억 1,000만 달러
예측연도 2030 1,633억 달러
CAGR(%) 7.32%

컴퓨팅의 효율성, 확장성, 차세대 혁신을 주도하는 고성능 마이크로프로세서 및 GPU의 기술 혁신의 융합을 살펴봅니다.

컴퓨팅 아키텍처의 급속한 발전으로 마이크로프로세서와 그래픽 처리 장치는 현대 디지털 혁신의 쌍두마차로 각광받고 있습니다. 복잡한 데이터센터에 전력을 공급하는 것부터 모바일 기기에서 몰입형 소비자 경험을 구현하는 것까지 이러한 기본 구성 요소는 성능, 전력 효율성 및 통합에 있으며, 획기적인 진전을 이루었습니다. 이 소개에서는 이기종 컴퓨팅 솔루션에 대한 관심 증가, CPU와 GPU의 기능적 경계가 모호해지고, 가장 까다로운 워크로드를 위한 확장 가능한 전용 아키텍처에 대한 요구가 증가하는 원동력을 살펴봅니다.

에너지 효율성, AI 워크로드, 이기종 컴퓨팅 요구사항에 대응하기 위한 마이크로프로세서 및 GPU 설계의 중요한 아키텍처 패러다임 전환 발표

마이크로프로세서 및 GPU의 상황은 새로운 아키텍처 패러다임의 출현과 워크로드 수요의 변화로 인해 큰 변화의 시기를 맞이하고 있습니다. 이 선구적인 설계는 현재 범용 코어와 함께 도메인별 가속기를 통합하여 AI 추론, 그래픽 렌더링, 실시간 데이터 분석 간의 원활한 전환을 가능하게 합니다. 에너지 효율에 초점을 맞추고, 세밀한 전력 게이팅 기술, 동적 전압 및 주파수 스케일링, 3D 다이 스태킹 및 칩렛 통합과 같은 첨단 포장 솔루션의 채택을 촉진하고 있습니다.

2025년 미국 관세 정책이 세계 마이크로프로세서 및 GPU 공급망 및 운영 비용에 미치는 영향 분석

2025년 미국의 새로운 관세 정책 시행은 전 세계 마이크로프로세서 및 GPU 공급망 전체에 영향을 미쳐 조달 전략과 비용 구조를 재편하고 있습니다. 주요 부품의 수입관세 인상에 직면한 제조업체들은 많은 제조업체들이 조달 관계를 재검토하고 니어쇼어링을 선택하게 되었습니다. 경쟁력 있는 가격을 유지해야 한다는 압박으로 인해 이해관계자들은 관세의 영향과 물류의 복잡성 및 생산 리드타임의 균형을 맞추기 위해 노력하고 있으며, 공급망 다변화의 물결이 밀려오고 있습니다.

제품, 배포, 최종사용자, 판매 채널의 각 측면에서 시장 세분화의 뉘앙스를 읽어내어 타겟팅된 성장 전략에 힘을 실어줍니다.

제품 유형별로 세분화하면, 시장은 GPU와 마이크로프로세서 카테고리로 조사되며, GPU 제품은 특수 가속 작업에 최적화된 개별 솔루션과 셰이더 코어와 범용 프로세싱 유닛을 결합한 통합 아키텍처로 세분화됩니다. 구분됩니다. 마이크로프로세서의 구성은 병렬 워크로드용으로 설계된 어레이 프로세서부터 실시간 데이터 처리에 탁월한 디지털 신호 프로세서까지 다양합니다. 또한 축소 명령어 집합 컴퓨팅 및 복잡한 명령어 집합 컴퓨팅 프로세서, 순차 및 병렬 데이터 흐름에 대응하는 스칼라 프로세서 및 벡터 프로세서, 높은 수준의 언어 해석을 위해 조정된 기호 프로세서 등도 포함됩니다.

북미, 유럽, 중동 및 아프리카, 아시아태평양의 마이크로프로세서 및 GPU 시장 역학 및 시장 성장 촉진요인을 분석

아메리카 지역은 대규모 R&D 투자, 탄탄한 반도체 제조거점, 하이퍼스케일 데이터센터의 강력한 수요로 인해 마이크로프로세서 및 GPU 기술 혁신의 매우 중요한 원동력이 되고 있습니다. 또한 금융 서비스, 헬스케어 분석, 자동차 설계 등의 최종사용자들이 컴퓨팅 가속기에 대한 수요를 지속적으로 증가시키고 있습니다.

