½ÃÀ庸°í¼­
»óǰÄÚµå
1808424

ºÎŸµð¿£ ½ÃÀå : À¯µµÃ¼º°, Á¦Á¶ °øÁ¤º°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Butadiene Market by Derivatives, Production Process, Application, End-Use, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ºÎŸµð¿£ ½ÃÀåÀº 2024³â¿¡´Â 143¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 151¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 5.67%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 199¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 143¾ï 3,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 151¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 199¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 5.67%

ºÎŸµð¿£ÀÇ Àü·«Àû Á߿伺°ú ÁÖ¿ä ¼¼°è ½ÃÀå¿¡¼­ Æú¸®¸Ó »ý»ê ¹× »ê¾÷ °ø±Þ¸Á¿¡ ¹ÌÄ¡´Â º¯ÇõÀû ¿µÇâ¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.

ºÎŸµð¿£Àº ¼¼°è ¼®À¯È­ÇÐ »ê¾÷ÀÇ ÇÙ½É ´Ü·®Ã¼·Î¼­ ±¤¹üÀ§ÇÑ ÇÕ¼º °íºÐÀÚ ¹× ¿¤¶ó½ºÅä¸ÓÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. µ¶Æ¯ÇÑ °ø¾× µð¿£ ±¸Á¶·Î ÀÎÇØ °íºÐÀÚ È­ÇÐÀÚµéÀº ±â°èÀû ź·Â¼º, ¿­ ¾ÈÁ¤¼º, ³»È­ÇмºÀ» Á¶Á¤ÇÑ Àç·á¸¦ ¼³°èÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÎŸµð¿£Àº ¿ª»çÀûÀ¸·Î Á¾ÇÕÁ¤Á¦´ÜÁö ³» ¼öÁõ±â ºÐÇØ °øÁ¤¿¡¼­ ÆÄ»ýµÇ¾î Æ´»õ Á¦Ç°¿¡¼­ Àü¿ë »ý»ê´É·ÂÀ» °®Ãá °íºÎ°¡°¡Ä¡ »óǰÀ¸·Î ¹ßÀüÇØ ¿Ô½À´Ï´Ù. ºÎŸµð¿£Àº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ¼ö¿ä°¡ È®´ëµÇ¸é¼­ Àü·«Àû Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.

ºÎŸµð¿£ÀÇ °æÀï ȯ°æÀ» ÀçÁ¤ÀÇÇÏ´Â »ý»ê ±â¼ú, ¼ö¿ä µ¿ÀÎ, ±ÔÁ¦ ±âÁØÀÇ È¹±âÀûÀÎ º¯È­¸¦ ÃßÀûÇÕ´Ï´Ù.

Áö³­ 10³â°£ ºÎŸµð¿£ »ý»êÀº ±â¼úÀû Çõ½Å°ú ÁøÈ­ÇÏ´Â ¿ø·á Àü·«À¸·Î ÀÎÇØ Å« º¯È­¸¦ °Þ¾ú½À´Ï´Ù. ³ªÇÁŸ³ª ¼®À¯ ¹× °¡½º¸¦ ¿ø·á·Î ÇÏ´Â ÀüÅëÀûÀÎ ½ºÆÀ Å©·¡Å· °øÁ¤Àº Ã˸ŠŻ¼ö¼Ò °æ·Î¸¦ ÅëÇØ ¿Ïº®ÇÑ ÇÕ¼ºÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Ã˸ŠŻ¼ö¼Ò °æ·Î¿¡ ÀÇÇØ º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â °ø±Þ ¿ø·áÀÇ À¯¿¬¼ºÀ» ´Ù¾çÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó Àú¹èÃâ ¸ñÇ¥¿¡ ¸Â°Ô »ý»êÀ» Á¶Á¤ÇÏ´Â °ÍÀ̱⵵ ÇÕ´Ï´Ù. µ¿½Ã¿¡ ÃßÃâ Áõ·ù ±â¼úÀº ¼øµµ ¼öÀ²À» ³ôÀ̱â À§ÇØ ÃÖÀûÈ­µÇ¾î ÀÖÀ¸¸ç, »êÈ­Àû Å»¼ö¼Ò¹ýÀº ÀÚº» Áý¾àµµ °¨¼Ò¿Í ¸ðµâÈ­ °¡´É¼ºÀ¸·Î ÀÎÇØ ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù.

2025³â¿¡ µµÀÔµÈ ¹Ì±¹ÀÇ °ü¼¼°¡ ºÎŸµð¿£ ½ÃÀåÀÇ ¼öÀÔ È帧°ú ºñ¿ë ±¸Á¶ ¹× Àü·«Àû Á¶´Þ °áÁ¤À» À籸¼ºÇÏ´Â ¹æ¹ýÀ» ºÐ¼®ÇÕ´Ï´Ù.

