½ÃÀ庸°í¼­
»óǰÄÚµå
1808428

¼¼°èÀÇ ±¤µµÆÄ·Î ½ÃÀå ¿¹Ãø : À¯Çü, Àç·á, ¸ðµå ±¸Á¶, ÀüÆÄ, Á¦Á¶ ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, À¯Åë ä³Îº°(2025-2030³â)

Optical Waveguide Market by Type, Material, Mode Structure, Propagation, Fabrication Technology, Application, End User, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 198 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

±¤µµÆÄ·Î ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 58¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³â¿¡´Â CAGR 7.83%·Î 62¾ï 6,000¸¸ ´Þ·¯·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 91¾ï 5,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 58¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 62¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 91¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 7.83%

±¤µµÆÄ·Î´Â Çö´ë Æ÷Åä´Ð ½Ã½ºÅÛÀÇ ÇÙ½ÉÀ» ÀÌ·ç¸ç, Á¦ÇÑµÈ °æ·Î¸¦ ÃÖ¼ÒÇÑÀÇ ¼Õ½Ç·Î È¿À²ÀûÀ¸·Î ºûÀ» Àü¼ÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× ÇÙ½ÉÀÌ µÇ´Â ±¤µµÆÄ·Î´Â ±¤ÀÚ¸¦ ¼³°èµÈ Àç·á¸¦ ÅëÇØ ÀεµÇÏ´Â °ÍÀ¸·Î, ´Ù¾çÇÑ ÆÄÀåÀÇ ÀüÀÚÆÄ¸¦ Á¶ÀÛÇÕ´Ï´Ù. ÀÌ ±âº» ±â´ÉÀº °í¼Ó µ¥ÀÌÅÍ Àü¼Û¿¡¼­ ±î´Ù·Î¿î ȯ°æ¿¡¼­ Á¤¹ÐÇÑ °¨Áö¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù.

±¤µµÆÄ·ÎÀÇ µ¿ÀÛÀ» Áö¹èÇÏ´Â ¹°¸®ÇÐÀº Àüü ³»ºÎ ¹Ý»ç¿Í ±¼Àý·ü ´ëºñÀÇ ¿ø¸®¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. Àç·á ÀÎÅÍÆäÀ̽º¿Í ±âÇÏÇÐÀû ¼³°è¸¦ Ȱ¿ëÇÏ¿© µµÆÄ°üÀº Àå°Å¸®¿Í º¹ÀâÇÑ ·¹À̾ƿô¿¡¼­µµ ½ÅÈ£ ¹«°á¼ºÀ» À¯ÁöÇÕ´Ï´Ù. Á¦Á¶ ±â¼úÀÇ Áøº¸·Î ¸ðµå °¡µÎ±â, ºÐ»ê Ư¼º ¹× ½ºÆåÆ®·³ ´ë¿ªÆø Á¦¾î°¡ ´õ¿í Á¤±³ÇØÁ³À¸¸ç »õ·Î¿î ÀÌ¿ë »ç·ÊÀÇ ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇÑ »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇØÁ³½À´Ï´Ù.

Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ ¾çÀ» ¹è°æÀ¸·Î ³ôÀº ´ë¿ªÆø°ú ¿¡³ÊÁö È¿À² Ãß±¸´Â ±¤µµÆÄ·Î¸¦ »ê¾÷ Çõ½ÅÀÇ Á߽ɿ¡ µÎ°í ÀÖ½À´Ï´Ù. Àç·á °úÇÐÀÚ, Æ÷Åä´Ð ¿£Áö´Ï¾î ¹× ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚÀÇ Çù¾÷Àº Áö¼ÓÀûÀ¸·Î ȹ±âÀûÀÎ ÃßÁøÀ» Ãß±¸Çϸç ÄÄÆÑÆ®ÇÏ°í °í±â´ÉÀÇ Æ÷Åä´Ð ȸ·ÎÀÇ ÁøÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »ýŰ谡 È®´ëµÇ´Â µ¿¾È ÀÌÇØ°ü°èÀÚ´Â Â÷¼¼´ë Æ÷Åä´Ð ¿¬°á ¼Ö·ç¼ÇÀÇ ÀáÀç·ÂÀ» ¿ÏÀüÈ÷ ½ÇÇöÇϱâ À§ÇØ º¹ÀâÇÑ ±â¼ú, ±ÔÁ¦, ½ÃÀå ¿ªÇÐÀ» Ž»öÇØ¾ß ÇÕ´Ï´Ù.

¶ÇÇÑ ±¤ ÁýÀû ȸ·ÎÀÇ ±¤ µµÆÄ°ü°ú ÀüÀÚ ºÎǰÀÇ À¶ÇÕÀº µð¹ÙÀ̽º ¾ÆÅ°ÅØÃ³¸¦ ÀçÁ¤ÀÇÇÏ¿© ¼³Ä¡ °ø°£°ú Àü·Â ¼Òºñ¸¦ ÁÙÀ̰í ÀÖ½À´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â µ¥ÀÌÅͼ¾ÅÍ, Åë½Å ÀÎÇÁ¶ó, ÀÚÀ² ÁÖÇà Â÷·®¿ë ¶óÀÌ´õ µî ½ÅÈï ½ÃÀåÀÇ ¿ä±¸¿¡ ´ëÀÀÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Æ÷Åä´Ð Ç÷§ÆûÀÌ ¼º¼÷ÇÔ¿¡ µû¶ó ¾÷°è´Â ¼º´É°ú ±â´ÉÀÇ »õ·Î¿î ¿µ¿ªÀ» °³Ã´Çϰí Çõ½ÅÀûÀÎ ¿ëµµ·Î °¡´Â ±æÀ» ¿­¾î ³ª°¡°í ÀÖ½À´Ï´Ù.