지속가능한 성장을 위해 마이크로프로세서 및 GPU 정세를 형성하는 주요 이해관계자들의 전략적 혁신과 경쟁 구도를 소개

주요 기술 기업은 급성장하는 마이크로프로세서 및 GPU 시장에서 점유율을 확보하기 위해 차별화된 전략을 제시해 왔습니다. 일부 공급업체는 적극적인 공정 노드 진화를 추구하고, 3nm 이하 연구를 진행하며, 대량 생산 파트너십을 활용하여 노드 리더십을 유지하고 있습니다. 또한 생태계 개발에 중점을 두고 소프트웨어 벤더 및 클라우드 서비스 프로바이더와 협력하여 최적화된 드라이버 스택, 라이브러리, 개발자 툴을 확보하고 다양한 워크로드에서 하드웨어의 성능을 끌어내는 벤더도 있습니다.

업계 리더들이 위험을 관리하면서 마이크로프로세서 및 GPU 시장 기회를 포착할 수 있도록 전략적 요점 및 권장 사항을 제공

마이크로프로세서 및 GPU 기술의 가속화된 융합을 활용하기 위해 업계 리더들은 하드웨어, 펌웨어, 소프트웨어의 공동 설계에 걸친 범분야적 연구 투자를 우선시해야 합니다. 주요 하이퍼스케일 사용자, 학계, 표준화 단체와 공동 컨소시엄을 구성하여 생태계의 성숙을 가속화하고 통합의 복잡성을 줄일 수 있습니다. 차세대 칩셋 아키텍처에 커스터마이징 가능한 가속기와 프로그래머블 패브릭을 통합함으로써 전력 효율을 희생하지 않고도 새로운 워크로드에 빠르게 적응할 수 있도록 지원합니다.

마이크로프로세서 및 GPU 시장 조사에서 인사이트를 검증하기 위해 정성적 전문 지식과 정량적 분석을 결합한 강력한 조사 접근 방식에 대해 자세히 알아보십시오.

이 조사는 수석 엔지니어, 설계 설계자, 공급망 임원, 최종사용자 조달 책임자와의 심층 인터뷰를 통해 얻은 1차 정보와 기술 백서, 규제 당국 신고서, 벤더 로드맵을 통해 얻은 2차 정보를 결합하여 작성되었습니다. 방법론에 기반한 데이터 삼각 측량을 통해 각 주요 주제는 일관성을 보장하고 편견을 줄이기 위해 검증되었습니다. 조사 프레임워크는 높은 수준의 거시적 환경 분석에서 시작하여 부문별 역학으로 세분화되는 계층적 접근 방식을 통합하고 있습니다.

마이크로프로세서 및 GPU 혁신의 미래 궤도를 형성하는 진화하는 동향과 전략적 중요성을 파악하기 위한 주요 조사 결과의 통합.

이기종 아키텍처, 첨단 포장 기술, 급증하는 AI 워크로드의 결합은 마이크로프로세서 및 GPU 혁신의 새로운 시대를 촉발하고 있습니다. 전략적 세분화에 대한 인사이트를 통해 제품 유형, 배포 모델, 최종사용자의 업종에 따른 미묘한 요구사항이 드러났으며, 성능, 비용, 에너지 효율의 균형을 고려한 맞춤형 솔루션이 필수적이라는 것을 알 수 있었습니다. 지역별 분석에서는 정책적 인센티브, 제조 역량, 최종 시장 채택 패턴이 북미, 남미, 중동 및 아프리카, 아시아태평양의 경쟁 역학을 형성하는 데 미치는 영향을 강조합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 마이크로프로세서 및 GPU 시장 : 제품 유형별

  • GPU
    • 디스크리트
    • 통합형
  • 마이크로프로세서
    • 어레이 프로세서
    • 디지털 신호 프로세서
    • RISC 및 CISC 프로세서
    • 스칼라 프로세서
    • 상징적 프로세서
    • 벡터 프로세셔

제9장 마이크로프로세서 및 GPU 시장 : 배포 유형별

  • 온프레미스
  • 클라우드상

제10장 마이크로프로세서 및 GPU 시장 : 최종사용자별

  • 자동차
  • 가전
    • 모바일
    • PC와 노트북
    • 스마트폰
  • 데이터센터
  • 방위·항공우주
  • 헬스케어
    • 진단 장비
    • 의료 영상
  • 산업 자동화

