½ÃÀ庸°í¼­
»óǰÄÚµå
1808252

Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ¸ð´ÏÅ͸µ ÇÁ·Î¼¼½ºº°, ±â´Éº°, Á¢¼Ó À¯Çüº°, »ê¾÷ ºÐ¾ßº°, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Vibration Monitoring Market by Component, Monitoring Process, Functionality, Connectivity Type, Industry Vertical, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 199 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀåÀº 2024³â¿¡ 16¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 17¾ï 8,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 8.58%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 27¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 16¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 17¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 27¾ï ´Þ·¯
CAGR(%) 8.58%

Áøµ¿ ¸ð´ÏÅ͸µÀº ÀåºñÀÇ °íÀåÀ» ¿¹ÃøÇÏ°í °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ´Â »ê¾÷ ½Å·Ú¼ºÀÇ ÇÙ½É ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Áö³­ 10³â°£ ¼¾¼­ÀÇ ¼ÒÇüÈ­¿Í µ¥ÀÌÅÍ ¼öÁýÀÇ ±â¼úÀû Çõ½ÅÀº À¯Áöº¸¼ö Àü¹®°¡°¡ ÀÚ»êÀÇ »óŸ¦ ÀνÄÇÏ´Â ¹æ½ÄÀ» ±Ùº»ÀûÀ¸·Î º¯È­½ÃÄ×½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÁÖ¿ä ±â¾÷µéÀº ´Þ·Â ±â¹Ý À¯Áöº¸¼ö °ü¸®¿¡¼­ »óÅ Á᫐ ÇÁ·Î±×·¥À¸·Î ÀüȯÇÏ¿© ½Ç½Ã°£ ÅëÂû·ÂÀ» ÀÏ»ó ¾÷¹«¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº »ê¾÷°è°¡ À§ÇèÀ» °ü¸®Çϰí ÀÚ¿øÀ» ¹èºÐÇÏ´Â ¹æ½Ä¿¡ ÀÖ¾î º¸´Ù ±¤¹üÀ§ÇÑ ÁøÈ­¸¦ °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ÁøÈ­ÇÏ°í ¾ÈÀü¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó ¿¹ÃøÀû Á¢±Ù¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Á¦Á¶ ÇöÀåÀÌ Á¡Á¡ ´õ ÀÚµ¿È­µÇ°í »óÈ£ ¿¬°áµÊ¿¡ µû¶ó ¹Ì¹¦ÇÑ Áøµ¿ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿äµµ µ¿½Ã¿¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼­´Â ¿î¿µ ¿ì¼ö¼ºÀ» À§ÇÑ ³ë·Â¿¡ ÀÖ¾î Áøµ¿ ¸ð´ÏÅ͸µÀÇ Àü·«Àû ¿¬°ü¼ºÀ» ¹àÈ÷´Â °ÍÀ¸·Î ½ÃÀÛÇÕ´Ï´Ù. ½ÃÀå ¿ªÇÐ, ±â¼úÀû ½ÇÇö ¿äÀÎ, Àü·«Àû °í·Á »çÇ×À» Á¾ÇÕÀûÀ¸·Î Á¶»çÇÏ¿© ÀÇ»ç °áÁ¤ÀÚ°¡ ÀÌ·¯ÇÑ »óȲ°ú ÇâÈÄ ÅõÀÚ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

Àδõ½ºÆ®¸® 4.0, ÀΰøÁö´É, ¿§Áö ÄÄÇ»ÆÃÀÌ Áøµ¿ ¸ð´ÏÅ͸µÀÇ °üÇàÀ» ÀçÁ¤ÀÇÇÏ´Â Çõ½ÅÀû º¯È­¸¦ »ìÆìº¾´Ï´Ù.