±¤µµÆÄ·Î ½ÃÀåÀ» Çü¼ºÇÏ´Â Çõ½ÅÀûÀÎ º¯È­

ÃÖ±Ù ±¤µµÆÄ·ÎÀÇ »óȲÀ» ´Ù¹æ¸é¿¡¼­ ÀçÁ¤ÀÇÇÏ´Â ÀÏ·ÃÀÇ º¯ÇõÀû ½ÃÇÁÆ®°¡ ÀϾ°í ÀÖ½À´Ï´Ù. Àç·á °úÇÐÀÇ È¹±âÀûÀÎ ¹ßÀüÀº Àü·Ê ¾ø´Â Åõ¸í¼º°ú ±â°èÀû ź·Â¼ºÀ» ½ÇÇöÇÏ´Â »õ·Î¿î À¯¸® Á¶¼º°ú Æú¸®¸Ó ºí·»µå¸¦ µµÀÔÇß½À´Ï´Ù. º´ÇàÇÏ¿© ½Ç¸®ÄÜ ±â¹Ý Æ÷Åä´Ð½ºÀÇ ÃâÇöÀ¸·Î µµÆÄ°ü°ú ¹ÝµµÃ¼ °øÁ¤ÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ¾î ÀçÇö¼ºÀÌ ³ôÀº ¼ÒÇü µð¹ÙÀ̽ºÀÇ ´ë·® »ý»êÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.

±¤µµÆÄ·Î °ø±Þ¸Á »ý»ê °æÁ¦¼º°ú ¼¼°è °æÀï·Â¿¡ ´ëÇÑ 2025³â ¹Ì±¹ °ü¼¼ Á¶Á¤ÀÇ ´©Àû ¿µÇâ

2025³â¿¡ µµÀÔµÈ ¹Ì±¹ °ü¼¼ Á¤Ã¥ÀÇ º¯È­´Â ¾÷°è Àü¹ÝÀÇ ±¤µµÆÄ·Î °ø±Þ¸Á°ú °æÁ¦ ¸ðµ¨¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àç·á, ºÎǰ ¹× ¿Ï¼º ¸ðµâÀÇ °ü¼¼ Á¶Á¤Àº Á¶´Þ Àü·«À» °ËÅäÇϰí Á¦Á¶¾÷ü´Â ´ëü Á¶´Þ °æ·Î¸¦ ¸ð»öÇØ¾ßÇÕ´Ï´Ù. ÀÌ ¹æÇâ ÀüȯÀº ºñ¿ë ±¸Á¶¸¦ À籸¼ºÇÏ°í °ü¼¼ ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ Æ¯Á¤ »ý»ê ´Ü°è¸¦ ÁÖ¿ä ½ÃÀå ±Ùó·Î ÀÌÀüÇϵµ·Ï Ã˱¸ÇÕ´Ï´Ù.

±¤µµÆÄ·Î ½ÃÀå ¿ªÇÐÀ» ¹àÇô³»´Â Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­ ÅëÂû : À¯Çü Àç·á ¸ðµå ±¸Á¶ ÀüÆÄ Á¦Á¶ ±â¼ú ¿ëµµ¿Í ÃÖÁ¾ »ç¿ëÀÚÀÇ Â÷¿ø¿¡ °ÉÃÄ

¼¼ºÐÈ­ ºÐ¼®Àº ±¤ µµÆÄ°üÀÇ ±¸¼ºÀÌ ±â¼úÀû, Àç·áÀûÀ¸·Î ´Ù¸¥ ±âÁØ¿¡ ÀÇÇØ Çü¼ºµÇ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ±¤µµÆÄ·ÎÀÇ À¯Çüº°·Î º¸¸é Æò¸é ÁýÀû¿ëÀ¸·Î ¼³°èµÈ ä³Î µµÆÄ·Î, Àå°Å¸® Àü¼Û¿ëÀ¸·Î Á¶Á¤µÈ ÆÄÀ̹ö µµÆÄ·Î, ¹êµå °¸ ¿£Áö´Ï¾î¸µÀ» Á¦°øÇÏ´Â Æ÷Åä´Ð °áÁ¤ ±¸Á¶, ¿ÂĨ ¹è¼±¿ëÀ¸·Î ÃÖÀûÈ­µÈ Æò¸é µµÆÄ·Î, °¡µÎ±â¿Í Á¦Á¶ ¿ëÀ̼ºÀÇ ±ÕÇüÀ» ¸ÂÃá ¸®ºê µµÆÄ·Î, ÄÄÆÑÆ®ÇÑ ½ÇÀû¿Í ³ôÀº À妽º °¢ Ä«Å×°í¸®´Â ƯÁ¤ ¼º´É ÁöÇ¥¸¦ Áö¿øÇϸç ÃÖÁ¾ ¿ëµµ ½Ã³ª¸®¿À¿¡¼­ ´Ù¾çÇÑ Ã¤Åà ÆÐÅÏÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±¤µµÆÄ·Î ½ÃÀå ¿ªÇÐÀÇ ÁÖ¿ä ÇÏÀ̶óÀÌÆ® ¼ºÀå ÃËÁø¿äÀΰú Àü·«Àû °úÁ¦

¾Æ¸Þ¸®Ä«¿¡¼­´Â µ¥ÀÌÅͼ¾ÅÍ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¿Õ¼ºÇÑ ÅõÀÚ¿Í °í¼ÓÅë½Å ¹éº»ÀÇ È®´ë°¡ È£Á¶ÀûÀÎ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ ¿¬±¸±â°ü°ú ±â¼ú Çãºê°¡ ½Ç¸®ÄÜ Æ÷Åä´Ð½ºÀÇ Çõ½ÅÀ» ÃßÁøÇϰí, Áö¿ª Á¦Á¶¾÷ü´Â Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î¾î ±¹³» »ý»ê ´É·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ÷´Ü Á¦Á¶¾÷°ú ¾ÈÀüÇÑ °ø±Þ¸ÁÀ» Áö¿øÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â µµÆÄ·Î ±â¼ú Çõ½ÅÀÇ ÀÌ Áö¿ª ¸®´õ½ÊÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. Áß³²¹Ì ½ÃÀåÀº ½ÅÈï ½ÃÀåÀ̸鼭 ³ó¾÷°ú ȯ°æ ¸ð´ÏÅ͸µÀ» À§ÇÑ ¼¾½Ì ¿ëµµ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ¾î È®´ë °¡´É¼ºÀ» ½Ã»çÇϰí ÀÖ½À´Ï´Ù.

Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¸¦ ¹àÈ÷´Â ÁÖ¿ä ±â¾÷ÀÇ °æÀï ÀλçÀÌÆ® ¼¼°è ÁÖ¿ä ±¤µµÆÄ·Î »ê¾÷ ÀÌÇØ °ü°èÀÚÀÇ °øµ¿ ÆÄÆ®³Ê½Ê°ú Çõ½ÅÀÇ ±ËÀû

¾÷°è¸¦ ¼±µµÇÏ´Â ±â¾÷À» Á¶»çÇÑ °á°ú ½ÃÀå¿¡¼­ÀÇ Á¸Àç°¨À» ³ôÀÌ°í ±â¼ú Áøº¸¸¦ °¡¼ÓÈ­ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÑ Àü·«Àû Ãß±¸ÀÇ ÅÂÇǽºÆ®¸®°¡ ¹àÇôÁ³½À´Ï´Ù. ÀϺΠ¼±µµ ±â¾÷µéÀº Â÷¼¼´ë µµÆÄ°ü Àç·á °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ºñ¼±Çü ±¤ÇÐ ¹× Àú¼Õ½Ç ±âÆÇÀÇ »õ·Î¿î ¿¬±¸¸¦ Ȱ¿ëÇϱâ À§ÇØ Çмú±â°ü°ú Á¦ÈÞ¸¦ ¸Î°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·Â °ü°è´Â µ¶ÀÚÀûÀÎ Æ÷Æ®Æú¸®¿À¸¦ °­È­ÇÏ°í °æÀïÀÌ ½ÉÇÑ ºÐ¾ß¿¡¼­ Â÷º°È­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÁøÈ­ÇÏ´Â ±¤µµÆÄ·Î »ýŰèÀÇ Àü·«Àû ÆÄÆ®³Ê½Ê°ú Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» À§ÇØ ¾÷°è ¸®´õ¸¦ À̲ô´Â ½ÇÇà °¡´ÉÇÑ Á¦¾È

¾÷°è ÁöµµÀÚ´Â »õ·Î¿î ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ °í±Þ Àç·á Ç÷§Æû ÅëÇÕÀ» ¿ì¼±ÇØ¾ß ÇÕ´Ï´Ù. ´ëÇÐ ¹× Àü¹® ¿¬±¸¼Ò¿Í Çù·ÂÇÏ¿© Àü¿ë ¿¬±¸ ÇÁ·Î±×·¥À» ¼ö¸³ÇÔÀ¸·Î½á ±â¾÷Àº »õ·Î¿î ±âÆÇ ¹× º¹ÇÕÀç·á °³³ä¿¡¼­ »ý»ê Áغñ·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸®¼Ò±×·¡ÇÇ Á¤¹Ðµµ¿Í ÀûÃþ Á¦Á¶ ´É·ÂÀ» °áÇÕÇÑ À¯¿¬ÇÑ Á¦Á¶ ¸ðµ¨À» äÅÃÇÔÀ¸·Î½á ½Å¼ÓÇÑ Ä¿½ºÅ͸¶ÀÌ¡°ú ºñ¿ë Àý°¨ÀÌ °¡´ÉÇÕ´Ï´Ù.

±¤µµÆÄ·Î ½ÃÀå ºÐ¼®À» Áö¿øÇϴ ü°èÀûÀÎ µ¥ÀÌÅÍ ¼öÁý ºÐ¼® ÇÁ·¹ÀÓ ¿öÅ©

º» ºÐ¼®À» µÞ¹ÞħÇÏ´Â Á¶»ç ¹æ¹ýÀº Á¾ÇÕÀûÀÎ 2Â÷ Á¶»ç¿Í Ä¡¹ÐÇÑ 1Â÷ Á¶»ç¸¦ Á¶ÇÕÇÏ¿© ÅëÂûÀÇ ±íÀÌ¿Í Á¤È®¼ºÀ» ¸ðµÎ È®º¸Çϰí ÀÖ½À´Ï´Ù. ¿ì¼± ±âÃÊ Áö½ÄÀ» È®¸³ÇÏ°í »õ·Î¿î µ¿ÇâÀ» ÆÄ¾ÇÇϱâ À§ÇØ ±â¼ú ÀâÁö, ƯÇã µ¥ÀÌÅͺ£À̽º, ±ÔÁ¦ ´ç±¹¿¡ ½Å°í, ¾÷°è ÃâÆÇ¹°À» Æø³Ð°Ô °ËÅäÇß½À´Ï´Ù. ÀÌ 2Â÷ Á¶»ç¿¡¼­´Â Àç·áÀÇ Çõ½Å, Á¦Á¶ÀÇ Áøº¸, ¿ëµµÀÇ º¯È­ µîÀÇ ¹è°æÀÌ ¹àÇôÁ³½À´Ï´Ù.