¹Ì±¹Àº 2025³â ¼öÀÔ ºÎŸµð¿£°ú ±× ÁÖ¿ä À¯µµÇ°¿¡ ´ëÇÑ ÀÏ·ÃÀÇ °ü¼¼¸¦ µµÀÔÇß½À´Ï´Ù. ÀÌ´Â ±¹³» Á¦Á¶¾÷ °­È­¿Í ¹«¿ª ºÒ±ÕÇü ÇØ¼Ò¸¦ À§ÇÑ °ÍÀÔ´Ï´Ù. ÀÌ Á¶Ä¡´Â À¯·´°ú ¾Æ½Ã¾ÆÀÇ ÁÖ¿ä °ø±Þ¾÷ü¿¡ Àû¿ëµÇ¸ç, 1Â÷ ´Ü·®Ã¼ ¹× °íºÎ°¡°¡Ä¡ Ư¼ö ¿¤¶ó½ºÅä¸Ó¿¡ ´ëÇÑ °ü¼¼°¡ ÀλóµÇ¾ú½À´Ï´Ù. ÀÌ °ü¼¼ Á¦µµ´Â ¼öÀÔ¾÷üµéÀÇ »ó·ú ºñ¿ëÀ» »ó½Â½ÃÄ×À» »Ó¸¸ ¾Æ´Ï¶ó ±âÁ¸ °ø±Þ °è¾à°ú ¹°·ù ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀçÆò°¡¸¦ Ã˹߽ÃÄ×½À´Ï´Ù.

ºÎŸµð¿£ÀÇ »ý»ê °øÁ¤, ÃÖÁ¾ ¿ëµµ, À¯Åë¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ÅëÇØ ½ÃÀå ÀáÀç·ÂÀ» À̲ø¾î³À´Ï´Ù.

ºÎŸµð¿£ÀÇ ÃÖÁ¾ ½ÃÀå ÀáÀç·ÂÀ» À¯µµÃ¼ÀÇ °æ·Î¶ó´Â ·»Á ÅëÇØ ¹Ù¶óº¸¸é, ºÎŸµð¿£ÀÇ ÃÖÁ¾ ½ÃÀå ÀáÀç·ÂÀ» ¹Ì¹¦ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÆÅ©¸±·Î´ÏÆ®¸±-ºÎŸµð¿£-½ºÆ¼·»Àº °­¼º°ú °¡°ø ¿ëÀ̼ºÀ¸·Î ÀÎÇØ °í¼ºÀå Æú¸®¸Ó ºí·»µå·Î °¢±¤¹Þ°í ÀÖÀ¸¸ç, ¾ÆµðÆ÷´ÏÆ®¸±Àº ¼¶À¯ ¹× ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ ºÐ¾ß¿¡¼­ ³ªÀÏ·Ð Áß°£Ã¼·Î¼­ÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ³×¿ÀÇÁ·»Àº »ê¾÷¿ë °³½ºÅ¶ ¹× º¸È£º¹ÀÇ ³»È­Çмº ¿ä±¸¸¦ °­Á¶Çϰí, Æú¸®ºÎŸµð¿£ °í¹«´Â °í¼º´É ŸÀÌ¾î Æ®·¹µåÀÇ Ç¥ÁØÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½ºÆ¼·»-ºÎŸµð¿£ °í¹«´Â ³»±¸¼º°ú À¯¿¬¼ºÀÇ ºñ¿ë È¿À²ÀûÀÎ ±ÕÇüÀ» ÅëÇØ ´ëÁß ½ÃÀå¿¡¼­ÀÇ ¸Å·ÂÀ» À¯ÁöÇϰí ÀÖ½À´Ï´Ù. °¢ ÆÄ»ý ·çÆ®´Â ÅõÀÚ ¿ì¼±¼øÀ§¿Í Çõ½Å ·Îµå¸ÊÀ» À̲ô´Â °³º°ÀûÀÎ °¡Ä¡ Á¦¾ÈÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºÎŸµð¿£ ¼ö¿ä ¹× °ø±ÞÀ» Çü¼ºÇÏ´Â Áö¿ªÀû ¿ªÇаü°èÀÇ ±âȸ¿Í °æÀï µ¿ÇâÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÀÚµ¿Â÷ »ý»ê±âÁö¿¡ ±ÙÁ¢ÇÑ Á¤Á¦ ÄÞºñ³ªÆ®°¡ ¹ÐÁýµÇ¾î ÀÖ¾î ºÎŸµð¿£ÀÇ Ã³¸®·®ÀÌ °ßÁ¶ÇÏ°Ô À¯ÁöµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº dzºÎÇÑ Ãµ¿¬°¡½º ¾×È­¿ø·á¿Í Àß ±¸ÃàµÈ ¹°·ùȸ¶ûÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ¸ß½ÃÄÚ´Â ºÏ¹Ì ½ÃÀå°ú Àü·«ÀûÀ¸·Î ±¹°æÀ» ³Ñ¾î ¿¬°áµÇ¾î ÀÖ°í, ºê¶óÁúÀº ŸÀ̾î Á¦Á¶ Ŭ·¯½ºÅͰ¡ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ¾î ÀÌ Áö¿ªÀÌ ³»¼ö ¹× ¼öÃâ ¼ö¿ä¸¦ ¸ðµÎ ÃæÁ·½Ãų ¼ö ÀÖ´Ù´Â °ÍÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, ÀϺΠ¹Ì±¹¿¡¼­´Â ¹èÃâ·® °¨ÃàÀ» °­Á¶ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ °øÁ¤ ÀåºñÀÇ ¾÷±×·¹À̵å¿Í ûÁ¤ Å»¼ö¼Ò ±â¼ú äÅÃÀ» À§ÇÑ ¼³ºñ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ºÎŸµð¿£ »ý»ê¾÷ü¿Í ±â¼ú Çõ½Å ±â¾÷, »ý»ê ´É·Â È®´ë¸¦ À§ÇÑ Àü·«Àû Á¦ÈÞ ¹× °¡Ä¡»ç½½ ÅëÇÕÀ» ÅëÇÑ ¾÷°è Àü¹ÝÀÇ Çõ½Å ±â¾÷ °ËÁõ

