½ÃÀ庸°í¼­
»óǰÄÚµå
1808492

ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : À¯Çüº°, µ¿ÀÛº°, ¸ðµåº°, µµÇÎ Àç·áº°, Á¤°Ý Ãâ·Âº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Fiber Lasers Market by Type, Operation, Mode, Dopping Material, Power Rating, Application, End-User, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀåÀº 2024³â 76¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 84¾ï 6,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 10.75%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 141¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 76¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 84¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 141¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 10.75%

ÆÄÀ̹ö ·¹ÀÌÀú ±â¼úÀº Ź¿ùÇÑ ºö ǰÁú, ¿î¿µ È¿À²¼º ¹× È®À强À» Á¦°øÇÏ¿© Çö´ë »ê¾÷ ¹× °úÇÐ ÀÀ¿ë ºÐ¾ßÀÇ ÇÙ½ÉÀ¸·Î ºÎ»óÇß½À´Ï´Ù. ÈñÅä·ù µµÇΰú ±¤¼¶À¯ ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀ¸·Î ź»ýÇÑ ÀÌ ·¹ÀÌÀú´Â ³ôÀº Ãâ·Â ¹Ðµµ¿Í ÄÄÆÑÆ®ÇÏ°í °ß°íÇÑ ÆûÆÑÅ͸¦ °áÇÕÇÏ¿© Á¤¹Ð Á¦Á¶ºÎÅÍ Â÷¼¼´ë Åë½Å¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÀÌ¿ë »ç·Ê¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ´õ ºü¸¥ °¡°ø, ´õ ¾ö°ÝÇÑ °øÂ÷, ´õ ÀûÀº ´Ù¿îŸÀÓ¿¡ ´ëÇÑ ¿ä±¸°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ÆÄÀ̹ö ·¹ÀÌÀú´Â Æ´»õ ¿¬±¸ µµ±¸¿¡¼­ Áß¿äÇÑ »ý»ê ÀÚ»êÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÀÌ·¯ÇÑ ·¹ÀÌÀú¸¦ ÀÚµ¿È­ ½Ã½ºÅÛ ¹× ½º¸¶Æ® Á¦Á¶ ȯ°æ¿¡ ÅëÇÕÇÔÀ¸·Î½á »õ·Î¿î ¼öÁØÀÇ Ã³¸®·®°ú Àϰü¼ºÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ³Ã°¢ ±â¼ú, ºö Àü¼Û ¸ÞÄ¿´ÏÁò ¹× Á¦¾î ¼ÒÇÁÆ®¿þ¾îÀÇ Áö¼ÓÀûÀÎ °­È­¿Í ÇÔ²² ¿À´Ã³¯ÀÇ ÆÄÀ̹ö ·¹ÀÌÀú´Â °¡Àå ¾ö°ÝÇÑ »ê¾÷ Ç¥ÁØÀ» ÃæÁ·ÇÏ´Â ½Å·Ú¼º ÁöÇ¥¸¦ Á¦°øÇÕ´Ï´Ù. ±× °á°ú, Ç×°ø¿ìÁÖ, ÀüÀÚ, ¿¡³ÊÁö, »ý¹°ÀÇÇÐ ºÐ¾ßÀÇ ±â¾÷µéÀº Á¦Ç° ǰÁú Çâ»ó, ¿î¿µ ºñ¿ë Àý°¨, ½ÃÀå Ãâ½Ã ½Ã°£ ´ÜÃàÀ» ½ÇÇöÇÏ´Â ÆÄÀ̹ö ·¹ÀÌÀú ¼Ö·ç¼ÇÀ» Á¡Â÷ÀûÀ¸·Î äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀúÀÇ Çõ½ÅÀûÀÎ º¯È­¸¦ ¹ß°ßÇÏ¿© »ê¾÷ ¿ªÇÐÀ» À籸¼ºÇϰí, È¿À²¼ºÀ» °³¼±Çϸç, ºÐ¾ß¸¦ ÃÊ¿ùÇÑ »õ·Î¿î ÀÌ¿ë »ç·Ê¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÃÖ±Ù ¸î ³â µ¿¾È ÆÄÀ̹ö ·¹ÀÌÀúÀÇ »óȲÀº °æÀï ±¸µµ¸¦ À籸¼ºÇÏ°í »õ·Î¿î ±âȸ¸¦ ¿­¾îÁÖ´Â Çõ½ÅÀûÀÎ º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. Áß¿äÇÑ ÁøÈ­ Áß Çϳª´Â Ãʰí¼Ó ÆÞ½º ¿µ¿ªÀÇ Ã¤Åÿ¡ ÀÖ½À´Ï´Ù. ÀÌ´Â ÃÖ¼ÒÇÑÀÇ ¿­ ¼Õ»óÀ¸·Î ¼­ºê¹ÌÅ©·Ð ±¸Á¶¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Á¤¹Ð ¹Ì¼¼ °¡°øÀ» ÀçÁ¤ÀÇÇß½À´Ï´Ù. µ¿½Ã¿¡ Àڿܼ± ¹× °¡½Ã±¤ ¼¶À¯ ·¹ÀÌÀú ¸ðµâÀÇ ¹ßÀüÀº Àç·á °¡°øÀÇ °æ°è¸¦ ³ÐÈ÷°í ÀÖÀ¸¸ç, ƯÈ÷ Æú¸®¸Ó ¿ëÁ¢ ¹× ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ Á¤¹Ðµµ¿Í ºÎ¼öÀûÀÎ ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ ÆÄÀ̹ö ·¹ÀÌÀú ¹«¿ª ¿ªÇп¡ ¹ÌÄ¡´Â ´©Àû ¿µÇâ°ú °ø±Þ¸Á ¹× ÃÖÁ¾ »ç¿ëÀÚ¿¡ ¹ÌÄ¡´Â ¿µÇâ Æò°¡