Àδõ½ºÆ®¸® 4.0 ÆÐ·¯´ÙÀÓ°ú °í±Þ ºÐ¼® ±â¼úÀÇ À¶ÇÕÀ¸·Î Áøµ¿ ¸ð´ÏÅ͸µ »ê¾÷ ȯ°æÀº º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ¾÷°è ¸®´õµéÀº ÇöÀç ÀΰøÁö´É ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© ±âÁ¸ÀÇ ÀÓ°è°ª ±â¹Ý ½Ã½ºÅÛ¿¡¼­ ³õÄ¡±â ½¬¿î ¹Ì¹¦ÇÑ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³´Â °íÁÖÆÄ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®Çϰí, ´ë±â ½Ã°£À» ÁÙÀ̰í, ´ë¿ªÆø »ç¿ëÀ» ÃÖÀûÈ­ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ º¯È­¸¦ ´õ¿í °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°ø±Þ¸Á, ºÎǰ ºñ¿ë, Áøµ¿ ¸ð´ÏÅ͸µ ÀåºñÀÇ Àü·«Àû Á¶´Þ¿¡ ¹ÌÄ¡´Â ´©Àû È¿°ú ºÐ¼®

¹Ì±¹¿¡¼­ 2025³âÀ» ÇâÇÑ »õ·Î¿î °ü¼¼ Á¶Ä¡°¡ ¹ßÇ¥µÇ¸é¼­ Áøµ¿ ¸ð´ÏÅ͸µ °ø±Þ¸Á¿¡ ÆÄ¹®ÀÌ Àϰí ÀÖ½À´Ï´Ù. ¼öÀÔ ºÎǰ¿¡ ´ëÇÑ °ü¼¼ ÀλóÀº ¿øÀÚÀç ¹× ¿ÏÁ¦Ç° ºñ¿ëÀ» »ó½Â½ÃÄÑ Á¦Á¶¾÷üÀÇ Á¶´Þ Àü·« Àç°ËÅ並 Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ ÀϺΠ±â¾÷µéÀº °ø±Þ¾÷ü ³×Æ®¿öÅ©¸¦ ´Ùº¯È­Çϰí, °ü¼¼ º¯µ¿¿¡ µû¸¥ ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Áö¿ªÀû Á¦Á¶ °ÅÁ¡À» ±¸ÃàÇÏ´Â ³ë·ÂÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

±¸¼º ¿ä¼Ò, ÇÁ·Î¼¼½º, ±â´É, ¿¬°á¼º, »ê¾÷º°, ¿ëµµº° ¼¼ºÐÈ­¸¦ ½ÉÃþÀûÀ¸·Î ºÐ¼®ÇÏ¿© Áøµ¿ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¼¼ºÐÈ­¿¡ ´ëÇÑ ¼¼¹ÐÇÑ °ËÅ並 ÅëÇØ Áøµ¿ ¸ð´ÏÅ͸µÀÇ ´Ù¾çÇÑ ÁøÀÔÁ¡ ¹× ÃÖÀûÈ­ °æ·Î¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¸¼º ¿ä¼ÒÀÇ ¼¼ºÐÈ­´Â °¡¼Óµµ°è, ±ÙÁ¢ ÇÁ·Îºê, ¼Óµµ ¼¾¼­, Áøµ¿ ºÐ¼®±â, Áøµ¿°è, Áøµ¿ Æ®·£½º¹ÌÅ͸¦ Æ÷ÇÔÇÑ Çϵå¿þ¾î, ¸Å´ÏÁöµå ¼­ºñ½º ¹× Àü¹® ¼­ºñ½º¸¦ ±×·ìÈ­ÇÑ ¼­ºñ½º, µ¥ÀÌÅÍ ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î ¹× Áø´Ü ¼ÒÇÁÆ®¿þ¾î¸¦ Æ÷ÇÔÇÑ ¼ÒÇÁÆ®¿þ¾î¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. Çϵå¿þ¾î´Â ¿ø½Ã µ¥ÀÌÅ͸¦ ¼öÁýÇϰí, ¼­ºñ½º´Â Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀ» º¸ÀåÇϸç, ¼ÒÇÁÆ®¿þ¾î´Â ÃøÁ¤°ªÀ» ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ¸·Î º¯È¯ÇÕ´Ï´Ù.