¼¼°è È­ÇÐ ¸ÞÀÌÀú´Â ±×¸°Çʵå ÇÁ·ÎÁ§Æ®¿Í È®ÀåÀÇ Á¶ÇÕÀ» ÅëÇØ ºÎŸµð¿£ »ý»êÀÇ ¸®´õ½ÊÀ» Áö¼ÓÀûÀ¸·Î °­È­ÇØ ³ª°¡°í ÀÖ½À´Ï´Ù. Sinopec, ExxonMobil, LyondellBasell, Shell, Dow µî ÁÖ¿ä ±â¾÷µéÀº ±âÁ¸ Å©·¡Ä¿ ÀÚ»êÀÇ ´Ü·®Ã¼ ó¸® ´É·ÂÀ» Çâ»ó½ÃŰ´Â »ý»ê´É·Â µðº¸Æ²³ØÅ· ÀÌ´Ï¼ÅÆ¼ºê¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È®Àå¿¡´Â ÇöÁö¿¡ ±â¹ÝÀ» µÐ ½ÃÀå ÀλçÀÌÆ®¿Í ±âÁ¸ ±â¼ú Ç÷§ÆûÀ» °áÇÕÇÏ¿© ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÏ´Â ½Ã³ÊÁö¸¦ âÃâÇÏ´Â ÇÕÀÛ ÅõÀÚ°¡ ÀÚÁÖ ¼ö¹ÝµË´Ï´Ù. Àü·«Àû Á¦ÈÞ¿¡´Â Á¾Á¾ Â÷¼¼´ë Ã˸ÅÀÇ ±³Â÷ ¶óÀ̼±½ÌÀÌ Æ÷ÇԵǸç, Âü¿© ±â¾÷Àº ¿ø·á È帧¿¡¼­ ´õ ³ôÀº ¼öÀ²À» ¾òÀ¸¸é¼­ ȯ°æ Áؼö ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖ½À´Ï´Ù.

È¿À²¼º ÃÖÀûÈ­¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¦¾È ¼ö¸³ °ø±Þ¸Á °­°Ç¼º °­È­ ¹× ºÎŸµð¿£ ºÎ¹®ÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.

ù°, ¸®´õ½Ê ÆÀÀº °æÁ¦Àû ¼º°ú¿Í ȯ°æÀû Ã¥ÀÓ°¨À» µ¿½Ã¿¡ ´Þ¼ºÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë »ý»ê ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±ÀûÀ¸·Î °í·ÁÇØ¾ß ÇÕ´Ï´Ù. Ã˸ŠŻ¼ö¼Ò ¸ðµâÀ̳ª »êÈ­ Å»¼ö¼Ò ¸ðµâÀ» µµÀÔÇÏ¿© °ø±Þ ¿ø·áÀÇ ¼±ÅñÇÀ» ´Ù¾çÈ­ÇÏ°í ¿¡³ÊÁö Áý¾àµµ¸¦ ³·Ãâ ¼ö ÀÖÀ¸¸ç, ÃßÃâ À¯´ÖÀ» °³Á¶ÇÏ¿© ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¼øµµ ¼öÀ²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ±â¼ú Ç÷§Æû°ú ÀáÀçÀûÀÎ ¿ø·á °ø±Þ¿ø¿¡ °ÉÄ£ ÃѼÒÀ¯ºñ¿ëÀ» ü°èÀûÀ¸·Î Æò°¡ÇÔÀ¸·Î½á °æ¿µÁøÀº ź¼Ò ¹ßÀÚ±¹À» ÁÙÀÌ°í ¸Å·ÂÀûÀÎ ÀÚº» ¼öÀÍ·üÀ» È®º¸ÇÒ ¼ö ÀÖ´Â ÃÖÀûÀÇ °æ·Î¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» À§ÇÑ ´ÙÁß ¼Ò½º µ¥ÀÌÅÍ ¼öÁý ÀÎÅͺä¿Í »ï°¢ Ãø·®º° ¾ö°ÝÇÑ È¥ÇÕ Á¶»ç ¹æ¹ý·Ð¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ë.