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ µµÀÔÀº Àüü ÆÄÀ̹ö ·¹ÀÌÀú °ø±Þ¸Á¿¡ ´«¿¡ ¶ç´Â º¹À⼺À» °¡Á®¿Í ÀÌÇØ°ü°èÀÚµéÀÌ Á¶´Þ Àü·«°ú ºñ¿ë ±¸Á¶¿¡ ´ëÇÑ ÀçÆò°¡¸¦ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¼öÀÔ ¼¶À¯ ¸ðµâ°ú ÆßÇÁ ´ÙÀÌ¿Àµå¿¡ ÀÇÁ¸ÇÏ´Â Á¦Á¶¾÷ü´Â °ü¼¼ ºÎ´ã Áõ°¡¿¡ Á÷¸éÇÏ¿© ºÎǰ Á¶´Þ °üÇàÀ» ÀçÁ¶Á¤ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, ÀϺΠÁÖ¿ä °ø±Þ¾÷üµéÀº ¼öÀÔ °ü¼¼ ÀλóÀ¸·Î ÀÎÇÑ ÀçÁ¤Àû ¿µÇâÀ» »ó¼âÇϱâ À§ÇØ ¾Æ½Ã¾Æ ¹× À¯·´ ÆÄÆ®³Ê¸¦ ¿µÀÔÇÏ´Â µî °ø±Þ¾÷ü ±â¹Ý ´Ùº¯È­¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀú À¯Çü, ÀÛµ¿, ¸ðµå, µµÇÎ Àç·á, Á¤°Ý Ãâ·Â, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, À¯Åë ä³Îº° ÁÖ¿ä ºÎ¹® ÅëÂû·Â È®º¸

ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå ºÎ¹®À» Á¤È®ÇÏ°Ô ÀÌÇØÇÏ´Â °ÍÀº ±â¼ú Á¦°øÀ» ƯÁ¤ ¼º´É ¿ä±¸ »çÇ׿¡ ¸Â°Ô Á¶Á¤ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Á¦Ç° À¯Çüº°·Î º¸¸é, Àû¿Ü¼± ÆÄÀ̹ö ·¹ÀÌÀú´Â ¿ì¼öÇÑ Èí¼ö Ư¼ºÀ¸·Î ÀÎÇØ »ê¾÷¿ë Àý´Ü ¹× ¿ëÁ¢ ÀÀ¿ë ºÐ¾ß¸¦ °è¼Ó Áö¹èÇϰí ÀÖÀ¸¸ç, Ãʰí¼Ó ÆÄÀ̹ö ·¹ÀÌÀú´Â ÀüÀÚ ¹× ÀÇ·á±â±â Á¦Á¶ÀÇ Á¤¹Ð ¹Ì¼¼ °¡°ø¿¡ Á¡Á¡ ´õ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Àڿܼ± ÆÄÀ̹ö ·¹ÀÌÀú´Â °íºÐÀÚ °¡°ø ¹× ¹ÝµµÃ¼ ÆÐÅʹ׿¡¼­ °ßÀηÂÀ» ã°í ÀÖÀ¸¸ç, °¡½Ã±¤¼± ÆÄÀ̹ö ·¹ÀÌÀú´Â ÷´Ü »ý¹° ÀÇÇÐ À̹Ì¡ ½Ã½ºÅÛ¿¡¼­ Æ´»õ ½ÃÀåÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù.