제11장 마이크로프로세서 및 GPU 시장 : 판매 채널별

  • 오프라인
  • 온라인

제12장 아메리카의 마이크로프로세서 및 GPU 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 마이크로프로세서 및 GPU 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 마이크로프로세서 및 GPU 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Advanced Micro Devices, Inc.
    • AFOX Corporation
    • Apple Inc.
    • ARM Limited
    • ASUSTeK Computer Inc
    • Broadcom Inc.
    • Changsha Jingjia Microelectronics Co., Ltd.
    • EVGA Corporation
    • Galaxy Microsystems Ltd.
    • GIGA-BYTE Technology Co., Ltd
    • Imagination Technologies Limited
    • Intel Corporation
    • International Business Machines Corporation
    • MediaTek Inc.
    • Micro-Star International Co., Ltd.
    • NVIDIA Corporation
    • PNY Technologies, Inc.
    • Qualcomm Incorporated
    • Samsung Electronics Co., Ltd.
    • Sapphire Technology Limited
    • Sony Group Corporation
    • Taiwan Semiconductor Manufacturing Company Limited
    • Texas Instruments Incorporated
    • VIA Technologies Inc.
    • ZOTAC International(MCO) Limited

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택

제19장 리서치 기사

제20장 부록

KSA 25.09.16

The Microprocessor & GPU Market was valued at USD 106.82 billion in 2024 and is projected to grow to USD 114.31 billion in 2025, with a CAGR of 7.32%, reaching USD 163.30 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 106.82 billion
Estimated Year [2025] USD 114.31 billion
Forecast Year [2030] USD 163.30 billion
CAGR (%) 7.32%

Exploring the Convergence of High-Performance Microprocessor and GPU Innovations to Propel Computing Efficiency, Scalability and Next-Generation Transformation

The rapid evolution of computing architectures has propelled microprocessors and graphics processing units into the spotlight as the twin engines of modern digital innovation. From powering intricate data centers to enabling immersive consumer experiences on mobile devices, these foundational components have seen transformative advancements in performance, power efficiency, and integration. In this introduction, we explore the driving forces behind the heightened focus on heterogeneous computing solutions, the blurring boundaries between CPU and GPU functionalities, and the growing imperative for scalable, purpose-built architectures that address the most demanding workloads.

Recent breakthroughs in AI, machine learning, and high-performance computing have elevated GPUs from their traditional graphics-processing role into versatile compute accelerators. Simultaneously, microprocessor designs have embraced parallel processing, domain-specific accelerators, and chiplet-based frameworks to keep pace with data-intensive applications. This convergence underscores a broader industry trend toward customizable, modular platforms that balance raw computational power with energy and thermal constraints. As we embark on this executive summary, our goal is to provide a clear portrait of the technologies, market dynamics, and strategic considerations that are shaping the future trajectory of microprocessors and GPUs in global digital ecosystems.

Unveiling Critical Architectural Paradigm Shifts in Microprocessor and GPU Design to Address Energy Efficiency, AI Workloads and Heterogeneous Computing Demands

The microprocessor and GPU landscape is undergoing a profound transformation driven by the emergence of new architectural paradigms and shifting workload demands. Pioneering designs now integrate domain-specific accelerators alongside general-purpose cores, enabling seamless transitions between AI inference, graphics rendering, and real-time data analytics. Energy efficiency has become a focal point, prompting the adoption of fine-grained power-gating techniques, dynamic voltage and frequency scaling, and advanced packaging solutions such as 3D die stacking and chiplet integration.

This shift toward heterogeneity extends beyond silicon. Software frameworks and development tools are evolving to abstract complexity and optimize performance across diverse hardware substrates. Unified programming models and standardized APIs facilitate cross-platform portability, reducing barriers for developers and accelerating time to market. Meanwhile, the quest for greater memory bandwidth has inspired innovative interconnect topologies, high-bandwidth memory implementations, and on-package cache hierarchies that mitigate latency bottlenecks.

As the industry grapples with the twin objectives of performance and sustainability, research into novel materials, photonic interconnects, and neuromorphic computing architectures offers a glimpse into the next frontier. These transformative shifts collectively herald an era in which computational capability is finely tuned to specific application domains, enabling breakthroughs in fields ranging from autonomous vehicles to real-time medical diagnostics.