º» Á¶»ç´Â 2Â÷ Á¶»ç¿Í 1Â÷ Á¶»ç¸¦ °áÇÕÇÑ Ã¼°èÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ºÎŸµð¿£ ½ÃÀå¿¡ ´ëÇÑ ¿ÏÀüÇÑ »ï°¢ºÐ¼®À» ¼öÇàÇß½À´Ï´Ù. ¸ÕÀú, ÀϹݿ¡ °ø°³µÈ ±â¾÷ Á¤º¸, ±â¼ú ³í¹®, ±ÔÁ¦ ´ç±¹ ½Å°í, ¾÷°è ´Üü °£Ç๰ µîÀ» ±¤¹üÀ§ÇÏ°Ô Á¶»çÇÏ¿© »ý»ê ´É·Â, ±â¼ú ·Îµå¸Ê, Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©¸¦ Æ÷°ýÇÏ´Â ±âÃÊ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ±¸ÃàÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀº ¹«¿ª Åë°è¿Í Åë°ü ±â·ÏÀ¸·Î º¸¿ÏµÇ¾î ¿øÀÚÀç È帧À» ¸ÅÇÎÇϰí Á¶´Þ ÆÐÅÏÀ» °ËÁõÇß½À´Ï´Ù.

ÁÖ¿ä Áö½Ä°ú Àü·«Àû °úÁ¦¸¦ ÅëÇÕÇÏ¿© ÀÇ»ç°áÁ¤±ÇÀÚ°¡ ÁøÈ­ÇÏ´Â ºÎŸµð¿£ ½ÃÀå »óȲÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¾Õ¼­ ¾ð±ÞÇÑ ºÐ¼®Àº ºÎŸµð¿£ ½ÃÀåÀÇ ´Ù¸éÀûÀÎ ÁøÈ­¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¹ü¿ë »ý»ê ±â¼ú, ¼ö¿ä ÇÁ·ÎÆÄÀÏÀÇ º¯È­, ÁöÁ¤ÇÐÀû Á¤Ã¥ °³ÀÔ¿¡ ±âÀÎÇÕ´Ï´Ù. Ã˸ŠŻ¼ö¼Ò ¹× »êÈ­ °æ·Î°¡ ºñ¿ë ±¸Á¶¿Í ȯ°æ º¥Ä¡¸¶Å©¸¦ ÀçÁ¤ÀÇÇϰí ÀÖÀ¸¸ç, Æú¸®¸Ó, ¿¤¶ó½ºÅä¸Ó, Ư¼öÈ­Çп¡ °ÉÄ£ ´Ù¿î½ºÆ®¸² ¼¼ºÐÈ­´Â ´Ù¾çÇÑ ¼ºÀå ±ËÀûÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ÀÇ °ü¼¼ µµÀÔÀº ¼öÀÔ¿¡ ÀÇÁ¸ÇÏ´Â ±â¾÷ÀÇ ¸¶ÁøÀ» ¾Ð¹ÚÇϰí, Áö¿ª ÅëÇÕ°ú °ø±Þ¸Á ¹Îø¼ºÀ» ¿ì¼±½ÃÇÏ´Â Àü·«Àû Á¶´Þ ÀçÁ¶ÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °­·ÂÇÑ »ê¾÷ È®Àå°ú À¯·´ÀÇ ±ÔÁ¦ °­È­´Â ¼¼°è »ý»ê ´É·Â °èȹ¿¡ Á¤º¸¸¦ Á¦°øÇÏ´Â ¼­·Î ´Ù¸£Áö¸¸ »óÈ£ º¸¿ÏÀûÀÎ À̾߱⸦ Á¦½ÃÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ºÎŸµð¿£ ½ÃÀå µð¸®¹öƼºêº°

  • ¾ÆÅ©¸±·Î´ÏÆ®¸± ºÎŸµð¿£ ½ºÆ¼·»
  • ¾ÆµðÆ÷´ÏÆ®¸±
  • ³×¿ÀÇÁ·»
  • Æú¸® ºÎŸµð¿£ °í¹«
  • ½ºÆ¼·» ºÎŸµð¿£ °í¹«(SBR)

Á¦9Àå ºÎŸµð¿£ ½ÃÀå : »ý»ê °øÁ¤º°

  • Ã˸ŠŻ¼ö¼Ò
  • ÃßÃâ Áõ·ù
  • »êÈ­ Å»¼ö¼Ò
  • Áõ±â ºÐÇØ

Á¦10Àå ºÎŸµð¿£ ½ÃÀå : ¿ëµµº°

  • Á¢ÂøÁ¦ ¹× ½Ç¶õÆ®
  • °ÇÃàÀÚÀç
  • ÇÃ¶ó½ºÆ½
  • ¹æÈ£º¹
  • ŸÀ̾î

Á¦11Àå ºÎŸµð¿£ ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ÀÚµ¿Â÷
  • È­ÇÐÁ¦Ç°
  • ¼ÒºñÀç
  • Æ÷Àå