Áö¿ª ¿ªÇÐ ºÐ¼® : ¹Ì±¹, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÆÄÀ̹ö ·¹ÀÌÀú äÅà µ¿Çâ ¹× ¼ºÀå ÃËÁø¿äÀο¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÅëÂû·Â Á¦°ø

Áö¿ªº°·Î´Â ¹ÌÁÖ Áö¿ªÀÌ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡ ´ëÇÑ ÁýÁßÀûÀÎ ÅõÀÚ·Î ÀÎÇØ ÆÄÀ̹ö ·¹ÀÌÀúÀÇ °ß°íÇÑ Ã¤ÅÃÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¹Ì±¹Àº Á¤ºÎ Áö¿ø ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¸ÅÅ©·Î °¡°ø ½Ã¼³ÀÇ »ó¿ëÈ­¸¦ ÁÖµµÇϰí ÀÖÀ¸¸ç, ij³ª´Ù´Â ÇÐ°è ¹× »ê¾÷ ÆÄÆ®³Ê¿ÍÀÇ °øµ¿ ÇÁ·ÎÁ§Æ®¸¦ Áß½ÃÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå¿¡¼­´Â ½ÅÈï ·ÎÄà ÅëÇÕ¾÷üµéÀÇ Áö¿øÀ» ¹Þ¾Æ Á¦Á¶¾÷°ú ³ó¾÷ »ý¸í°øÇп¡ ·¹ÀÌÀú¸¦ Àû¿ëÇÏ´Â °ÍÀÌ Á¡Â÷ ¹Þ¾Æµé¿©Áö°í ÀÖ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀúÀÇ ÁÖ¿ä Á¦Á¶¾÷ü ¹× Çõ½Å°¡ ÇÁ·ÎÆÄÀϸµ: ½ÃÀå »óȲÀ» Çü¼ºÇÏ´Â Àü·«Àû ¿òÁ÷ÀÓ, ±â¼ú ¹ßÀü, °æÀï ±¸µµ

ÁÖ¿ä ÆÄÀ̹ö ·¹ÀÌÀú °ø±Þ¾÷üµéÀº ¸ñÇ¥ ÅõÀÚ, Àü·«Àû ÆÄÆ®³Ê½Ê, Á¦Ç° Æ÷Æ®Æú¸®¿À ´Ù°¢È­¸¦ ÅëÇØ °æÀï ±¸µµ¸¦ Àû±ØÀûÀ¸·Î Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÇÑ À¯·Â Á¦Á¶¾÷ü´Â Æ÷Åä´Ð½º Àü¹® ½ºÅ¸Æ®¾÷ Àμö¸¦ ÅëÇØ Ãʰí¼Ó ·¹ÀÌÀú ¶óÀÎÀ» È®ÀåÇϰí, ¼­ºêÇÇÄÚÃÊ ¼Ö·ç¼Ç ½ÃÀå Ãâ½Ã ½Ã°£À» ¾Õ´ç±â°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ¼¼°è ¾÷ü´Â ·Îº¿ ÅëÇÕ¾÷ü¿Í ÅÏŰ ½Ã½ºÅÛÀ» °øµ¿ °³¹ßÇÏ¿© ÀÚµ¿È­ »ý»ê ¶óÀο¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á °íÃâ·Â »ê¾÷¿ë ·¹ÀÌÀú ºÐ¾ß¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀúÀÇ Çõ½ÅÀ» Ȱ¿ëÇÏ¿© °ü¼¼ ¹®Á¦¸¦ ¿ÏÈ­Çϰí ÁÖ¿ä ºÎ¹®¿¡¼­ ½ÃÀå Æ÷Áö¼Å´×À» °­È­Çϱâ À§ÇÑ ¾÷°è ¸®´õÀÇ Çൿ Àü·«

¾÷°è ¸®´õ´Â Ãʰí¼Ó ÆÄÀ̹ö ·¹ÀÌÀú¿Í Àڿܼ± ÆÄÀ̹ö ·¹ÀÌÀúÀÇ ´É·ÂÀ» È®ÀåÇϱâ À§ÇØ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. µ¿½Ã¿¡, Á¶Á÷Àº ¿©·¯ Áö¿ª¿¡ °ÉÃÄ ´ëü ºÎǰ °ø±Þ¾÷ü¸¦ ÀÎÁõÇÔÀ¸·Î½á °ø±Þ¸ÁÀ» ´Ù¾çÈ­ÇÏ¿© °ü¼¼ º¯µ¿°ú ÁöÁ¤ÇÐÀû È¥¶õÀÇ ¿µÇâÀ» ÁÙ¿©¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ÇöÁö¿¡ Á¶¸³ °ÅÁ¡À̳ª ¼­ºñ½º °ÅÁ¡À» ¸¶·ÃÇÏ¿© ´ëÀÀ ½Ã°£À» ´ÜÃàÇÏ°í °í°´°úÀÇ °ü°è¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå Á¶»ç¸¦ µÞ¹ÞħÇÏ´Â Åõ¸íÇÑ Á¶»ç ¹æ¹ý°ú µ¥ÀÌÅÍ ¼öÁý ±â¼úÀ» ÅëÇØ Á¤È®¼º, ½Å·Ú¼º, ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» º¸ÀåÇÕ´Ï´Ù.