¹Ì±¹, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áøµ¿ ¸ð´ÏÅ͸µ º¸±ÞÀ» Çü¼ºÇÏ´Â ÁÖ¿ä Áö¿ª ¿ªÇÐ ¹× Àü·«Àû ÃßÁø ¿äÀÎÀº ´ÙÀ½°ú °°½À´Ï´Ù.

Áö¸®Àû ¿ªÇÐÀº Áøµ¿ ¸ð´ÏÅ͸µÀÇ Ã¤Åðú Àü·«Àû ÅõÀÚ¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹Ì±¹ ´ë·ú¿¡¼­´Â Ŭ¶ó¿ìµå ±â¹Ý Áø´Ü Ç÷§ÆûÀ» ±âÁ¸ ÀÎÇÁ¶ó¿¡ ÅëÇÕÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ¼®À¯ ¹× °¡½º, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ È®¸³µÈ Çõ½ÅÀûÀÎ ¿¹Ãø ¸ðµ¨À» ½Ã¹üÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ºÏ¹ÌÀÇ »ê¾÷ ´ë±â¾÷µéÀº ´ëÀÀ·ÂÀ» °­È­ÇÏ°í ¹°·ù ¸®µå ŸÀÓÀ» ´ÜÃàÇϱâ À§ÇØ Áö¿ª ¼­ºñ½º ¼¾Å͸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù.

Áøµ¿ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ±â¼ú ¹ßÀüÀ» ÁÖµµÇÏ´Â ¼¼°è ÁÖ¿ä ¾÷üµéÀÇ °æÀïÀû Æ÷Áö¼Å´× ¹× Çõ½Å Àü·«¿¡ ´ëÇÑ Æò°¡.

Áøµ¿ ¸ð´ÏÅ͸µ ºÐ¾ßÀÇ °æÀïÀÇ ÇÙ½ÉÀº Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ÅëÇÕÀûÀÎ ¼­ºñ½º Á¦°ø, Àü·«Àû ÆÄÆ®³Ê½ÊÀÔ´Ï´Ù. Àü ¼¼°è Àåºñ °ø±Þ¾÷üµéÀº °¨Áö °¨µµ¸¦ Çâ»ó½ÃŰ´Â ¼ÒÇüÈ­ ¼¾¼­ ¾î·¹ÀÌ¿Í Ã·´Ü ½Åȣó¸® ±â¼úÀ» µµÀÔÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÚµéÀº ºÐ»êµÈ ±â¾÷ ÆÀÀ» Áö¿øÇϱâ À§ÇØ µ¥ÀÌÅÍ ½Ã°¢È­ ¹× ¿ø°Ý Áø´Ü ±â´ÉÀ» °­È­Çϰí ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ »ê¾÷ ȯ°æ¿¡¼­ Áøµ¿ ¸ð´ÏÅ͸µ Àü·«À» ÃÖÀûÈ­Çϰí Çõ½ÅÀ» ÃËÁøÇϱâ À§ÇØ ¾÷°è ¸®´õ¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ ±ÇÀå »çÇ×À» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õ´Â Áøµ¿ µ¥ÀÌÅÍÀÇ ¼öÁý, ÀúÀå, ºÐ¼® ÇÁ·ÎÅäÄÝÀ» Ç¥ÁØÈ­ÇÏ´Â °­·ÂÇÑ µ¥ÀÌÅÍ °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇÏ´Â °ÍÀ» ¿ì¼±¼øÀ§·Î »ï¾Æ¾ß ÇÕ´Ï´Ù. °øÅë µ¥ÀÌÅÍ ¸ðµ¨À» ±¸ÇöÇÏ°í ¼öÁý ½ÃÁ¡¿¡ ǰÁú °ü¸®¸¦ ¼öÇàÇÔÀ¸·Î½á Á¶Á÷Àº °í±Þ ºÐ¼® ÀÌ´Ï¼ÅÆ¼ºêÀÇ ¹èÆ÷¸¦ °¡¼ÓÈ­Çϰí, ·¹°Å½Ã ½Ã½ºÅÛ°ú ÃֽŠ½Ã½ºÅÛ °£ÀÇ ÅëÇÕ ¸¶ÂûÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü¹®°¡º° 1Â÷ Á¶»ç¿Í ¾ö°ÝÇÑ 2Â÷ µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÑ Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ýÀ» ÅëÇØ Áøµ¿ ¸ð´ÏÅ͸µ µ¿Çâ¿¡ ´ëÇÑ ½Å·ÚÇÒ ¼ö ÀÖ´Â °üÁ¡À» Á¦°øÇÕ´Ï´Ù.