Á¦12Àå ºÎŸµð¿£ ½ÃÀå : À¯Åë ä³Îº°

  • ¿ÀÇÁ¶óÀÎ
    • Á÷Á¢ ÆÇ¸Å
    • À¯Åë¾÷ü
  • ¿Â¶óÀÎ Ç÷§Æû

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ºÎŸµð¿£ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ºÎŸµð¿£ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºÎŸµð¿£ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • BASF SE
    • Borealis AG
    • China Petroleum & Chemical Corporation
    • Dow Chemical Company
    • Eni S.p.A.
    • Evonik Industries AG
    • ExxonMobil Corporation
    • Formosa Plastics Corporation
    • Hanwha Solutions Corporation
    • Ineos Group AG
    • JSR Corporation
    • KANTO CHEMICAL CO.,INC.
    • LG Chem Ltd.
    • Lotte Chemical Corporation
    • LyondellBasell Industries N.V.
    • Merck KGaA
    • Reliance Industries Limited
    • Repsol S.A.
    • Saudi Arabia's Basic Industries Corporation
    • Saudi Basic Industries Corporation
    • Shell plc
    • Sumitomo Chemical Co., Ltd.
    • The PJSC Lukoil Oil Company
    • TPC Group
    • Versalis S.p.A.

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

LSH

The Butadiene Market was valued at USD 14.33 billion in 2024 and is projected to grow to USD 15.11 billion in 2025, with a CAGR of 5.67%, reaching USD 19.97 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 14.33 billion
Estimated Year [2025] USD 15.11 billion
Forecast Year [2030] USD 19.97 billion
CAGR (%) 5.67%

Unveiling Butadiene's Strategic Importance and Its Transformative Impact on Polymer Production and Industrial Supply Chains Across Key Global Markets

Butadiene is a cornerstone monomer in the global petrochemical industry, serving as a critical building block for a wide spectrum of synthetic polymers and elastomers. Its unique conjugated diene structure enables polymer chemists to engineer materials with tailored mechanical resilience, thermal stability, and chemical resistance. Historically derived from steam cracking operations within integrated refining complexes, butadiene has evolved from a niche byproduct to a high-value commodity with dedicated production capacities. This evolution underscores its strategic importance as demand continues to intensify across multiple industrial end sectors.

In contemporary manufacturing ecosystems, butadiene feeds into an extensive portfolio of downstream derivatives. Among these, acrylonitrile butadiene styrene provides structural rigidity in consumer electronics housings, while neoprene delivers resilience in protective clothing and industrial tubing. Polybutadiene rubber remains indispensable for tire treads due to its exceptional wear resistance and low rolling resistance, and styrene butadiene rubber balances performance and cost for mass-market applications. Beyond elastomers, adiponitrile emerges as a key precursor for nylon production, further highlighting butadiene's versatility. This breadth of applications positions butadiene at the intersection of automotive, construction, consumer goods, and packaging segments.

Amid shifting global trade patterns and heightened environmental scrutiny, stakeholders across the value chain must balance supply security with sustainability imperatives. Advances in oxidative dehydrogenation and catalytic technologies are redefining production economics, while regulatory pressures around emissions and energy efficiency are accelerating innovation. Against this backdrop, understanding the dynamic interplay of feedstock availability, process advancements, and downstream demand profiles is essential for executives seeking to optimize capital allocation and competitive positioning. This introduction establishes the foundation for a comprehensive analysis of market influences, strategic opportunities, and actionable recommendations within the butadiene landscape.

Tracing the Groundbreaking Shifts in Production Technologies Demand Drivers and Regulatory Standards That Are Redefining Butadiene's Competitive Environment

Over the past decade, butadiene production has witnessed a profound transformation driven by technological breakthroughs and evolving feedstock strategies. Traditional steam cracking processes, which leveraged naphtha and gas oil feeds, are increasingly complemented by catalytic dehydrogenation routes that enable on-purpose synthesis. This shift not only diversifies feedstock flexibility but also aligns production with lower-emission objectives. Concurrently, extractive distillation techniques have been optimized to enhance purity yields, while oxidative dehydrogenation approaches have gained traction for their reduced capital intensity and modular deployment potential.

Simultaneously, downstream demand drivers are undergoing a structural realignment. The automotive sector's transition toward electric and hybrid vehicles has recalibrated elastomeric requirements for lightweight tires. At the same time, heightened emphasis on building energy-efficient infrastructure is stimulating growth in construction polymers. Regulatory frameworks across North America, Europe, and Asia-Pacific are enforcing stricter limits on volatile organic compound emissions and lifecycle carbon footprints. These mandates are compelling producers and end users to reassess process integration, supply chain transparency, and end-of-life recovery pathways for polymeric materials.

In this context, established players and new entrants alike are investing in research collaborations and strategic partnerships. Technology licensors are enhancing catalyst formulations to boost selectivity, while producers are piloting renewable feedstock projects that convert bioethanol or lignocellulosic intermediates into butadiene precursors. As regulatory agencies progressively tighten performance standards, the competitive landscape is being reshaped by a synthesis of innovation, policy alignment, and market-driven sustainability imperatives. These transformative shifts set the stage for an analysis of trade disruptions and strategic responses in the subsequent sections.