º» Á¶»ç´Â °´°üÀûÀÌ°í ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇϱâ À§ÇØ ¾ö°ÝÇÏ°í ´ÙÃþÀûÀÎ Á¶»ç ¹æ¹ýÀ» äÅÃÇß½À´Ï´Ù. 1Â÷ Á¶»ç´Â ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ, ÆÄÀ̹ö ·¹ÀÌÀú Á¦Á¶¾÷ü, ºÎǰ °ø±Þ¾÷ü, ÁÖ¿ä ÃÖÁ¾ »ç¿ëÀÚ¿ÍÀÇ ½ÉÃþ ÀÎÅͺä·Î ±¸¼ºµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­¸¦ ÅëÇØ ÇöÀç ±â¼ú äÅà ÆÐÅÏ, °ø±Þ¸Á Çö½Ç, »õ·Î¿î ¿ëµµ ¿ä±¸»çÇ×ÀÌ µå·¯³µ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀåÀÇ ÁøÈ­, ±â¼ú ¹ßÀü, ´Ù¾çÇÑ »ê¾÷º° ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ Àü·«Àû Àǹ̿¡ ´ëÇÑ ÁÖ¿ä ¿¬±¸ °á°úÀÇ ÅëÇÕ

¿ä¾à: ÆÄÀ̹ö ·¹ÀÌÀú´Â ¿ì¼öÇÑ ºö ǰÁú, ÄÄÆÑÆ®ÇÑ Æû ÆÑÅÍ, ¿Ïº®ÇÑ ÅëÇÕ ±â´ÉÀ» °áÇÕÇÏ¿© Â÷¼¼´ë »ê¾÷ ¹× ±â¼ú Çõ½ÅÀÇ ¹°°áÀ» ÁÖµµÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù. Ãʰí¼Ó ÆÞ½º ü°è, »õ·Î¿î µµÇÎ Àç·á, µðÁöÅÐ Á¦¾î ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº Á¤¹Ð Á¦Á¶, »ý¹° ÀÇÇÐ ÀÀ¿ë, ±¤Åë½ÅÀÇ »õ·Î¿î ÁöÆòÀ» ¿­¾ú½À´Ï´Ù. ±×·¯³ª ÁøÈ­ÇÏ´Â °ü¼¼ ü°è¿Í ÁöÁ¤ÇÐÀû ÀçÆíÀ¸·Î ÀÎÇØ ¹ÎøÇÑ °ø±Þ¸Á Àü·«°ú Áö¿ª¿¡ ±â¹ÝÀ» µÐ »ç¾÷ Àü°³°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : À¯Çüº°

  • Àû¿Ü¼± ÆÄÀ̹ö ·¹ÀÌÀú
  • Ãʰí¼Ó ÆÄÀ̹ö ·¹ÀÌÀú
  • Àڿܼ±(UV) ÆÄÀ̹ö ·¹ÀÌÀú
  • °¡½Ã ÆÄÀ̹ö ·¹ÀÌÀú

Á¦9Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : µ¿ÀÛº°

  • ¿¬¼ÓÆÄ ·¹ÀÌÀú
  • ÆÞ½º ·¹ÀÌÀú

Á¦10Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : ¸ðµåº°

  • ¸ÖƼ ¸ðµå ¼¶À¯
  • ½Ì±Û ¸ðµå ¼¶À¯

Á¦11Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : µµÇÎ Àç·áº°

  • Erbium-Doped Fiber Lasers
  • Thulium-Doped Fiber Lasers
  • Ytterbium-Doped Fiber Lasers

Á¦12Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : Á¤°Ý Ãâ·Âº°

  • 1kW-5kW
  • 1kW ¹Ì¸¸
  • 5kW ÀÌ»ó

Á¦13Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : ¿ëµµº°

  • ·¹ÀÌÀú °¡°ø
    • ¸ÅÅ©·Î ó¸®
      • Àý´Ü
      • ¸¶Å· ¹× Á¶°¢
      • ¿ëÁ¢
    • ¸¶ÀÌÅ©·Î ÇÁ·Î¼¼½Ì
  • ±¤Åë½Å
  • ¿ÉÅäÀÏ·ºÆ®·Î´Ð½º

Á¦14Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • ÀÏ·ºÆ®·Î´Ð½º
  • ¿¡³ÊÁö
  • IT ¹× Åë½Å
  • Á¦Á¶¾÷