ÀÌ Á¶»ç´Â Áøµ¿ ¸ð´ÏÅ͸µ ¿µ¿ª¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ÀÌÇØ¸¦ º¸ÀåÇϱâ À§ÇØ Á¾ÇÕÀûÀÎ 1 Â÷ Á¶»ç¿Í 2 Â÷ Á¶»ç¸¦ ÅëÇÕÇÕ´Ï´Ù. À¯Áöº¸¼ö ÀÓ¿ø, Àåºñ OEM Àü¹®°¡, ºÐ¼® Àü¹®°¡¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ 1Â÷ÀûÀÎ ÅëÂû·ÂÀ» ¼öÁýÇÏ¿© ±â¼ú µµÀÔ ÃËÁø¿äÀÎ, µµÀÔ °úÁ¦, °¡Ä¡ ½ÇÇö °æ·Î¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù.

»ê¾÷ Áøµ¿ ¸ð´ÏÅ͸µÀÇ ¹Ì·¡ »ê¾÷ ȯ°æÀ» Çü¼ºÇÏ´Â »õ·Î¿î Æ®·»µå, Àü·«Àû °úÁ¦ ¹× ¼ºÀå µ¿·Â¿¡ ´ëÇÑ °á·ÐÀû °íÂû

»ê¾÷°è°¡ º¹ÀâÇÑ ¿î¿µ ¿ì¼ö¼ºÀ» Ãß±¸ÇÏ´Â °¡¿îµ¥, Áøµ¿ ¸ð´ÏÅ͸µÀº ½Å·Ú¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ¼ö´ÜÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. AI ±â¹Ý Áø´Ü, ¹«¼± ¼¾¼­ ³×Æ®¿öÅ©, ¿¹Áöº¸Àü ¾Ë°í¸®Áò°ú °°Àº »õ·Î¿î Æ®·»µå´Â ±âÁ¸ÀÇ Æ²À» À籸¼ºÇϰí ÀÚ»êÀÇ °ÇÀü¼º¿¡ ´ëÇÑ Àü·Ê ¾ø´Â °¡½Ã¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÁøÈ­ÇÏ´Â ¹«¿ª Á¤Ã¥°ú Áö¿ª ¿ªÇÐÀº ½ÃÀå ¼ö¿ä¿¡ µû¶ó È®ÀåÇÒ ¼ö ÀÖ´Â ÀûÀÀÇü °ø±Þ¸Á°ú ¼­ºñ½º ¸ðµ¨ÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • °¡¼Óµµ°è
    • ±ÙÁ¢ ÇÁ·Îºê
    • ¼Óµµ ¼¾¼­
    • Áøµ¿ ºÐ¼® Àåºñ
    • Áøµ¿°è
    • Áøµ¿ Æ®·£½º¹ÌÅÍ
  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î
    • µ¥ÀÌÅÍ ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î
    • Áø´Ü ¼ÒÇÁÆ®¿þ¾î

Á¦9Àå Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : ¸ð´ÏÅ͸µ ÇÁ·Î¼¼½ºº°

  • ¿ÀÇÁ¶óÀÎ °¨¸ð´ÏÅ͸µ(ÈÞ´ë¿ë)
  • ¿Â¶óÀÎ ¸ð´ÏÅ͸µ(°íÁ¤)