Analyzing How United States Tariffs Implemented in 2025 Are Reshaping Import Flows Cost Structures and Strategic Sourcing Decisions in the Butadiene Market

In 2025, the United States introduced a series of tariffs targeting imported butadiene and its major derivatives, motivated by a desire to bolster domestic manufacturing and address trade imbalances. These measures, applied to key suppliers in Europe and Asia, have elevated duties on primary monomer shipments as well as on value-added specialty elastomers. The tariff regime has not only increased landed costs for importers but also prompted a reevaluation of existing supply agreements and logistical networks.

Importers of monomer-grade butadiene have been particularly affected by the new duty structure, experiencing margin compression that has led to renegotiations with overseas partners. Faced with elevated import duties, several end users have shifted procurement strategies toward regional producers in the Americas. This realignment has fueled investment in additional local capacity while incentivizing strategic alliances between chemical majors and regional polymer manufacturers. Simultaneously, alternative sourcing corridors through Latin American ports are being explored to mitigate duty impacts, longer transit delays, and currency volatility.

To adapt, domestic producers have responded by optimizing their cost structures, leveraging feedstock hedging strategies, and securing longer-term supply contracts. Some have accelerated debottlenecking projects and debottlenecking of existing facilities to capture higher volumes of cargo and stabilize market access. As tariff-induced volatility persists, companies are also investigating downstream integration opportunities to lock in monomer volumes and mitigate raw material cost fluctuations. These strategic sourcing decisions illustrate how policy shifts can cascade through the value chain, compelling dynamic adjustments in procurement, manufacturing, and distribution practices.

Unlocking Market Potential Through Comprehensive Segmentation Insights That Illuminate Derivatives Production Processes Applications End-Use and Distribution

A nuanced appreciation of butadiene's end market potential emerges when viewed through the lens of its derivative pathways. Acrylonitrile butadiene styrene stands out as a high-growth polymer blend prized for its rigidity and ease of processing, while adiponitrile underscores the significance of nylon intermediates within textile and engineering plastics sectors. Neoprene underscores chemical resistance needs in industrial gaskets and protective wear, even as polybutadiene rubber remains the benchmark for high-performance tire treads. Styrene butadiene rubber retains mass-market appeal through its cost-effective balance of durability and flexibility. Each derivative route reflects discrete value propositions that guide investment priorities and innovation roadmaps.

Equally critical is the consideration of production process segmentation. Catalytic dehydrogenation has emerged as a strategic alternative to conventional cracking, offering on-demand flexibility and compatibility with varied hydrocarbon streams. Extractive distillation continues to refine purification efficiencies, whereas oxidative dehydrogenation introduces a lower-emission footprint. Steam cracking, despite being a legacy route, still underpins large-scale integrated operations by capitalizing on existing petrochemical complexes. The choice of production pathway shapes capex allocations, energy consumption profiles, and overall environmental performance metrics.

Application segmentation further deepens market intelligence by mapping butadiene consumption across adhesives and sealants, construction materials, plastics compounding, protective clothing synthesis, and tire manufacturing. End-use considerations reveal distinct end-market drivers in automotive assembly, specialty chemical production, consumer goods fabrication, and packaging solutions. Distribution channel dynamics weave together offline sales networks-comprised of direct sales teams and distributor partnerships-with rapidly expanding online platforms that facilitate just-in-time procurement and digital order management. Integrating these segmentation perspectives equips decision makers with a multi-dimensional roadmap for targeted growth and resource optimization.

Revealing Regional Dynamics Opportunities and Competitive Trends Shaping Butadiene Demand and Supply Across the Americas Europe Middle East Africa Asia-Pacific

In the Americas, the concentration of integrated refining complexes coupled with proximity to automotive production hubs has maintained robust butadiene throughput. The United States, in particular, benefits from abundant natural gas liquids feedstock and well-established logistical corridors. Mexico's strategic cross-border connectivity with North American markets and Brazil's burgeoning tire manufacturing clusters further underscore the region's capacity to serve both domestic and export requirements. Regulatory frameworks emphasizing emissions reductions in several states have nonetheless prompted capital outlays to upgrade process units and adopt cleaner dehydrogenation technologies.

Europe, the Middle East, and Africa present a study in contrasts. Western European producers are navigating an aggressive transition toward lower-carbon operations, driven by ambitious decarbonization targets and stringent petrochemical regulations. In the Middle East, integrated petrochemical initiatives capitalize on vast hydrocarbon reserves, offering competitively priced monomer streams for both regional growth and export into Europe and Asia. Meanwhile, African capacity remains nascent but shows promise as infrastructural investments and industrialization policies gain momentum, especially in North Africa where proximity to European consumers can be leveraged.