Á¦15Àå ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå : À¯Åë ä³Îº°

  • ¿ÀÇÁ¶óÀÎ
  • ¿Â¶óÀÎ

Á¦16Àå ¾Æ¸Þ¸®Ä«ÀÇ ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦17Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦18Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÆÄÀ̹ö ·¹ÀÌÀú ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦19Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • FANUC Corporation
    • Thorlabs, Inc.
    • Advalue Photonics Inc.
    • Amonics Ltd.
    • Apollo Instruments Inc.
    • BODORLASER INC.
    • Fujikura Ltd.
    • Coherent Corp.
    • CY Laser SRL
    • Furukawa Electric Co., Ltd.
    • Hamamatsu Photonics K.K.
    • Han's Laser Technology Industry Group Co., Ltd
    • IPG PHOTONICS CORPORATION
    • JENOPTIK AG
    • Jinan Xintian Technology Co. Ltd.
    • Keopsys by Lumibird S.A.
    • Laser Marking Technologies, LLC
    • Lumentum Holdings Inc.
    • Maxphotonics Co,.Ltd
    • Menlo Systems GmbH
    • Newport Corporation by MKS Instruments, Inc.
    • nLIGHT, Inc.
    • Prima Industrie S.p.A.
    • Shenzhen JPT Opto-electronics Co., Ltd.
    • The TOPTICA Group
    • TRUMPF SE+Co. KG
    • Wuhan Raycus Fiber Laser Technologies Co., Ltd.

Á¦20Àå ¸®¼­Ä¡ AI

Á¦21Àå ¸®¼­Ä¡ Åë°è

Á¦22Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦23Àå ¸®¼­Ä¡ ±â»ç

Á¦24Àå ºÎ·Ï

LSH 25.09.22

The Fiber Lasers Market was valued at USD 7.65 billion in 2024 and is projected to grow to USD 8.46 billion in 2025, with a CAGR of 10.75%, reaching USD 14.13 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 7.65 billion
Estimated Year [2025] USD 8.46 billion
Forecast Year [2030] USD 14.13 billion
CAGR (%) 10.75%

Fiber laser technology has emerged as a cornerstone of modern industrial and scientific applications, delivering unparalleled beam quality, operational efficiency, and scalability. Originating from advancements in rare-earth doping and fiber optic architectures, these lasers combine high power densities with compact, robust form factors, enabling a diverse range of use cases from precision manufacturing to next-generation telecommunications. As demand for faster processing, tighter tolerances, and minimal downtime continues to escalate, fiber lasers have transitioned from niche research tools to critical production assets.

Furthermore, the integration of these lasers into automated systems and smart manufacturing environments has unlocked new levels of throughput and consistency. Coupled with continual enhancements in cooling techniques, beam delivery mechanisms, and control software, today's fiber lasers offer reliability metrics that satisfy the most stringent industrial standards. Consequently, companies across aerospace, electronics, energy, and biomedical sectors are progressively adopting fiber laser solutions to improve product quality, reduce operational costs, and accelerate time to market.

Uncovering Transformative Shifts in Fiber Laser Innovations Reshaping Industry Dynamics, Advancing Efficiency and Enabling Novel Use Cases Across Sectors

In recent years, the fiber laser landscape has undergone transformative shifts that are reshaping competitive dynamics and unlocking fresh opportunities. One significant evolution lies in the adoption of ultrafast pulse regimes, which have redefined precision microfabrication by enabling sub-micron structures with minimal thermal damage. At the same time, advancements in ultraviolet and visible fiber laser modules are expanding the frontiers of material processing, particularly in polymer welding and semiconductor manufacturing where precision and minimal collateral effects are paramount.

Moreover, the incorporation of artificial intelligence and machine-learning algorithms into laser control systems has elevated process stability and predictive maintenance, thereby reducing unplanned downtime. This convergence of photonic innovation and digitalization is propelling Industry 4.0 initiatives and supporting remote operation models. Looking ahead, continued improvements in rare-earth doping methods, coupled with novel fiber geometries, promise higher power outputs and greater beam versatility. As a result, end users can anticipate a broader spectrum of capabilities, from high-throughput macro-processing to intricate micro-structuring, all delivered through increasingly compact and energy-efficient platforms.

Evaluating the Cumulative Impact of United States Tariffs on Fiber Laser Trade Dynamics in 2025 and Their Implications for Supply Chains and End Users

The implementation of new United States tariffs in 2025 has introduced notable complexities throughout the fiber laser supply chain, prompting stakeholders to reevaluate sourcing strategies and cost structures. Manufacturers relying on imported fiber modules and pump diodes have faced elevated duty burdens, leading to a recalibration of component procurement practices. Consequently, several key suppliers have accelerated the diversification of their vendor base, incorporating regional partners in Asia and Europe to offset the financial impact of higher import levies.

In parallel, original equipment manufacturers have explored nearshoring initiatives, shifting certain production processes closer to end-use markets to mitigate tariff exposure. This strategic realignment has fostered greater collaboration between domestic system integrators and local component makers, thereby strengthening supply chain resilience. At the same time, end users have encountered incremental cost pressures, which in some instances have been passed through to capital expenditure plans. Nonetheless, many organizations are leveraging long-term service agreements and volume-based procurement contracts to stabilize pricing and secure priority access to critical components. As the market adapts, a clearer regulatory outlook and renegotiated trade terms are expected to further streamline cross-border flows.

