시장보고서
상품코드
1808525

교육 분야 인공지능(AI) 시장 : 학습 형태, 기술 유형, 유형, 실장, 응용 분야별 - 세계 예측(2025-2030년)

Artificial Intelligence in Education Market by Learning Format, Technology Type, Type, Implementation, Application Area - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

교육 분야 인공지능(AI) 시장의 2024년 시장 규모는 48억 달러로 평가되었습니다. 2025년에는 53억 7,000만 달러에 이르고, CAGR 12.16%로 성장하여 2030년에는 95억 6,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 48억 달러
추정 연도 : 2025년 53억 7,000만 달러
예측 연도 : 2030년 95억 6,000만 달러
CAGR(%) 12.16%

학습의 미래를 그리다: 인공지능이 전 세계 교육 경험과 성과에 어떤 혁명을 불러일으키고 있는지 알아봅니다.

교육기관과 이해관계자들이 인공지능의 힘을 도입하여 교육, 학습, 관리의 방식을 재정의하면서 전 세계 교육 시스템은 큰 변화의 시기를 맞이하고 있습니다. 이번 소개에서는 교육 현장에서의 인간과 기계의 협업 현황을 소개하고, 첨단 알고리즘과 지능형 시스템이 핵심 프로세스에 어떻게 통합되고 있는지 살펴봄으로써 그 토대를 마련했습니다. 개인화된 학습 경로의 추구, 관리 효율성 향상, 데이터 기반 의사결정을 지원하는 실시간 분석 등 이러한 변화의 배경이 되는 동기를 알아봅니다.

인공지능의 혁신과 세계 교육 모델의 부상으로 교육 환경의 근본적인 변화에 도전합니다.

머신러닝, 컴퓨터 비전, 자연어 처리의 끊임없는 발전으로 교육 현장은 근본적인 변화를 경험하고 있습니다. 이러한 변화는 커리큘럼 자료의 자동 생성을 통한 컨텐츠 제작부터 적응형 인터페이스로 지원되는 몰입형 경험에 이르기까지 교육과 학습의 모든 측면을 재구성하고 있습니다. 교육기관이 확장 가능한 솔루션에 투자함에 따라, AI는 획일적인 모델에서 벗어나 개인의 진전에 따라 실시간으로 조정되는 역동적이고 학습자 중심의 접근 방식으로의 전환을 촉진하고 있습니다.

2025년 미국 관세 정책 변화가 교육 분야 인공지능 생태계와 이해관계자 역학관계에 미치는 복합적 영향 평가

2025년, 미국 관세 정책의 변화로 인해 교육 생태계의 이해관계자들에게 새로운 고려사항이 도입되었습니다. 교육기관과 공급업체들이 예산을 조정하고 공급업체 계약을 재협상하는 과정에서 공급망 역학, 부품 조달, 국경 간 파트너십에 누적 영향을 미치고 있습니다. 일부 솔루션 제공업체는 제조 거점을 분산시켜 리스크를 줄이고, 또 다른 솔루션 제공업체는 추가 규제 변화에 대비하여 장기 계약을 검토하고 있습니다.

학습 형식 기술 유형 시스템 구현 및 응용 분야별로 형성되는 다양한 시장 부문에서 중요한 통찰력을 도출할 수 있습니다.

교육 분야에서의 인공지능은 다양한 시장 행동과 요구사항을 파악한 세부적인 세분화를 통해 이해할 수 있습니다. 다양한 학습 형태를 고려할 때, 어떤 조직은 커뮤니티와 동료 간 교류를 촉진하기 위해 공동 그룹 학습 플랫폼을 중시하는 반면, 어떤 조직은 개인의 성과와 취향에 실시간으로 적응하는 개별 학습 시스템을 우선시하기도 합니다. 기술적 측면에서 교육자들은 컴퓨터 비전의 발전을 활용하여 제스처와 얼굴 인식을 통해 교실에서 학습 동기를 부여하고, 머신러닝 알고리즘을 도입하여 학생 데이터를 분석하고, 위험에 처한 학습자를 예측하고, 자연어 처리를 활용하여 인간과 대화하는 것처럼 보이는 대화형 튜터링 인터페이스를 만들 수 있습니다. 대화형 튜터링 인터페이스를 만듭니다.

교육 분야에서의 인공지능 채택 및 진화, 북미, 유럽, 중동 및 아프리카, 아시아태평양에서의 지역적 역학 관계 평가

교육에서 인공지능의 채택과 진화를 형성하는 데 있어 지역적 역학이 중요한 역할을 합니다. 미주 대륙의 경우, 조기 채택자는 주로 북미에 집중되어 있으며, 강력한 기술 인프라, 정부 이니셔티브 및 민간 투자로 인해 지능형 튜터링 시스템과 적응형 관리 플랫폼의 통합이 가속화되고 있습니다. 라틴아메리카의 교육 기관들은 교육 접근성 격차를 해소하고 원격 학습 경험을 개선하기 위해 AI 도구를 시험적으로 도입하고 있습니다.