Analyzing the Far-Reaching Consequences of 2025 United States Tariff Policies on Global Microprocessor and GPU Supply Chains and Operational Costs

The implementation of new tariff policies by the United States in 2025 has reverberated throughout global microprocessor and GPU supply chains, reshaping procurement strategies and cost structures. Manufacturers have faced increased import duties on critical components, prompting many to reevaluate sourcing relationships and explore near-shoring alternatives. The pressure to maintain competitive pricing has driven a wave of supply chain diversification, as stakeholders seek to balance tariff exposure against logistical complexity and production lead times.

This dynamic has led to a recalibration of inventory management practices, with firms opting for just-in-time models in some regions while stockpiling critical wafers and substrates in others. Foundries and assembly partners have adjusted capacity allocations to accommodate shifting demand patterns, often prioritizing partnerships with regions outside the tariff scope. As a result, collaborative agreements and multi-source procurement frameworks have become essential for preserving operational continuity.

In parallel, end-users have passed through a portion of the increased costs, influencing project budgets and procurement cycles across industries. Strategic planning now emphasizes improved demand forecasting, tighter integration between supply chain and engineering teams, and proactive risk mitigation through alternate supplier qualification. The cumulative impact of these policy changes underscores the importance of agility, transparency, and cross-border collaboration in sustaining resilient microprocessor and GPU ecosystems.

Decoding Market Segmentation Nuances Across Product, Deployment, End User and Sales Channel Dimensions to Empower Targeted Growth Strategies

When examining segmentation by product type, the market is studied across GPU and microprocessor categories, with GPU offerings further differentiated into discrete solutions optimized for specialized accelerative tasks and integrated architectures that combine shader cores with general-purpose processing units. Microprocessor configurations extend from array processors designed for parallel workloads to digital signal processors that excel in real-time data handling. The spectrum also includes reduced instruction set computing and complex instruction set computing processors, scalar and vector processors that address both sequential and parallel data flows, along with symbolic processors tailored for high-level language interpretation.

Looking at deployment type, stakeholders evaluate on-premise implementations that offer maximum control over infrastructure alongside on-cloud solutions that deliver elastic scalability and reduced capital expenditure. This duality in deployment models influences considerations related to data sovereignty, latency sensitivity, and total cost of ownership, prompting organizations to adopt hybrid frameworks that leverage the strengths of both approaches.

End-user segmentation highlights the unique demands of automotive systems, where safety-critical compute functions coexist with infotainment and advanced driver assistance. Consumer electronics subdivides into mobile devices, personal computers and laptops, and smartphones, each with distinct performance, power, and form-factor requirements. Data center operators seek high throughput and reliability, defense and aerospace clients demand ruggedized, secure platforms, while industrial automation solutions prioritize deterministic control. Within healthcare, diagnostic equipment and medical imaging systems depend on accelerated analytics for improved patient outcomes.

Across sales channels, the market is studied through offline avenues-where direct partnerships, distributor networks, and value-added resellers facilitate tailored solutions-and online platforms that enable rapid procurement and digital distribution of software-enablement resources.

Uncovering Regional Market Dynamics and Growth Drivers for Microprocessor and GPU Adoption Across Americas, Europe Middle East Africa and Asia-Pacific Markets

In the Americas, the confluence of substantial R&D investment, a robust semiconductor manufacturing base, and strong demand from hyperscale data centers has positioned the region as a pivotal driver of microprocessor and GPU innovation. Government incentives and strategic partnerships with academia support next-generation process node research, while end-users across financial services, healthcare analytics, and automotive design continue to fuel demand for compute accelerators.

The Europe, Middle East and Africa region exhibits a diverse landscape shaped by regulatory frameworks, digital sovereignty initiatives, and varying levels of industrial maturity. European Union efforts to bolster domestic chip production through strategic funding have spurred localized fabrication and design ecosystems, particularly in Eastern Europe. Meanwhile, Middle Eastern sovereign wealth investments and Africa's growing digital infrastructure projects have created emerging markets for edge computing and AI-driven applications.

Asia-Pacific stands at the forefront of both manufacturing scale and consumption. East Asian economies have heavily invested in foundry capacity, advanced packaging, and system-in-package innovations, serving global OEMs and cloud providers. Southeast Asia's burgeoning electronics assembly hubs complement these capabilities, while India's expanding data center footprint and Japan's leadership in automotive electronics further amplify regional growth. Strategic alliances between multinational technology firms and regional governments continue to shape the competitive dynamics of this highly integrated market.