Gaining Key Segmentation Insights into Fiber Lasers by Type, Operation, Mode, Doping Material, Power Rating, Application, End-User, and Distribution Channels

A nuanced understanding of fiber laser market segments is essential to align technology offerings with specific performance requirements. Based on type, infrared fiber lasers continue to dominate industrial cutting and welding applications due to their favorable absorption characteristics, while ultrafast fiber lasers are increasingly preferred for precision micromachining in electronics and medical device production. Simultaneously, ultraviolet fiber lasers have found traction in polymer processing and semiconductor patterning, and visible fiber lasers are carving out a niche in advanced biomedical imaging systems.

Examining operational modes reveals that continuous-wave lasers remain the workhorse for high-speed macro-processing tasks, whereas pulsed lasers deliver exceptional peak powers for micro-drilling and surface texturing applications. Within the fiber morphology domain, multimode fibers support high power delivery at the expense of beam quality, whereas single-mode fibers provide superior beam coherence critical for fine feature creation. Regarding doping materials, erbium-doped systems have solidified their role in optical communications, thulium-doped lasers are emerging in medical and defense markets for their unique wavelength offerings, and ytterbium-doped architectures excel in high-power industrial processing.

Power ratings further differentiate use cases, with sub-kilowatt systems favored in research environments and more than 5 kW configurations addressing heavy manufacturing scenarios. Laser processing applications encompass both macro-scale operations-such as cutting, marking, engraving, and welding-and micro-scale activities that demand ultra-precise energy delivery. Optical communication applications focus on fiber-optic network upgrades, while optoelectronics leverage laser sources for component fabrication. End-user industries span aerospace and defense, automotive and transportation, electronics, energy, information technology and telecommunications, and broad manufacturing sectors. Finally, distribution channels range from traditional offline equipment sales through industrial distributors to online platforms that offer digital tools, virtual demonstrations, and streamlined service agreements.

Unlocking Regional Dynamics: Deep Insights into Fiber Laser Adoption Trends and Growth Drivers Across Americas, Europe, Middle East & Africa, Asia-Pacific

Regionally, the Americas exhibit robust adoption of fiber lasers, driven by heavy investment in aerospace, automotive, and renewable energy sectors. The United States leads in government-backed research initiatives and commercial deployment in macro-processing facilities, while Canada emphasizes collaborative projects between academic institutions and industrial partners. Meanwhile, Latin American markets are gradually embracing laser applications in manufacturing and agricultural biotechnology, supported by emerging local integrators.

In Europe, Middle East, and Africa, Western European nations have long-standing expertise in precision manufacturing, with Germany, Italy, and the United Kingdom pioneering automotive and electronics applications. The Middle East is channeling fiber laser technologies into oil and gas instrumentation and defense systems, while North African countries are beginning to pilot laser-enabled solutions in medical and semiconductor fabrication. Cross-regional trade agreements and technology transfer programs have enhanced accessibility to advanced fiber laser modules.

Asia-Pacific stands out for its manufacturing scale and telecommunications infrastructure expansion. China's domestic fiber laser producers are rapidly scaling capacity to serve both local and export markets, bolstered by government incentives. Japan and South Korea maintain leadership in high-precision ultrafast and visible fiber laser development, often in partnership with equipment OEMs. Southeast Asian nations are integrating fiber lasers into electronics assembly and automotive component fabrication, highlighting the region's diverse growth trajectory.

Profiling Leading Fiber Laser Manufactures and Innovators: Strategic Moves, Technological Advancements, and Competitive Positioning Shaping the Market Landscape

Leading fiber laser suppliers are actively shaping the competitive landscape through targeted investments, strategic partnerships, and product portfolio diversification. One prominent manufacturer has expanded its ultrafast laser line via acquisitions of specialist photonics startups, thereby accelerating time-to-market for sub-picosecond solutions. Another global player has strengthened its presence in high-power industrial lasers by co-developing turnkey systems with robotics integrators, enabling seamless integration into automated production lines.

Meanwhile, emerging companies are carving out niche positions by focusing on ultraviolet and visible wavelength offerings, attracting customers in semiconductor lithography and biomedical imaging. Several established vendors have formed alliances with semiconductor foundries and optoelectronics firms to co-innovate fiber laser modules tailored for next-generation device fabrication. Additionally, a number of regional equipment distributors have broadened service portfolios to include remote system diagnostics, predictive maintenance subscriptions, and virtual training programs.

Overall, the interplay between legacy incumbent strengths-characterized by deep application expertise and global service networks-and agile challengers-leveraging rapid prototyping and specialized wavelength competencies-defines the current market dynamics. As technology roadmaps converge on higher power scaling and beam quality enhancements, the ability to deliver end-to-end solutions will increasingly differentiate market leaders.