Á¦10Àå Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : ±â´É¼ºº°

  • »óÅ ¸ð´ÏÅ͸µ
  • Àå¾Ö °¨Áö ¹× Áø´Ü
  • ¿¹Áöº¸Àü

Á¦11Àå Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : Á¢¼Ó À¯Çüº°

  • À¯¼±
  • ¹«¼±

Á¦12Àå Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : ¾÷°èº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • È­ÇÐÁ¦Ç°
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ¿¡³ÊÁö ¹× Àü·Â
  • ½Äǰ ¹× À½·á
  • ÇコÄÉ¾î ¹× ÀǾàǰ
  • ÇØ¾ç ¹× Á¶¼±
  • ±Ý¼Ó ¹× ±¤¾÷
  • ¼®À¯ ¹× °¡½º
  • ¹° ¹× Æó¼ö ó¸®

Á¦13Àå Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå : ¿ëµµº°

  • º£¾î¸µ
  • Ä¥·¯
  • ¾ÐÃà±â
  • ÄÁº£À̾î
  • ÆÒ
  • ±â¾î¹Ú½º
  • ¸ðÅÍ
  • ÆßÇÁ
  • Åͺó

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áøµ¿ ¸ð´ÏÅ͸µ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • AB SKF
    • ABB Ltd.
    • ALS Limited
    • Amphenol Corporation
    • Analog Devices, Inc.
    • Baker Hughes Company
    • Dewesoft d.o.o.
    • Emerson Electric Co.
    • Fluke Corporation
    • Honeywell International Inc.
    • Hottinger Bruel & Kjaer GmbH
    • IVC Technologies
    • Jamieson Equipment Co., Inc.
    • Kistler Group
    • MC MONITORING by Infoteam Informatique Holding SA
    • NSK Ltd.
    • Parker-Hannifin Corporation
    • Robert Bosch GmbH
    • Rockwell Automation, Inc.
    • Schaeffler AG
    • SCHENCK RoTec GmbH by Durr Group
    • SenseGrow Inc.
    • Siemens AG
    • SPM Instrument AB
    • Teledyne Technologies Incorporated
    • General Electric Company

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH 25.09.18

The Vibration Monitoring Market was valued at USD 1.64 billion in 2024 and is projected to grow to USD 1.78 billion in 2025, with a CAGR of 8.58%, reaching USD 2.70 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.64 billion
Estimated Year [2025] USD 1.78 billion
Forecast Year [2030] USD 2.70 billion
CAGR (%) 8.58%

Vibration monitoring has emerged as a critical cornerstone of industrial reliability, enabling organizations to anticipate equipment failures and minimize unplanned downtime. Over the past decade, technological breakthroughs in sensor miniaturization and data acquisition have fundamentally reshaped the way maintenance professionals perceive asset health. In response, leading enterprises have transitioned from calendar-based upkeep to condition-centric programs, integrating real-time insights into daily operations. This shift underscores a broader evolution in how industries manage risk and allocate resources.

Moreover, evolving regulatory frameworks and heightened safety expectations have intensified the focus on predictive approaches. As manufacturing floors become more automated and interconnected, the demand for nuanced vibration data grows in tandem. This report begins by illuminating the strategic relevance of vibration monitoring within the wider spectrum of operational excellence initiatives. It sets the stage for a comprehensive exploration of market dynamics, technological enablers, and strategic considerations, ensuring that decision-makers possess a clear understanding of the landscape and its implications for future investments.

Exploring the Transformative Shifts Driven by Industry 4.0, Artificial Intelligence, and Edge Computing that Are Redefining Vibration Monitoring Practices

The vibration monitoring landscape is undergoing transformative shifts fueled by the convergence of Industry 4.0 paradigms and advanced analytics. Industry leaders now harness artificial intelligence algorithms to detect subtle anomalies that traditional threshold-based systems would often miss. Edge computing architectures further accelerate this transformation by processing high-frequency data locally, reducing latency and optimizing bandwidth usage.

Furthermore, cloud-native platforms have democratized access to sophisticated diagnostic tools, enabling global teams to collaborate seamlessly on condition assessments. The integration of digital twins has introduced new possibilities for scenario planning, allowing maintenance engineers to simulate stress factors and validate response protocols before physical interventions. Consequently, the ecosystem has expanded beyond sensor vendors to include software providers, systems integrators, and data service specialists, each contributing to the development of holistic solutions that redefine the monitoring process.