°á·Ð ±¤µµÆÄ·Î ±â¼úÀÇ ¹Ì·¡¸¦ Ž»öÇÏ´Â ¾÷°è ÀÌÇØ°ü°èÀڵ鿡°Ô »õ·Î¿î ±âȸ¿Í Àü·«Àû Àü¸ÁÀ» º¸¿©ÁÖ´Â Áß¿äÇÑ ÅëÂû ¿ä¾à

±¤µµÆÄ·Î°¡ °è¼Ó ÁøÈ­ÇÏ´Â µ¿¾È, ÆÄµ¿ ÀüÆÄ¿Í Àç·á °úÇÐÀÇ ±âº» ¿ø¸®´Â ¿©ÀüÈ÷ Çõ½ÅÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ÷´Ü Àç·á, Á¤±³ÇÑ Á¦Á¶ ±â¼ú, ÀÀ¿ë ºÐ¾ßÀÇ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±¤ ±â´ÉÀÇ »õ·Î¿î ½Ã´ë¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀûÀÎ º¯È­´Â ¼¼°è ¹«¿ª¿ªÇÐ, ƯÈ÷ °ø±Þ¸Á°ú ºñ¿ë ±¸Á¶¸¦ À籸¼ºÇÏ´Â °ü¼¼ Á¶Á¤ÀÇ ¿µÇâÀ» ¹Þ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ±¤µµÆÄ·Î¿¡ ½Ç¸®ÄÜ Æ÷Åä´Ð½ºÀÇ ÅëÇÕ¿¡ ÀÇÇÑ µ¥ÀÌÅÍ Àü¼Û ¿ë·®ÀÇ Çâ»ó
  • À¯¿¬ÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ±¤ »óÈ£ ¿¬°á ¼Ö·ç¼ÇÀ»À§ÇÑ Æú¸®¸Ó ±â¹Ý µµÆÄ°ü äÅÃ
  • Àå°Å¸® °í¼Ó Åë½Å ³×Æ®¿öÅ©¿ë Àú¼Õ½Ç Áß°ø ÄÚ¾î ±¤¼¶À¯ µµÆÄ·Î °³¹ß
  • µ¥ÀÌÅͼ¾ÅͿ뵵¿¡ À־ÀÇ ±¤µµÆÄ·Î¸¦ Ȱ¿ëÇÑ ÁýÀû±¤È¸·ÎÀÇ È®Àå
  • ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎ ¹× ¸ÂÃãÇü ¼³°è¸¦ À§ÇÑ 3Â÷¿ø µµÆÄ°ü Àμ⠱â¼úÀÇ ¹ßÀü
  • Â÷¼¼´ë ÄÚÈ÷·±Æ® ±¤Àü¼ÛÀ» ¼­Æ÷Æ®ÇÏ´Â °í±¼Àý·ü ÄÜÆ®¶ó½ºÆ® µµÆÄ·ÎÀÇ ½ÇÀå
  • ½Ç½Ã°£ ÀÇ·á Áø´Ü¿ë ¹ÙÀÌ¿À¼¾½Ì Ç÷§Æû¿¡ À־ÀÇ ½Ç¸®ÄÜ ÁúÈ­¹° µµÆÄ·ÎÀÇ »ç¿ë Áõ°¡
  • ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â³ª ÀÚµ¿Â÷ LiDAR ½Ã½ºÅÛ¿¡ À־ÀÇ ±¤´ë¿ª ¸ÖƼ ¸ðµå µµÆÄ·Î ¼ö¿ä Áõ°¡
  • ³ª³ë½ºÄÉÀÏÀÇ °¡µÎ±â¿Í º¯Á¶¸¦ ½ÇÇöÇϱâ À§ÇÑ ÇÏÀ̺긮µå ÇöóÁî¸ð´Ð µµÆÄ·Î ±¸Á¶ÀÇ »õ·Î¿î ¿ªÇÒ
  • ¿Âµµ º¯È­¿¡ ´ëÇÏ¿© ¾ÈÁ¤µÈ ¼º´ÉÀ» È®º¸Çϱâ À§ÇÑ ¼öµ¿ ¿­ µµÆÄ°ü ¼³°è ÃÖÀûÈ­

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025³â

Á¦8Àå ±¤µµÆÄ·Î ½ÃÀå : À¯Çüº°

  • ä³Î µµÆÄ·Î
  • ¼¶À¯ µµÆÄ·Î
  • Æ÷Åä´Ð °áÁ¤
  • Æò¸é µµÆÄ·Î
  • ¸®ºê µµÆÄ·Î
  • ½ºÆ®¸³ µµÆÄ·Î

Á¦9Àå ±¤µµÆÄ·Î ½ÃÀå : Àç·áº°

  • À¯¸®
  • Æú¸®¸Ó
  • ½Ç¸®ÄÜ

Á¦10Àå ±¤µµÆÄ·Î ½ÃÀå : ¸ðµå ±¸Á¶º°

  • ´Ü°èÀû Áö¼ö
  • ½ºÅÜ À妽º

Á¦11Àå ±¤µµÆÄ·Î ½ÃÀå : ÀüÆÄº°

  • ¸ÖƼ ¸ðµå
  • ½Ì±Û ¸ðµå

Á¦12Àå ±¤µµÆÄ·Î ½ÃÀå : Á¦Á¶ ±â¼ú

  • ¸®¼Ò±×·¡ÇÁ
  • ºñ¸®¼Ò±×·¡ÇÇ

Á¦13Àå ±¤µµÆÄ·Î ½ÃÀå : ¿ëµµº°

  • µ¥ÀÌÅÍ Àü¼Û
  • ÅëÇÕ ±¤ÇÐ
  • ±¤Åë½Å ½Ã½ºÅÛ
  • ±¤ÁýÀû ȸ·Î
  • ¼¾½Ì

Á¦14Àå ±¤µµÆÄ·Î ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀÚµ¿Â÷ Á¦Á¶¾÷ü
  • ¹æÀ§ ¹× Ç×°ø¿ìÁÖ
  • ÀüÀÚ±â±â Á¦Á¶¾÷ü
  • ÀÇ·á Á¦°øÀÚ
  • Åë½Å »ç¾÷ÀÚ