Actionable Strategies for Industry Leaders to Leverage Fiber Laser Innovations, Mitigate Tariff Challenges, and Strengthen Market Positioning Across Key Segments

Industry leaders should prioritize investment in research and development to extend the capabilities of ultrafast and ultraviolet fiber lasers, thereby catering to emerging microfabrication and biomedical imaging applications. Simultaneously, organizations must diversify their supply chains by qualifying alternative component vendors across multiple regions, thereby reducing exposure to tariff fluctuations and geopolitical disruptions. By establishing localized assembly or service hubs, companies can also accelerate response times and strengthen customer relationships.

In parallel, firms should enhance their digital service offerings by deploying predictive maintenance tools and remote diagnostics platforms, transforming downtime into value-added service streams. Collaboration with end-user partners in aerospace, automotive, and electronics verticals can inform co-development efforts, ensuring that new product roadmaps align with evolving process requirements. Additionally, embracing modular product architectures will allow faster customization and easier upgrades, increasing the lifetime value of installed systems.

Finally, active engagement with standards organizations and trade bodies can shape favorable regulatory environments and facilitate smoother cross-border transactions. To maintain a competitive edge, leadership teams must cultivate multidisciplinary talent pools that blend expertise in photonics, software engineering, and data science. Such initiatives will not only future-proof operations but also accelerate the adoption of fiber laser technologies across high-growth segments.

Transparent Research Methodology and Data Collection Techniques Underpinning the Fiber Laser Market Study to Ensure Accuracy, Reliability, and Actionable Insights

This study employs a rigorous, multi-tiered research methodology designed to deliver objective and actionable insights. Primary research consisted of in-depth interviews with system integrators, fiber laser manufacturers, component suppliers, and key end users across target industries. These conversations illuminated current technology adoption patterns, supply chain realities, and emerging application requirements.

Secondary research involved extensive review of peer-reviewed journals, patent databases, industry white papers, and conference proceedings to validate technical trends and benchmark competitor offerings. Quantitative data were analyzed to map segmentation performance and regional uptake, while qualitative inputs from expert panels enriched the interpretation of strategic initiatives. Data triangulation techniques ensured that conflicting viewpoints were reconciled, enhancing the robustness of conclusions.

The final analysis incorporates a comprehensive segmentation framework, detailed regional profiling, and competitive landscape assessment. Cross-verification through multiple data sources and ongoing consultation with independent subject-matter experts underpins the reliability of recommendations. This methodology provides stakeholders with a transparent and replicable foundation for strategic decision-making.

Synthesizing Key Findings on Fiber Laser Market Evolution, Technological Progress, and Strategic Implications for Stakeholders Across Various Industry Verticals

In summary, fiber lasers are poised to drive the next wave of industrial and technological innovation, combining superior beam quality, compact form factors, and seamless integration capabilities. Ongoing advancements in ultrafast pulse regimes, novel doping materials, and digital control systems are opening new frontiers in precision manufacturing, biomedical applications, and optical communications. However, evolving tariff frameworks and geopolitical realignments necessitate agile supply chain strategies and localized operational footprints.

Segmentation analysis highlights the importance of tailoring product offerings to specific wavelength requirements, operational modes, and end-user demands. Regional insights underscore divergent growth trajectories, with the Americas capitalizing on defense and renewable energy projects, EMEA leveraging precision manufacturing heritage, and Asia-Pacific driving scale in electronics and telecom infrastructure. Competitive profiles reveal a dynamic interplay between established incumbents and specialized new entrants, each pursuing unique paths to market leadership.

Looking ahead, stakeholders who invest in interdisciplinary R&D, cultivate flexible distribution networks, and forge strategic partnerships will be best positioned to harness fiber laser innovations. By adhering to data-driven decision frameworks and staying attuned to regulatory shifts, industry participants can secure sustainable growth and technological leadership in an increasingly competitive landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advancement of ultrathin fiber laser modules for integration into mobile LiDAR systems in autonomous vehicles
  • 5.2. Development of wavelength-tunable ultrafast fiber lasers for biomedical imaging applications
  • 5.3. Adoption of ytterbium-doped fiber lasers for precision welding in automotive manufacturing
  • 5.4. Increasing demand for high-power continuous wave fiber lasers in aerospace component fabrication
  • 5.5. Advancements in monolithic fiber laser design reducing system complexity and maintenance costs
  • 5.6. Integration of fiber laser technology with additive manufacturing for complex metal part production
  • 5.7. Customization of fiber laser pulse shaping for improved material processing versatility
  • 5.8. Strategic partnerships between fiber laser manufacturers and semiconductor producers for microfabrication
  • 5.9. Integration of photonic crystal fiber designs for enhanced mid-infrared laser output in environmental sensing
  • 5.10. Development of high repetition rate ultrafast fiber lasers for multiphoton microscopy in neuroscience

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Fiber Lasers Market, by Type

  • 8.1. Introduction
  • 8.2. Infrared Fiber Lasers
  • 8.3. Ultrafast Fiber Lasers
  • 8.4. Ultraviolet (UV) Fiber Lasers
  • 8.5. Visible Fiber Lasers