Analyzing the Cumulative Effects of 2025 United States Tariffs on Supply Chains, Component Costs, and Strategic Sourcing in Vibration Monitoring Equipment

Emerging tariff measures announced for 2025 in the United States are creating ripples across the vibration monitoring supply chain. Increased duties on imported components have elevated raw material and finished good costs, prompting manufacturers to reassess sourcing strategies. In response, several organizations have accelerated efforts to diversify supplier networks and establish regional manufacturing footprints to mitigate exposure to tariff volatility.

Consequently, procurement teams are placing greater emphasis on total cost of ownership evaluations, weighing the benefits of local assembly against potential quality and consistency trade-offs. At the same time, aftermarket service providers are revising maintenance contracts and spare parts agreements, anticipating adjustments in component pricing. These adaptations underscore the need for agility in both manufacturing and service delivery models, ensuring that performance standards remain uncompromised in the face of evolving trade policies.

Deep Dive into Component, Process, Functionality, Connectivity, Industry Vertical, and Application Segmentation to Uncover Nuanced Insights in Vibration Monitoring

A nuanced examination of segmentation reveals diverse entry points and optimization pathways within vibration monitoring. Component segmentation spans hardware encompassing accelerometers, proximity probes, velocity sensors, vibration analyzers, vibration meters, and vibration transmitters, services grouping managed services and professional services, and software including data integration software and diagnostic software. Each of these facets plays a distinct role in forming integrated solutions, with hardware providing raw data capture, services ensuring continuous oversight, and software transforming measurements into actionable insights.

Beyond the core components, the monitoring process segmentation differentiates between offline monitoring, characterized by portable diagnostic tools used during scheduled inspections, and online monitoring, defined by fixed installations that deliver continuous oversight. Functionality segmentation further clarifies use cases, distinguishing condition monitoring that tracks baseline performance, fault detection and diagnostics that identify specific anomalies, and predictive maintenance that forecasts future degradation trends. Connectivity type segmentation covers wired networks known for reliability and wireless networks prized for deployment flexibility. Industry vertical segmentation extends across aerospace and defense, automotive, chemicals, electronics and semiconductors, energy and power, food and beverages, healthcare and pharmaceuticals, marine and shipbuilding, metal and mining, oil and gas, and water and wastewater treatment. Finally, application segmentation delves into key assets such as bearings, chillers, compressors, conveyors, fans, gearboxes, motors, pumps, and turbines, each presenting unique vibration signatures and maintenance imperatives.

Key Regional Dynamics and Strategic Drivers Shaping Vibration Monitoring Adoption Across the Americas, Europe Middle East Africa, and Asia Pacific Regions

Geographic dynamics play a pivotal role in shaping vibration monitoring adoption and strategic investments. The Americas demonstrate a strong emphasis on integrating cloud-based diagnostic platforms into existing infrastructure, with organizations leveraging established oil and gas, automotive, and aerospace sectors to pilot innovative predictive models. At the same time, industrial conglomerates in North America are expanding regional service centers to enhance responsiveness and reduce logistical lead times.

Meanwhile, Europe, the Middle East and Africa exhibit a dual focus on stringent regulatory compliance and sustainability targets. Major energy and power operators in Europe are implementing vibration monitoring as part of broader digitalization roadmaps, while mining and petrochemical players in the Middle East pursue remote monitoring solutions to manage distributed assets across challenging environments. In parallel, Africa's manufacturing hubs are gradually adopting modular sensor packages to modernize legacy installations.

Asia Pacific presents a dynamic landscape driven by rapid industrial expansion and government initiatives supporting smart factories. China's drive for self-reliance has spurred domestic sensor manufacturers to elevate product performance, while technology collaborations in Japan and South Korea are advancing next-generation signal processing algorithms. Across the region, scaling deployments of wireless networks are unlocking new use cases in sectors such as chemicals, power generation, and heavy machinery.