Highlighting Strategic Innovations and Competitive Positioning of Leading Stakeholders Shaping the Microprocessor and GPU Landscape for Sustainable Growth

Leading technology companies have demonstrated differentiated strategies to capture share in the burgeoning microprocessor and GPU market. Some suppliers have pursued aggressive process node advancements, committing to sub-3nm research and leveraging high-volume manufacturing partnerships to maintain node leadership. Others have emphasized ecosystem development, forging alliances with software vendors and cloud service providers to ensure optimized driver stacks, libraries, and developer tools that unlock hardware performance across diverse workloads.

A parallel focus on customized silicon has emerged, with contract design wins for hyperscale data center operators and bespoke solutions for automotive and defense applications. These tailored offerings integrate security features, functional safety enhancements, and domain-specific accelerators, reflecting a shift from standardized architectures to application-centric platforms. Strategic acquisitions and joint ventures have further diversified portfolios, as companies seek to combine analog IP, advanced packaging innovations, and system-level expertise to create truly end-to-end solutions.

Supply chain integration has become a competitive differentiator in its own right. By co-investing in packaging facilities, wafer fabs, and back-end assembly lines, certain stakeholders have secured privileged access to capacity and yield optimizations. This vertical alignment mitigates supply volatility and supports rapid prototyping cycles, enabling a more agile response to evolving customer requirements.

Delivering Strategic Imperatives and Recommendations to Empower Industry Leaders in Seizing Microprocessor and GPU Market Opportunities While Managing Risks

To capitalize on the accelerating convergence of microprocessor and GPU technologies, industry leaders should prioritize cross-domain research investments that span hardware, firmware, and software co-design. Establishing collaborative consortia with key hyperscale users, academic institutions, and standards bodies will accelerate ecosystem maturity and reduce integration complexity. Embedding customizable accelerators and programmable fabrics within next-generation chiplet architectures will enable rapid adaptation to emergent workloads without sacrificing power efficiency.

Supply chain diversification remains paramount. Organizations must qualify alternate foundry and assembly partners, implement multi-source procurement strategies, and develop risk-adjusted inventory models that balance responsiveness with cost containment. Simultaneously, strengthening intellectual property frameworks and adopting secure boot methodologies will safeguard against increasing geopolitical and cyber threats.

On the go-to-market front, leaders should leverage direct engagement channels alongside digital distribution platforms to deliver integrated hardware-software offerings and continuous performance optimizations. Tailored service models-encompassing design enablement, predictive maintenance, and end-user training-will differentiate providers and foster sticky, long-term partnerships. By aligning these strategic imperatives with sustainability goals and regulatory mandates, decision-makers can ensure resilient growth and enduring competitive advantage.

Detailing a Robust Research Approach Combining Qualitative Expertise and Quantitative Analyses to Validate Insights in the Microprocessor and GPU Market Study

This study combines primary insights drawn from in-depth interviews with senior engineers, design architects, supply chain executives, and end-user procurement leaders, along with secondary information sourced from technical whitepapers, regulatory filings, and vendor roadmaps. Through methodical data triangulation, each key theme has been validated to ensure consistency and mitigate bias. The research framework integrates a layered approach, beginning with a high-level macroenvironmental analysis and drilling down into segment-specific dynamics.

Qualitative findings were corroborated through peer-review workshops and cross-functional expert panels, enabling the identification of emerging trends and potential disruptors. Quantitative analyses employed descriptive statistical techniques to interpret technology adoption rates, supply chain capacity shifts, and cost impact variables. The segmentation schema was tested against real-world use cases, ensuring that product, deployment, end-user, and sales channel dimensions accurately reflect market realities.

Throughout the process, rigorous quality controls-including data cleansing, consistency checks, and executive validation sessions-provided assurance that the insights are robust, actionable, and aligned with stakeholder needs. This comprehensive methodology underpins the reliability of the conclusions and recommendations presented herein.

Synthesizing Key Findings to Illuminate Evolving Trends and Strategic Imperatives Shaping the Future Trajectory of Microprocessor and GPU Innovation

The confluence of heterogeneous architectures, advanced packaging techniques, and burgeoning AI workloads has catalyzed a new era in microprocessor and GPU innovation. Strategic segmentation insights reveal the nuanced requirements across product types, deployment models, and end-user verticals, underscoring the imperative for tailored solutions that balance performance, cost, and energy efficiency. Regional analyses highlight the influence of policy incentives, manufacturing capabilities, and end-market adoption patterns in shaping competitive dynamics across the Americas, Europe Middle East Africa, and Asia-Pacific.