인공지능 기반 교육 기술경쟁 구도 및 전략적 파트너십을 통해 혁신을 주도하는 주요 산업 기업을 조명합니다.

인공지능을 활용한 교육경쟁 구도는 기존 기술 제공업체, 전문화된 에듀테크 스타트업, 공동 혁신을 위해 결성된 컨소시엄이 혼재되어 있는 것이 특징입니다. 대기업들은 연구개발에 많은 투자를 하고, 대학과 파트너십을 맺어 예측 분석 플랫폼, 몰입형 가상 교실과 같은 참신한 용도를 시험적으로 도입하고 있습니다. 이들 기업은 대부분 독자적인 알고리즘, 광범위한 데이터 세트, 컨텐츠 제작, 배포, 평가를 연결하는 통합 생태계를 통해 차별화를 꾀하고 있습니다.

경쟁 우위와 영향력 있는 학습 성과를 위해 인공지능 혁신을 활용하는 교육 기술 리더를 강화하기 위한 전략적이고 실용적인 제안

교육 분야에서 인공지능의 잠재력을 최대한 활용하기 위해 업계 리더들은 먼저 윤리적 고려, 데이터 프라이버시, 알고리즘의 투명성을 다루는 명확한 거버넌스 프레임워크를 구축해야 합니다. 종합적인 정책을 도입함으로써 조직은 이해관계자간의 신뢰를 쌓고 AI에 대한 저항을 최소화할 수 있습니다. 또한, AI의 도입을 교육적 목표와 일치시키는 것은 기술이 인간의 가르침을 대체하는 것이 아닌, 인에이블러(Enabler)로서 기능할 수 있도록 보장합니다.

데이터 수집 분석 프레임워크와 검증 기법에 중점을 둔 종합적인 조사 방법을 개괄하고, 교육 분야에서 인공지능에 대한 통찰력을 강화합니다.

본 조사에서는 종합적인 통찰력을 얻기 위해 1차 데이터와 2차 데이터를 결합하는 혼합 방법론 접근법을 채택했습니다. 1차 조사에는 교육기관 경영진, 기술 제공업체, 학술 연구자, 관리자 및 교수진에 대한 심층 인터뷰와 설문조사가 포함됩니다. 이를 통해 AI를 활용한 교육의 주요 촉진요인, 과제, 새로운 이용 사례를 파악할 수 있습니다.

기술 동향의 수렴 인공지능을 활용한 교육의 향후 방향성을 이끄는 정책적 의미와 전략적 고찰

이러한 조사 결과를 종합해 보면, 인공지능이 교육의 다방면에 걸쳐 변혁적인 역할을 할 수 있다는 것을 알 수 있습니다. 머신러닝, 컴퓨터 비전, 자연어 처리 분야의 기술 발전은 개인화된 학습 경험, 자동화된 관리 프로세스, 데이터 기반 의사결정을 가능하게 하고 있습니다. 관세 조정과 같은 정책 전환은 혁신과 성장을 유지하기 위한 적응 전략과 협력적 프레임워크의 필요성을 강조하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 교육 분야 인공지능(AI) 시장 : 학습 형식별

  • 그룹 학습
  • 개별 학습

제9장 교육 분야 인공지능(AI) 시장 : 기술 유형별

  • 컴퓨터 비전
  • 머신러닝
  • 자연언어처리

제10장 교육 분야 인공지능(AI) 시장 : 유형별

  • 관리 시스템
  • 지도 시스템

제11장 교육 분야 인공지능(AI) 시장 : 구현별

  • 클라우드 기반
    • 하이브리드 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • On-Premise

제12장 교육 분야 인공지능(AI) 시장 : 응용 분야별

  • 기업 연수
    • 리더십 연수
    • 전문 능력개발
    • 기술 스킬 향상
  • 고등교육
    • 박사 과정
    • 대학원 프로그램
    • 학부 프로그램
  • K-12 교육
    • 초등교육
    • 중등 교육
  • 직업 훈련
    • 기술 연수
    • 무역 코스

제13장 아메리카의 교육 분야 인공지능(AI) 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 교육 분야 인공지능(AI) 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 교육 분야 인공지능(AI) 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • 2U, Inc.
    • Academia.edu, Inc.
    • Amazon Web Services, Inc.
    • AstrumU Inc.
    • Blackboard Inc. by Anthology
    • Brilliant.org, Inc.
    • Carnegie Learning, Inc.
    • Century Tech Limited
    • Cognii, Inc.
    • Cognizant Technology Solutions Corporation
    • Coursera, Inc.
    • Duolingo, Inc.
    • Google LLC by Alphabet Inc.
    • IBM Corporation
    • John Wiley & Sons, Inc.
    • McGraw-Hill Education, Inc.
    • Microsoft Corporation
    • OCELOT
    • Pearson Plc
    • Querium Corporation
    • Quizlet Inc.
    • SMART Technologies ULC
    • Thinkster Learning, Inc.
    • Udacity, Inc. by Accenture public limited company
    • YiXue Squirrel AI Learning Inc.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