Assessing Competitive Positioning and Innovation Strategies of Leading Global Players Driving Technological Advancements in Vibration Monitoring Solutions and Services

Competition in the vibration monitoring arena centers on continuous innovation, integrated service offerings, and strategic partnerships. Global equipment suppliers are investing heavily in research and development to introduce miniaturized sensor arrays and advanced signal processing techniques that improve detection sensitivity. Simultaneously, software developers are enhancing data visualization and remote diagnostic capabilities to support distributed enterprise teams.

Collaborative ecosystems are emerging as a key differentiator, with several leading solution providers forging alliances with cloud infrastructure firms and analytics specialists to deliver fully managed condition monitoring platforms. Additionally, forward-looking companies are expanding their professional services portfolios to include condition-based training programs and custom algorithm development, thereby shifting from transactional equipment sales to subscription-based intelligence services. This competitive landscape underscores the increasing importance of end-to-end solutions that seamlessly blend hardware, software, and service components.

Actionable Recommendations for Industry Leaders to Enhance Operational Resilience, Drive Innovation, and Optimize Vibration Monitoring Strategies Across Diverse Industrial Environments

Industry leaders should prioritize establishing robust data governance frameworks that standardize vibration data collection, storage and analysis protocols. By implementing common data models and enforcing quality controls at the point of capture, organizations can accelerate rollout of advanced analytics initiatives and minimize integration friction across legacy and modern systems.

Furthermore, companies must explore incremental deployment of edge analytics modules to complement centralized platforms. This hybrid architecture not only enhances real-time responsiveness but also distributes computing loads in a cost-effective manner. In parallel, developing strategic partnerships with software vendors and analytics experts will be critical to co-creating custom algorithms tailored to specific equipment types and operational conditions.

Another key recommendation is to adopt a phased approach to workforce transformation. Upskilling maintenance teams through targeted training programs on vibration analysis techniques and diagnostic software will foster broader organizational buy-in. Finally, decision-makers should continuously review supplier contracts and service level agreements, ensuring flexibility to adjust to evolving technological standards and regulatory requirements.

Comprehensive Research Methodology Leveraging Primary Expert Insights and Rigorous Secondary Data Analysis to Deliver Authoritative Perspectives on Vibration Monitoring Trends

This research integrates comprehensive primary and secondary methodologies to ensure a holistic understanding of the vibration monitoring domain. Primary insights were gathered through structured interviews with maintenance executives, equipment OEM specialists, and analytics professionals, capturing firsthand perspectives on technology adoption drivers, implementation challenges, and value realization pathways.

Secondary research involved an exhaustive review of industry publications, technical journals, regulatory frameworks, and white papers from relevant sectors. Analytical frameworks such as SWOT analysis and technology adoption curves were applied to synthesize trends and identify strategic inflection points. Data triangulation techniques validated key findings, while expert panel reviews provided additional rigor and contextualized nuanced interpretations. Together, these approaches underpin the credibility and relevance of the insights presented herein.

Conclusive Reflections on Emerging Trends, Strategic Imperatives, and Growth Enablers Shaping the Future Landscape of Vibration Monitoring for Industrial Applications

As industries navigate the complexities of operational excellence, vibration monitoring stands out as a transformative enabler of reliability and efficiency. Emerging trends such as AI-driven diagnostics, wireless sensor networks, and predictive maintenance algorithms are reshaping traditional frameworks, offering unprecedented visibility into asset health. Moreover, evolving trade policies and regional dynamics underscore the importance of adaptable supply chains and service models that can scale with market demands.