Leading companies have responded with differentiated roadmaps, leveraging node leadership, ecosystem partnerships, and customized silicon to secure design wins and establish supply chain resilience. However, the evolving landscape demands continual adaptation: tariff shifts, geopolitical tensions, and rapid technological convergence will test the agility of both incumbents and new entrants. By adhering to the strategic imperatives outlined-spanning R&D collaboration, supply chain diversification, and integrated hardware-software go-to-market strategies-industry stakeholders can navigate these complexities and unlock long-term value.

In synthesizing these key findings, it becomes clear that success in this dynamic market hinges on a holistic, forward-looking approach that aligns technical innovation with strategic partnerships, operational agility, and risk-aware decision-making.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Increasing adoption of chiplet architectures to overcome monolithic die limits
  • 5.2. Integration of dedicated neural processing units into mainstream CPU and GPU designs
  • 5.3. Advancements in extreme ultraviolet lithography enabling sub-3nm node mass production
  • 5.4. Rising demand for energy-efficient processors driving development of fine-grained power gating
  • 5.5. Growing emphasis on hardware-level security extensions to mitigate emerging cybersecurity threats
  • 5.6. Expansion of discrete GPU virtualization technologies for cloud gaming and enterprise workloads
  • 5.7. Momentum behind heterogeneous computing platforms combining CPUs, GPUs, and FPGAs on single package
  • 5.8. Surge in adoption of open-source processor architectures such as RISC-V for custom silicon development
  • 5.9. Evolution of 3D die stacking and advanced packaging solutions to boost interconnect bandwidth and density
  • 5.10. Acceleration of automotive-grade microprocessors catering to advanced driver assistance and autonomous systems

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Microprocessor & GPU Market, by Product Type

  • 8.1. Introduction
  • 8.2. GPU
    • 8.2.1. Discrete
    • 8.2.2. Integrated
  • 8.3. Microprocessor
    • 8.3.1. Array Processor
    • 8.3.2. Digital Signal Processor
    • 8.3.3. RISC & CISC Processor
    • 8.3.4. Scalar Processor
    • 8.3.5. Symbolic Processor
    • 8.3.6. Vector Processor

9. Microprocessor & GPU Market, by Deployment Type

  • 9.1. Introduction
  • 9.2. In-Premise
  • 9.3. On-Cloud

10. Microprocessor & GPU Market, by End User

  • 10.1. Introduction
  • 10.2. Automotive
  • 10.3. Consumer Electronics
    • 10.3.1. Mobile
    • 10.3.2. PCs & Laptops
    • 10.3.3. Smartphones
  • 10.4. Data Center
  • 10.5. Defense & Aerospace
  • 10.6. Healthcare
    • 10.6.1. Diagnostics Equipments
    • 10.6.2. Medical Imaging
  • 10.7. Industrial Automation

11. Microprocessor & GPU Market, by Sales Channel

  • 11.1. Introduction
  • 11.2. Offline
  • 11.3. Online

12. Americas Microprocessor & GPU Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Microprocessor & GPU Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Microprocessor & GPU Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Advanced Micro Devices, Inc.
    • 15.3.2. AFOX Corporation
    • 15.3.3. Apple Inc.
    • 15.3.4. ARM Limited
    • 15.3.5. ASUSTeK Computer Inc
    • 15.3.6. Broadcom Inc.
    • 15.3.7. Changsha Jingjia Microelectronics Co., Ltd.
    • 15.3.8. EVGA Corporation
    • 15.3.9. Galaxy Microsystems Ltd.
    • 15.3.10. GIGA-BYTE Technology Co., Ltd
    • 15.3.11. Imagination Technologies Limited
    • 15.3.12. Intel Corporation
    • 15.3.13. International Business Machines Corporation
    • 15.3.14. MediaTek Inc.
    • 15.3.15. Micro-Star International Co., Ltd.
    • 15.3.16. NVIDIA Corporation
    • 15.3.17. PNY Technologies, Inc.
    • 15.3.18. Qualcomm Incorporated
    • 15.3.19. Samsung Electronics Co., Ltd.
    • 15.3.20. Sapphire Technology Limited
    • 15.3.21. Sony Group Corporation
    • 15.3.22. Taiwan Semiconductor Manufacturing Company Limited
    • 15.3.23. Texas Instruments Incorporated
    • 15.3.24. VIA Technologies Inc.
    • 15.3.25. ZOTAC International (MCO) Limited

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제