Á¦15Àå ±¤µµÆÄ·Î ½ÃÀå : À¯Åë ä³Îº°

  • ¿ÀÇÁ¶óÀÎ
    • Á÷Á¢ ÆÇ¸Å
    • À¯Åë¾÷ü ¹× ¸®¼¿·¯
  • ¿Â¶óÀÎ

Á¦16Àå ¾Æ¸Þ¸®Ä«ÀÇ ±¤µµÆÄ·Î ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦17Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±¤µµÆÄ·Î ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦18Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±¤µµÆÄ·Î ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦19Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024³â
  • °æÀï ºÐ¼®
    • Aksh OptiFibre Ltd.
    • Birla Cable Ltd.
    • Coherent Corp.
    • CommScope, Inc.
    • Corning Incorporated
    • DigiLens Inc.
    • Fujikura Ltd.
    • Furukawa Electric Co., Ltd.
    • Futong Group Company Ltd.
    • Himachal Futuristic Communications Ltd.
    • Holographix LLC
    • Infinite Cables Inc.
    • Lumus Ltd.
    • M2Optics, Inc.
    • Mitsubishi Chemical Group Corporation
    • Multicom, Inc.
    • NEC Corporation
    • OFS Fitel, LLC
    • Optical Cable Corporation
    • Prysmian SpA
    • SAB Brockskes GmbH & Co. KG
    • Shanghai Tangpin Technology Co., Ltd.
    • Shenzhen Sopto Technology Co., Ltd.
    • Sterlite Technologies Limited
    • Structured Cable Products Inc.
    • Sumitomo Electric Industries, Ltd.
    • Focuslight Technologies Inc.
    • Teem Photonics
    • The Light Connection, Inc.
    • Wave Optics Ltd.
    • Waveguide Optical Technologies

Á¦20Àå ¸®¼­Ä¡ AI

Á¦21Àå ¸®¼­Ä¡ Åë°è

Á¦22Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦23Àå ¸®¼­Ä¡ ±â»ç

Á¦24Àå ºÎ·Ï

SHW 25.09.22

The Optical Waveguide Market was valued at USD 5.81 billion in 2024 and is projected to grow to USD 6.26 billion in 2025, with a CAGR of 7.83%, reaching USD 9.15 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.81 billion
Estimated Year [2025] USD 6.26 billion
Forecast Year [2030] USD 9.15 billion
CAGR (%) 7.83%

Optical waveguides represent the backbone of modern photonic systems, enabling the efficient transmission of light through confined paths with minimal loss. At their core, these structures manipulate electromagnetic waves across a range of wavelengths by guiding photons through engineered materials. This fundamental capability underpins a diverse array of applications, from high-speed data transmission to precision sensing in demanding environments.

The physics governing optical waveguide operation hinge on principles of total internal reflection and refractive index contrast. By leveraging material interfaces and geometric design, waveguides maintain signal integrity over extended distances and complex layouts. Advances in fabrication techniques have further refined control over mode confinement, dispersion characteristics, and spectral bandwidth, allowing customization to meet the performance requirements of emerging use cases.

Against a backdrop of escalating data volume, the quest for higher bandwidth and energy efficiency has positioned optical waveguides at the center of industry innovation. Collaboration between material scientists, photonic engineers, and system integrators continues to catalyze breakthroughs, driving the evolution of compact, high-functioning photonic circuits. As the ecosystem expands, stakeholders must navigate intricate technological, regulatory, and market dynamics to fully realize the potential of next-generation photonic connectivity solutions.

Moreover, the convergence of optical waveguides with electronic components in photonic integrated circuits is redefining device architectures, reducing footprint and power consumption. This synergy is instrumental in addressing the needs of data centers, telecommunications infrastructure, and emerging markets such as lidar for autonomous vehicles. As photonic platforms mature, the industry is poised to unlock new realms of performance and functionality, paving the way for transformative applications.

Transformative Shifts Reshaping Optical Waveguide Market From Revolutionary Material Innovations and Fabrication Techniques to Evolving Application Demands and Strategic Industry Realignments

Recent years have witnessed a series of transformative shifts that are redefining the optical waveguide landscape on multiple fronts. Breakthroughs in material science have introduced novel glass compositions and polymer blends that deliver unprecedented transparency and mechanical resilience. In parallel, the advent of silicon-based photonics has accelerated the integration of waveguides with semiconductor processing, enabling mass production of compact devices with high reproducibility.

Simultaneously, fabrication technologies have evolved beyond traditional lithographic patterning to incorporate advanced etching techniques and additive manufacturing approaches. These innovations have expanded design freedom, permitting the creation of complex three-dimensional waveguide geometries that optimize mode control and integration density. Such capabilities are critical for the deployment of photonic integrated circuits that consolidate multiple optical functions on a single substrate.

Moreover, application-driven demand is steering the market toward specialized waveguide solutions tailored for data transmission, sensing, and integrated optics. The rise of coherent communication networks, autonomous vehicle perception systems, and miniaturized medical diagnostics has elevated performance benchmarks for optical interconnects. Consequently, strategic realignments are emerging as stakeholders forge partnerships, pursue joint development programs, and reposition portfolios to address high-growth arenas. This confluence of material, manufacturing, and market shifts is fostering a dynamic ecosystem where agility and innovation determine leadership.

The accelerating push for sustainability is also influencing waveguide development, with a growing emphasis on eco-friendly materials and energy-efficient designs. Lifecycle considerations are becoming integral, prompting researchers to explore recyclable polymers and low-temperature fabrication to reduce environmental footprint. Together, these transformative shifts are charting a new trajectory for optical waveguide technologies, setting the stage for continued advancement and market evolution.