Collectively, the insights articulated in this report highlight strategic imperatives for organizations seeking to elevate maintenance practices through integrated hardware, software, and service solutions. By embracing a data-centric culture and leveraging the latest technological advances, stakeholders can significantly reduce unplanned downtime, optimize resource allocation, and unlock new pathways for continuous improvement. The journey toward proactive asset management begins with informed decision-making and a commitment to innovation at every level.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven predictive analytics in rotating equipment vibration monitoring systems
  • 5.2. Emergence of edge computing solutions reducing latency in multi-parameter vibration data processing
  • 5.3. Adoption of digital twin technology for proactive vibration anomaly detection in manufacturing plants
  • 5.4. Increasing use of MEMS-based accelerometers for compact and cost-effective vibration monitoring in electric vehicles
  • 5.5. Rise of multifunction handheld vibration analyzers with augmented reality for on-site predictive maintenance
  • 5.6. Integration of blockchain technology to ensure data integrity in vibration monitoring service offerings
  • 5.7. Adoption of wireless IoT-enabled vibration sensors for real-time machinery health monitoring
  • 5.8. Implementation of edge computing architecture to reduce latency in vibration data analysis
  • 5.9. Utilization of machine learning algorithms for anomaly detection in industrial vibration monitoring
  • 5.10. Deployment of energy-harvesting vibration sensors to power condition monitoring systems sustainably

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Vibration Monitoring Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Accelerometers
    • 8.2.2. Proximity Probes
    • 8.2.3. Velocity Sensors
    • 8.2.4. Vibration Analyzers
    • 8.2.5. Vibration Meters
    • 8.2.6. Vibration Transmitters
  • 8.3. Services
    • 8.3.1. Managed Services
    • 8.3.2. Professional Services
  • 8.4. Software
    • 8.4.1. Data Integration Software
    • 8.4.2. Diagnostic Software

9. Vibration Monitoring Market, by Monitoring Process

  • 9.1. Introduction
  • 9.2. Offline Monitoring ( Portable)
  • 9.3. Online Monitoring (Fixed)

10. Vibration Monitoring Market, by Functionality

  • 10.1. Introduction
  • 10.2. Condition Monitoring
  • 10.3. Fault Detection & Diagnostics
  • 10.4. Predictive Maintenance

11. Vibration Monitoring Market, by Connectivity Type

  • 11.1. Introduction
  • 11.2. Wired
  • 11.3. Wireless

12. Vibration Monitoring Market, by Industry Vertical

  • 12.1. Introduction
  • 12.2. Aerospace & Defense
  • 12.3. Automotive
  • 12.4. Chemicals
  • 12.5. Electronics & Semiconductors
  • 12.6. Energy & Power
  • 12.7. Food & Beverages
  • 12.8. Healthcare & Pharmaceuticals
  • 12.9. Marine & Shipbuilding
  • 12.10. Metal & Mining
  • 12.11. Oil & Gas
  • 12.12. Water & Wastewater Treatment

13. Vibration Monitoring Market, by Application

  • 13.1. Introduction
  • 13.2. Bearings
  • 13.3. Chillers
  • 13.4. Compressors
  • 13.5. Conveyors
  • 13.6. Fans
  • 13.7. Gearboxes
  • 13.8. Motors
  • 13.9. Pumps
  • 13.10. Turbines

14. Americas Vibration Monitoring Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Vibration Monitoring Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Vibration Monitoring Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. AB SKF
    • 17.3.2. ABB Ltd.
    • 17.3.3. ALS Limited
    • 17.3.4. Amphenol Corporation
    • 17.3.5. Analog Devices, Inc.
    • 17.3.6. Baker Hughes Company
    • 17.3.7. Dewesoft d.o.o.
    • 17.3.8. Emerson Electric Co.
    • 17.3.9. Fluke Corporation
    • 17.3.10. Honeywell International Inc.
    • 17.3.11. Hottinger Bruel & Kjaer GmbH
    • 17.3.12. IVC Technologies
    • 17.3.13. Jamieson Equipment Co., Inc.
    • 17.3.14. Kistler Group
    • 17.3.15. MC MONITORING by Infoteam Informatique Holding SA
    • 17.3.16. NSK Ltd.
    • 17.3.17. Parker-Hannifin Corporation
    • 17.3.18. Robert Bosch GmbH
    • 17.3.19. Rockwell Automation, Inc.
    • 17.3.20. Schaeffler AG
    • 17.3.21. SCHENCK RoTec GmbH by Durr Group
    • 17.3.22. SenseGrow Inc.
    • 17.3.23. Siemens AG
    • 17.3.24. SPM Instrument AB
    • 17.3.25. Teledyne Technologies Incorporated
    • 17.3.26. General Electric Company

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