Asia-Pacific continues to represent the fastest-growing arena for butadiene demand, driven by large-scale automotive assembly lines, burgeoning construction projects, and expanding consumer electronics manufacturing. China's commitment to upgrading vapor-phase extraction and oxidative dehydrogenation facilities has bolstered domestic monomer supplies, even as import dependencies persist for specialty rubbers. South Korea and Japan maintain leadership in advanced catalyst development, supplying technology solutions that enhance process efficiency across the region. Emerging economies in Southeast Asia are also investing in both greenfield and brownfield expansions to secure feedstock resilience and support downstream polymer clusters.

Examining Leading Butadiene Producers and Technology Innovators Driving Capacity Expansion Strategic Alliances and Value Chain Integration Across the Industry

Global chemical majors continue to reinforce their leadership in butadiene production through a combination of greenfield projects and incremental expansions. Key players such as Sinopec, ExxonMobil, LyondellBasell, Shell, and Dow have instituted capacity debottlenecking initiatives that boost monomer throughput within existing cracker assets. These expansions are frequently accompanied by joint ventures that blend localized market insights with established technological platforms, creating synergies that accelerate time to market. Strategic alliances often involve cross licensing of next-generation catalysts, enabling participants to extract higher yields from feedstock streams while meeting environmental compliance thresholds.

At the forefront of innovation, specialized technology providers are commercializing proprietary catalytic formulations designed to lower energy consumption and minimize by-product formation. Collaborative R&D efforts between academic institutions and industry consortia are accelerating pilot programs for oxidative dehydrogenation units, which promise modular scalability and reduced greenhouse gas emissions. Several prominent rubber producers are likewise forging partnerships to internalize monomer supplies and secure more competitive cost structures for high-value elastomer grades.

Alongside capacity growth, there is a discernible trend toward value chain integration. Companies are acquiring or aligning with downstream compounding and adhesive manufacturers to capture additional margin pools and strengthen customer relationships. Access to proprietary application data guides more iterative product development, enabling producers to tailor monomer specifications that meet the precise performance requirements of automotive, construction, and consumer goods markets. This holistic approach to portfolio management and vertical integration underscores the critical role of strategic alliances and corporate restructuring in shaping the competitive dynamics of the butadiene sector.

Formulating Actionable Recommendations to Optimize Efficiency Strengthen Supply Chain Resilience and Drive Sustainable Growth in the Butadiene Sector

First, leadership teams should prioritize investments in next-generation production technologies that align economic performance with environmental stewardship. Deploying catalytic and oxidative dehydrogenation modules can diversify feedstock options and reduce energy intensity, while retrofitting extraction units can enhance purity yields with minimal downtime. By systematically evaluating the total cost of ownership across technology platforms and potential feedstock sources, executives can identify optimal pathways to reduce carbon footprint and secure attractive returns on capital.

Second, companies must strengthen supply chain resilience through strategic sourcing diversification and collaborative risk management. Establishing long-term agreements with feedstock suppliers in multiple geographies mitigates the impact of regional tariff fluctuations or trade disruptions. Integrating digital procurement platforms enables real-time visibility into inventory levels, transit timelines, and supplier performance metrics, allowing rapid response to unforeseen shocks. Additionally, designing flexible contract structures with back-to-back pricing mechanisms can shield margins from sudden cost spikes.

Third, translating sustainability commitments into tangible progress is essential for unlocking new market opportunities. Engaging with upstream and downstream partners to develop circular economy models-such as collection and recycling of elastomer scrap-reinforces partnerships and fosters innovation. Pursuing joint development agreements for renewable feedstock initiatives, including bioethanol-to-butadiene conversions, can preempt regulatory headwinds and capture first-mover advantages. Executives who act decisively to align operational priorities with evolving environmental standards will not only ensure compliance but also secure differentiated positioning in an increasingly carbon-conscious marketplace.

Detailing a Rigorous Mixed Method Research Methodology Incorporating Multi-Source Data Collection Interviews and Triangulation for Comprehensive Market Analysis

This study leverages a systematic approach that combines secondary research with targeted primary data collection to achieve a fully triangulated analysis of the butadiene market. Initially, an extensive review of publicly available corporate disclosures, technical papers, regulatory filings, and industry association publications established a foundational dataset covering production capacities, technology roadmaps, and policy frameworks. These insights were complemented by trade statistics and customs records to map raw material flows and validate sourcing patterns.

To deepen the investigation, structured interviews were conducted with a diverse panel of stakeholders including C-suite executives, process engineers, procurement managers, and market analysts. These engagements provided qualitative perspectives on technology adoption timelines, investment priorities, supply chain constraints, and customer preferences. Interviewees also contributed forward-looking viewpoints on regulatory shifts and potential disruption scenarios, enriching the analysis with nuanced real-time data.

The final validation phase applied data triangulation techniques, cross-referencing quantitative information from production indices and cost-curve models with insights gleaned from interviews. Scenario analysis examined the sensitivity of the supply-demand equilibrium to variables such as tariff changes, feedstock volatility, and technology uptakes. This mixed-method framework ensures that the conclusions and recommendations rest on robust empirical foundations, enabling stakeholders to make informed strategic decisions grounded in both granular market intelligence and validated expert judgment.