9. Fiber Lasers Market, by Operation

  • 9.1. Introduction
  • 9.2. Continuous-Wave Lasers
  • 9.3. Pulsed Lasers

10. Fiber Lasers Market, by Mode

  • 10.1. Introduction
  • 10.2. Multimode Fiber
  • 10.3. Single-Mode Fiber

11. Fiber Lasers Market, by Dopping Material

  • 11.1. Introduction
  • 11.2. Erbium-Doped Fiber Lasers
  • 11.3. Thulium-Doped Fiber Lasers
  • 11.4. Ytterbium-Doped Fiber Lasers

12. Fiber Lasers Market, by Power Rating

  • 12.1. Introduction
  • 12.2. 1 kW to 5 kW
  • 12.3. Less than 1 kW
  • 12.4. More than 5 kW

13. Fiber Lasers Market, by Application

  • 13.1. Introduction
  • 13.2. Laser Processing
    • 13.2.1. Macro Processing
      • 13.2.1.1. Cutting
      • 13.2.1.2. Marking/Engraving
      • 13.2.1.3. Welding
    • 13.2.2. Micro Processing
  • 13.3. Optical Communication
  • 13.4. Optoelectronics

14. Fiber Lasers Market, by End-User

  • 14.1. Introduction
  • 14.2. Aerospace & Defence
  • 14.3. Automotive & Transportation
  • 14.4. Electronics
  • 14.5. Energy
  • 14.6. IT & Telecommunications
  • 14.7. Manufacturing

15. Fiber Lasers Market, by Distribution Channel

  • 15.1. Introduction
  • 15.2. Offline
  • 15.3. Online

16. Americas Fiber Lasers Market

  • 16.1. Introduction
  • 16.2. United States
  • 16.3. Canada
  • 16.4. Mexico
  • 16.5. Brazil
  • 16.6. Argentina

17. Europe, Middle East & Africa Fiber Lasers Market

  • 17.1. Introduction
  • 17.2. United Kingdom
  • 17.3. Germany
  • 17.4. France
  • 17.5. Russia
  • 17.6. Italy
  • 17.7. Spain
  • 17.8. United Arab Emirates
  • 17.9. Saudi Arabia
  • 17.10. South Africa
  • 17.11. Denmark
  • 17.12. Netherlands
  • 17.13. Qatar
  • 17.14. Finland
  • 17.15. Sweden
  • 17.16. Nigeria
  • 17.17. Egypt
  • 17.18. Turkey
  • 17.19. Israel
  • 17.20. Norway
  • 17.21. Poland
  • 17.22. Switzerland

18. Asia-Pacific Fiber Lasers Market

  • 18.1. Introduction
  • 18.2. China
  • 18.3. India
  • 18.4. Japan
  • 18.5. Australia
  • 18.6. South Korea
  • 18.7. Indonesia
  • 18.8. Thailand
  • 18.9. Philippines
  • 18.10. Malaysia
  • 18.11. Singapore
  • 18.12. Vietnam
  • 18.13. Taiwan

19. Competitive Landscape

  • 19.1. Market Share Analysis, 2024
  • 19.2. FPNV Positioning Matrix, 2024
  • 19.3. Competitive Analysis
    • 19.3.1. FANUC Corporation
    • 19.3.2. Thorlabs, Inc.
    • 19.3.3. Advalue Photonics Inc.
    • 19.3.4. Amonics Ltd.
    • 19.3.5. Apollo Instruments Inc.
    • 19.3.6. BODORLASER INC.
    • 19.3.7. Fujikura Ltd.
    • 19.3.8. Coherent Corp.
    • 19.3.9. CY Laser SRL
    • 19.3.10. Furukawa Electric Co., Ltd.
    • 19.3.11. Hamamatsu Photonics K.K.
    • 19.3.12. Han's Laser Technology Industry Group Co., Ltd
    • 19.3.13. IPG PHOTONICS CORPORATION
    • 19.3.14. JENOPTIK AG
    • 19.3.15. Jinan Xintian Technology Co. Ltd.
    • 19.3.16. Keopsys by Lumibird S.A.
    • 19.3.17. Laser Marking Technologies, LLC
    • 19.3.18. Lumentum Holdings Inc.
    • 19.3.19. Maxphotonics Co,.Ltd
    • 19.3.20. Menlo Systems GmbH
    • 19.3.21. Newport Corporation by MKS Instruments, Inc.
    • 19.3.22. nLIGHT, Inc.
    • 19.3.23. Prima Industrie S.p.A.
    • 19.3.24. Shenzhen JPT Opto-electronics Co., Ltd.
    • 19.3.25. The TOPTICA Group
    • 19.3.26. TRUMPF SE + Co. KG
    • 19.3.27. Wuhan Raycus Fiber Laser Technologies Co., Ltd.

20. ResearchAI

21. ResearchStatistics

22. ResearchContacts

23. ResearchArticles

24. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