Cumulative Impact of United States Tariff Adjustments in 2025 on Optical Waveguide Supply Chains Production Economics and Global Competitive Dynamics

Changes in United States tariff policies introduced in 2025 are exerting a significant influence on optical waveguide supply chains and economic models across the industry. Tariff adjustments on materials, components, and finished modules have led to a reassessment of sourcing strategies, compelling manufacturers to explore alternative procurement routes. This reorientation is reshaping cost structures and prompting the relocation of certain production stages closer to key markets to mitigate duty burdens.

In addition, increased duties on imported silicon substrates and specialty glass have heightened upstream pressures, driving vendors to secure long-term agreements with domestic suppliers and invest in localized material development. These measures are designed to ensure continuity of supply and stabilize pricing, offering greater predictability in budget planning. At the same time, international competitors are reevaluating their market entry approaches, with some prioritizing regions unaffected by the new tariffs to sustain growth momentum.

Moreover, the tariff environment has catalyzed collaboration among stakeholders, as joint ventures and strategic alliances emerge to share risk and pool resources. Technology licensing arrangements are also gaining traction, enabling rapid deployment of advanced waveguide designs without the full burden of capital expenditure. As regulatory landscapes continue to evolve, companies are compelled to adopt flexible operational models and resilient networks to navigate shifting trade dynamics. Ultimately, the cumulative impact of the 2025 tariff adjustments underscores the importance of agile supply chain management and strategic diversification in securing competitive advantage.

Comprehensive Segmentation Insights Unlocking Optical Waveguide Market Dynamics Across Type Material Mode Structure Propagation Fabrication Technology Application and End User Dimensions

Segmentation analysis reveals a nuanced spectrum of optical waveguide configurations shaped by distinct technological and material criteria. When examined through the lens of type, solutions encompass channel waveguides designed for planar integration, fiber waveguides tailored for long-haul transmission, photonic crystal structures offering bandgap engineering, planar waveguides optimized for on-chip routing, rib waveguides balancing confinement and fabrication ease, and strip waveguides prized for compact footprint and high index contrast. Each category addresses specific performance metrics, driving diverse adoption patterns across end-use scenarios.

From a material standpoint, the field navigates between traditional glass substrates renowned for low attenuation, polymer variants providing flexibility and cost-efficiency, and silicon platforms enabling seamless compatibility with electronic circuitry. Distinct mode structures further influence design choices, as graded index profiles support smooth mode evolution and reduced dispersion, while step index configurations deliver strong confinement and predictable propagation characteristics. The propagation modality bifurcates into multimode pathways suited for short-reach communication and single mode conduits preferred for high-bandwidth, long-distance links.

Fabrication technology segmentation underscores a dichotomy between lithographic processes, which leverage established semiconductor equipment for high-precision patterning, and non-lithographic techniques that support rapid prototyping and cost-effective production. Application segmentation spans data transmission infrastructures, integrated optics modules, optical communication systems, photonic integrated circuits consolidating multiple functions, and advanced sensing platforms. End user segments extend across automotive manufacturers seeking lidar integration, defense and aerospace sectors prioritizing reliability, electronics manufacturers embedding photonic interconnects, healthcare providers harnessing diagnostic sensors, and telecom operators orchestrating network upgrades. Finally, distribution dynamics encompass offline channels, including direct sales engagements and distributor-reseller networks, alongside online marketplaces accelerating digital procurement.

Key Regional Insights Highlighting Optical Waveguide Market Dynamics Across Americas Europe Middle East and Africa and Asia Pacific Growth Drivers and Strategic Imperatives

In the Americas, strong momentum originates from robust investments in data center infrastructure and expansion of high-speed communication backbones. North American research institutions and technology hubs are driving breakthroughs in silicon photonics, while regional manufacturers are forging strategic partnerships to enhance domestic production capabilities. Government initiatives supporting advanced manufacturing and secure supply chains further reinforce the region's leadership in waveguide innovation. Latin American markets, though emerging, are exhibiting growing interest in sensing applications for agriculture and environmental monitoring, signaling potential avenues for expansion.

Across Europe, the Middle East, and Africa, diverse regional priorities shape market dynamics. European Union directives on digitalization and sustainability are incentivizing the adoption of energy-efficient photonic components, with key players collaborating on cross-border research programs. The Middle East is witnessing strategic investments in optical networks to underpin smart city frameworks and next-generation transportation systems, while Africa's nascent telecom upgrades are creating opportunities for cost-effective waveguide solutions. Regulatory harmonization efforts and public-private partnerships are instrumental in catalyzing growth across this broad and heterogeneous landscape.

In Asia Pacific, the convergence of consumer electronics innovation and industrial automation is fueling demand for compact and high-performance waveguides. Major technology clusters in East Asia are leading advancements in both fabrication and integration, leveraging mature semiconductor ecosystems. Southeast Asian markets are showing rising adoption in healthcare imaging and automotive sensing, supported by favorable policy frameworks and regional manufacturing expansions. Australia's focus on research commercialization and collaboration with academic centers further contributes to a vibrant ecosystem. Together, these regional narratives underscore the importance of tailored strategies that reflect local priorities, infrastructure readiness, and innovation capabilities.

Key Company Insights Unveiling Strategic Initiatives Competitive Positioning Collaborative Partnerships and Innovation Trajectories of Leading Global Optical Waveguide Industry Stakeholders

Oversight of leading industry players reveals a tapestry of strategic pursuits aimed at consolidating market presence and accelerating technology advancement. Several prominent companies are investing heavily in the development of next-generation waveguide materials, forging alliances with academic institutions to harness emerging research in non-linear optics and low-loss substrates. Such collaborations are enhancing proprietary portfolios and driving differentiation in highly competitive segments.