Synthesizing Key Findings and Strategic Imperatives to Empower Decision Makers with Actionable Insights for Navigating the Evolving Butadiene Market Landscape

The preceding analysis highlights a multi-faceted evolution in the butadiene market, driven by on-purpose production technologies, shifting demand profiles, and geopolitical policy interventions. Catalytic dehydrogenation and oxidative routes are redefining cost structures and environmental benchmarks, while downstream segmentation across polymers, elastomers, and specialty chemicals underscores diverse growth trajectories. The introduction of U.S. tariffs has compressed margins for import-dependent operations, prompting strategic sourcing realignments that favor regional integration and supply chain agility. At the same time, Asia-Pacific's robust industrial expansion and Europe's regulatory intensity present divergent but complementary narratives that inform global capacity planning.

Against this backdrop, leading chemical producers and technology innovators are forging partnerships and securing value chain linkages to optimize throughput and enhance market responsiveness. Strategic expansions, joint ventures, and cross-licensing agreements are enabling participants to capitalize on feedstock arbitrage and advanced catalyst efficacy. Moreover, the convergence of digital procurement platforms and circular economy initiatives is shaping an era in which operational efficiency, environmental stewardship, and customer intimacy coalesce as primary competitive differentiators.

For decision makers, the imperative is clear: align capital investments with tomorrow's technology pathways, diversify sourcing to mitigate policy-driven risks, and embed sustainability practices within core operations. By doing so, executives can harness emerging opportunities and navigate the inherent uncertainties of the global butadiene landscape, thus securing a stronger position in the transition toward a more resilient and resource-efficient industrial ecosystem.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for butadiene in automotive tire manufacturing sectors
  • 5.2. Increasing adoption of bio-based butadiene for sustainable production
  • 5.3. Innovations in catalytic polymerization techniques for butadiene
  • 5.4. Impact of crude oil price fluctuations on butadiene market dynamics
  • 5.5. Expansion of butadiene applications in synthetic rubber industries
  • 5.6. Emerging economies driving growth in global butadiene consumption
  • 5.7. Stringent environmental regulations influencing butadiene production processes
  • 5.8. Integration of advanced monitoring technologies in butadiene plants
  • 5.9. Development of high-performance butadiene copolymers for industrial use
  • 5.10. Strategic partnerships and mergers shaping the butadiene supply chain

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Butadiene Market, by Derivatives

  • 8.1. Introduction
  • 8.2. Acrylonitrile Butadiene Styrene
  • 8.3. Adiponitrile
  • 8.4. Neoprene
  • 8.5. Polybutadiene Rubber
  • 8.6. Styrene Butadiene Rubber (SBR)

9. Butadiene Market, by Production Process

  • 9.1. Introduction
  • 9.2. Catalytic Dehydrogenation
  • 9.3. Extractive Distillation
  • 9.4. Oxidative Dehydrogenation
  • 9.5. Steam Cracking

10. Butadiene Market, by Application

  • 10.1. Introduction
  • 10.2. Adhesives & Sealants
  • 10.3. Construction Materials
  • 10.4. Plastics
  • 10.5. Protective Clothing
  • 10.6. Tires

11. Butadiene Market, by End-Use

  • 11.1. Introduction
  • 11.2. Automotive
  • 11.3. Chemical
  • 11.4. Consumer Goods
  • 11.5. Packaging

12. Butadiene Market, by Distribution Channel

  • 12.1. Introduction
  • 12.2. Offline
    • 12.2.1. Direct Sales
    • 12.2.2. Distributors
  • 12.3. Online Platforms

13. Americas Butadiene Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Butadiene Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Butadiene Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. BASF SE
    • 16.3.2. Borealis AG
    • 16.3.3. China Petroleum & Chemical Corporation
    • 16.3.4. Dow Chemical Company
    • 16.3.5. Eni S.p.A.
    • 16.3.6. Evonik Industries AG
    • 16.3.7. ExxonMobil Corporation
    • 16.3.8. Formosa Plastics Corporation
    • 16.3.9. Hanwha Solutions Corporation
    • 16.3.10. Ineos Group AG
    • 16.3.11. JSR Corporation
    • 16.3.12. KANTO CHEMICAL CO.,INC.
    • 16.3.13. LG Chem Ltd.
    • 16.3.14. Lotte Chemical Corporation
    • 16.3.15. LyondellBasell Industries N.V.
    • 16.3.16. Merck KGaA
    • 16.3.17. Reliance Industries Limited
    • 16.3.18. Repsol S.A.
    • 16.3.19. Saudi Arabia's Basic Industries Corporation
    • 16.3.20. Saudi Basic Industries Corporation
    • 16.3.21. Shell plc
    • 16.3.22. Sumitomo Chemical Co., Ltd.
    • 16.3.23. The PJSC Lukoil Oil Company
    • 16.3.24. TPC Group
    • 16.3.25. Versalis S.p.A.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