Competitive positioning varies across firms, with some emphasizing end-to-end solutions that integrate waveguides with active photonic components, while others focus on modular offerings optimized for niche applications such as biosensing or quantum communication. A trend toward vertical integration is apparent, as vertically aligned organizations seek to control critical supply chain nodes, from wafer fabrication to final assembly and testing. This approach not only streamlines production but also safeguards intellectual property and quality standards.

Additionally, strategic partnerships and joint ventures are proliferating, enabling participants to share development costs and access new distribution channels. Recent cooperative efforts for regional manufacturing hubs illustrate a collective push to localize production and reduce lead times. Investment initiatives in advanced packaging techniques and automated testing systems underscore the emphasis on scalability and cost efficiency. As companies navigate technological complexities and evolving customer expectations, their innovation trajectories are increasingly shaped by a blend of in-house R&D and external collaborations, laying the groundwork for sustainable competitive advantage.

Actionable Recommendations Guiding Industry Leaders Toward Operational Excellence Technological Advancement Strategic Partnerships and Sustainable Growth in the Evolving Optical Waveguide Ecosystem

Industry leaders should prioritize the integration of advanced material platforms to address emerging performance requirements. By establishing dedicated research programs in partnership with universities and specialized laboratories, organizations can accelerate the transition of novel substrates and composites from concept to production readiness. Embracing flexible fabrication models that combine lithographic precision with additive manufacturing capabilities will enable rapid customization and cost reduction.

Supply chain resilience must also be reinforced through geographic diversification and the establishment of strategic sourcing agreements. Companies are advised to develop contingency plans that include dual-sourcing of critical materials and component subassemblies to buffer against tariff-related disruptions and logistical bottlenecks. Additionally, investing in digital supply chain visibility tools can enhance risk management and facilitate real-time decision making.

Collaborative ecosystems represent another key lever for market success. Engaging in consortia and cross-industry alliances can extend access to complementary expertise, expedite standardization efforts, and create pathways for co-development of specialized solutions. In parallel, firms should explore opportunities to integrate waveguide technologies into emerging application domains such as quantum computing and biomedical diagnostics, positioning themselves at the forefront of next-wave innovation.

Finally, equipping workforces with specialized photonic engineering skills is vital for sustaining competitiveness. Implementing targeted training initiatives, alongside immersive workshops and certification programs, will cultivate the talent needed to operate complex manufacturing platforms and drive continuous improvement. Through these actionable measures, industry leaders can chart a course toward operational excellence, technological leadership, and long-term growth.

Robust Research Methodology Detailing Systematic Data Collection Analytical Frameworks Primary and Secondary Research Approaches and Validation Processes Underpinning Optical Waveguide Market Analysis

The research methodology underpinning this analysis combines comprehensive secondary research with targeted primary engagements to ensure both depth and accuracy of insights. Initially, a broad review of technical journals, patent databases, regulatory filings, and industry publications was conducted to establish foundational knowledge and identify emerging trends. This secondary phase provided context on material innovations, fabrication advancements, and shifting application landscapes.

Subsequently, primary research activities were undertaken through structured interviews and workshops involving key stakeholders across the optical waveguide value chain. These sessions included dialogue with product engineers, supply chain managers, and end user representatives to validate technical assumptions and gauge strategic priorities. Qualitative data collected during these engagements was synthesized with secondary findings to form a robust analytical framework.

Data triangulation techniques were employed to reconcile insights from multiple sources and mitigate the risk of bias. Comparative analyses were performed to assess divergent perspectives on regional dynamics, tariff impacts, and competitive strategies. Additionally, a series of scenario assessments explored potential outcomes related to policy shifts and technological breakthroughs. All findings underwent rigorous peer review and expert validation to ensure credibility and relevance.

Finally, the research outcomes were consolidated into a structured report format, incorporating thematic narratives, segmentation breakdowns, and strategic recommendations. This methodical approach ensures that the conclusions drawn accurately reflect current market realities and provide actionable guidance for decision makers operating in the optical waveguide domain.

Conclusion Summarizing Key Insights Emerging Opportunities and Strategic Outlook for Industry Stakeholders Navigating the Future of Optical Waveguide Technologies

As the optical waveguide landscape continues to evolve, foundational principles of wave propagation and material science remain central to innovation. The convergence of advanced materials, refined fabrication techniques, and heightened application demands has driven a new era of photonic capabilities. These transformative shifts are further influenced by global trade dynamics, notably the tariff adjustments that are reshaping supply chains and cost structures.

Segmentation analysis underscores the diversity of waveguide solutions, from channel and fiber constructs to photonic crystal designs, supported by a range of materials and mode configurations. Regional insights highlight differentiated growth narratives across the Americas, EMEA, and Asia Pacific, each presenting unique drivers linked to digital infrastructure buildout, sustainability initiatives, and research commercialization.

Competitive landscapes are characterized by strategic partnerships, vertical integration efforts, and a focus on end-to-end solutions that bridge waveguides with active photonic components. To navigate this complexity, industry leaders are advised to pursue collaborative R&D, bolster supply chain agility, and cultivate specialized talent pools. Such strategic imperatives will be critical in capitalizing on emerging opportunities in data transmission, sensing, and integrated optics.

Ultimately, the optical waveguide sector stands poised for sustained advancement, driven by technological breakthroughs and evolving market needs. Stakeholders who align operational excellence with forward-looking innovation strategies will be well positioned to shape the trajectory of photonics and unlock new value across diverse application domains.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of silicon photonics in optical waveguides for enhanced data transmission capacity
  • 5.2. Adoption of polymer-based waveguides for flexible and cost-effective optical interconnect solutions
  • 5.3. Development of low-loss hollow-core fiber waveguides for long-distance high-speed communication networks
  • 5.4. Expansion of integrated photonic circuits leveraging optical waveguides in data center applications
  • 5.5. Advancements in three-dimensional waveguide printing techniques for rapid prototyping and custom designs
  • 5.6. Implementation of high-index contrast waveguides to support next-generation coherent optical transmission
  • 5.7. Growing use of silicon nitride waveguides in biosensing platforms for real-time medical diagnostics
  • 5.8. Rising demand for broadband multimode waveguides in consumer electronics and automotive LiDAR systems
  • 5.9. Emerging role of hybrid plasmonic waveguide structures to achieve nanoscale confinement and modulation
  • 5.10. Optimization of passive athermal waveguide designs to ensure stable performance across temperature variations

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Optical Waveguide Market, by Type

  • 8.1. Introduction
  • 8.2. Channel Waveguide
  • 8.3. Fiber Waveguides
  • 8.4. Photonic Crystal
  • 8.5. Planar Waveguide
  • 8.6. Rib Waveguide
  • 8.7. Strip Waveguide

9. Optical Waveguide Market, by Material

  • 9.1. Introduction
  • 9.2. Glass
  • 9.3. Polymer
  • 9.4. Silicon

10. Optical Waveguide Market, by Mode Structure

  • 10.1. Introduction
  • 10.2. Graded Index
  • 10.3. Step Index

11. Optical Waveguide Market, by Propagation

  • 11.1. Introduction
  • 11.2. Multi Mode
  • 11.3. Single Mode

12. Optical Waveguide Market, by Fabrication Technology

  • 12.1. Introduction
  • 12.2. Lithographic
  • 12.3. Non-Lithographic

13. Optical Waveguide Market, by Application

  • 13.1. Introduction
  • 13.2. Data Transmission
  • 13.3. Integrated Optics
  • 13.4. Optical Communication Systems
  • 13.5. Photonic Integrated Circuits
  • 13.6. Sensing

14. Optical Waveguide Market, by End User

  • 14.1. Introduction
  • 14.2. Automotive Manufacturers
  • 14.3. Defense & Aerospace
  • 14.4. Electronics Manufacturers
  • 14.5. Healthcare Providers
  • 14.6. Telecom Operators

15. Optical Waveguide Market, by Distribution Channel

  • 15.1. Introduction
  • 15.2. Offline
    • 15.2.1. Direct Sales
    • 15.2.2. Distributors & Resellers
  • 15.3. Online

16. Americas Optical Waveguide Market

  • 16.1. Introduction
  • 16.2. United States
  • 16.3. Canada
  • 16.4. Mexico
  • 16.5. Brazil
  • 16.6. Argentina

17. Europe, Middle East & Africa Optical Waveguide Market

  • 17.1. Introduction
  • 17.2. United Kingdom
  • 17.3. Germany
  • 17.4. France
  • 17.5. Russia
  • 17.6. Italy
  • 17.7. Spain
  • 17.8. United Arab Emirates
  • 17.9. Saudi Arabia
  • 17.10. South Africa
  • 17.11. Denmark
  • 17.12. Netherlands
  • 17.13. Qatar
  • 17.14. Finland
  • 17.15. Sweden
  • 17.16. Nigeria
  • 17.17. Egypt
  • 17.18. Turkey
  • 17.19. Israel
  • 17.20. Norway
  • 17.21. Poland
  • 17.22. Switzerland

18. Asia-Pacific Optical Waveguide Market

  • 18.1. Introduction
  • 18.2. China
  • 18.3. India
  • 18.4. Japan
  • 18.5. Australia
  • 18.6. South Korea
  • 18.7. Indonesia
  • 18.8. Thailand
  • 18.9. Philippines
  • 18.10. Malaysia
  • 18.11. Singapore
  • 18.12. Vietnam
  • 18.13. Taiwan

19. Competitive Landscape

  • 19.1. Market Share Analysis, 2024
  • 19.2. FPNV Positioning Matrix, 2024
  • 19.3. Competitive Analysis
    • 19.3.1. Aksh OptiFibre Ltd.
    • 19.3.2. Birla Cable Ltd.
    • 19.3.3. Coherent Corp.
    • 19.3.4. CommScope, Inc.
    • 19.3.5. Corning Incorporated
    • 19.3.6. DigiLens Inc.
    • 19.3.7. Fujikura Ltd.
    • 19.3.8. Furukawa Electric Co., Ltd.
    • 19.3.9. Futong Group Company Ltd.
    • 19.3.10. Himachal Futuristic Communications Ltd.
    • 19.3.11. Holographix LLC
    • 19.3.12. Infinite Cables Inc.
    • 19.3.13. Lumus Ltd.
    • 19.3.14. M2Optics, Inc.
    • 19.3.15. Mitsubishi Chemical Group Corporation
    • 19.3.16. Multicom, Inc.
    • 19.3.17. NEC Corporation
    • 19.3.18. OFS Fitel, LLC
    • 19.3.19. Optical Cable Corporation
    • 19.3.20. Prysmian S.p.A.
    • 19.3.21. SAB Brockskes GmbH & Co. KG
    • 19.3.22. Shanghai Tangpin Technology Co., Ltd.
    • 19.3.23. Shenzhen Sopto Technology Co., Ltd.
    • 19.3.24. Sterlite Technologies Limited
    • 19.3.25. Structured Cable Products Inc.
    • 19.3.26. Sumitomo Electric Industries, Ltd.
    • 19.3.27. Focuslight Technologies Inc.
    • 19.3.28. Teem Photonics
    • 19.3.29. The Light Connection, Inc.
    • 19.3.30. Wave Optics Ltd.
    • 19.3.31. Waveguide Optical Technologies

20. ResearchAI

21. ResearchStatistics

22. ResearchContacts

23. ResearchArticles

24. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