LSH 25.09.17

The Artificial Intelligence in Education Market was valued at USD 4.80 billion in 2024 and is projected to grow to USD 5.37 billion in 2025, with a CAGR of 12.16%, reaching USD 9.56 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.80 billion
Estimated Year [2025] USD 5.37 billion
Forecast Year [2030] USD 9.56 billion
CAGR (%) 12.16%

Charting the Future of Learning: Unveiling How Artificial Intelligence Is Revolutionizing Educational Experiences and Outcomes Worldwide

Education systems around the world are undergoing a profound transformation as institutions and stakeholders embrace the power of artificial intelligence to redefine how teaching, learning, and administration are conducted. This introduction lays the groundwork by presenting the current state of human-machine collaboration in educational contexts, examining how advanced algorithms and intelligent systems are increasingly integrated into core processes. It elucidates the motivations behind this shift, including the pursuit of personalized learning pathways, enhanced administrative efficiency, and real-time analytics to support data-driven decision making.

With both educators and learners demanding more adaptive, responsive, and scalable solutions, AI-enabled platforms are rapidly moving from pilot programs to mainstream adoption. Early adopters have reported improvements in engagement metrics, streamlined workflows, and the ability to deliver tailored content at scale. At the same time, institutions face challenges related to integration, data privacy, and ensuring equitable access to these innovations. Thus, this section establishes the context for the rest of the executive summary by highlighting the drivers, opportunities, and complexities that define the AI in education domain.

Navigating Fundamental Transformations in Educational Environments Driven by Artificial Intelligence Innovations and Emerging Pedagogical Models Globally

The educational landscape is experiencing fundamental transformations propelled by continuous advancements in machine learning, computer vision, and natural language processing. These shifts are reshaping every facet of teaching and learning, from content creation through automated generation of curriculum materials to immersive experiences supported by adaptive interfaces. As institutions invest in scalable solutions, AI is facilitating a move away from one-size-fits-all models toward dynamic, learner-centric approaches that adjust in real time to individual progress.

Furthermore, artificial intelligence is enabling administrative systems to automate routine tasks such as scheduling, assessment grading, and resource allocation, thereby freeing educators to focus on pedagogical innovation and student engagement. Collaborative group learning environments are enhanced by intelligent tools that monitor participation and provide actionable feedback, while personalized learning pathways curate content based on each student's strengths and areas for improvement. These combined capabilities are driving a more efficient, effective, and inclusive educational ecosystem that aligns with the needs of modern learners and institutional goals.

Assessing the Combined Effects of United States Tariff Policy Changes in 2025 on the Artificial Intelligence in Education Ecosystem and Stakeholder Dynamics

In 2025, shifts in United States tariff policies have introduced new considerations for stakeholders in the artificial intelligence in education ecosystem. The cumulative impact is evident in supply chain dynamics, component sourcing, and cross-border partnerships, as institutions and providers grapple with adjusting budgets and renegotiating vendor agreements. While some solution providers have diversified manufacturing locations to mitigate exposure, others are evaluating long-term contracts to hedge against further regulatory changes.

Despite these headwinds, strategic collaborations and joint ventures have emerged between domestic and international firms, aiming to share risk and maintain continuity of service delivery. Academic institutions are actively exploring alternative procurement strategies, including consortium buying and local sourcing agreements, in order to sustain the momentum of AI deployment. Additionally, policymakers and industry groups are advocating for harmonized standards to reduce administrative burdens and support the seamless exchange of educational technologies. As a result, the AI in education market is demonstrating resilience through adaptive strategies, collaborative frameworks, and an emphasis on regional partnerships that balance compliance with innovation.

Uncovering Critical Insights from Diverse Market Divisions Shaped by Learning Format Technological Types Systems Implementations and Application Areas

The artificial intelligence in education space can be understood through a detailed segmentation that captures varying market behaviors and requirements. When considering different learning formats, some organizations emphasize collaborative group learning platforms to foster community and peer-to-peer exchange, while others prioritize personalized learning systems that adapt in real time to individual performance and preferences. On the technology front, educators leverage advances in computer vision to enhance classroom engagement through gesture and facial recognition, deploy machine learning algorithms to analyze student data and predict at-risk learners, and utilize natural language processing to create conversational tutoring interfaces that simulate human dialogue.

Diving deeper into solution types reveals a distinction between administrative systems, which automate workflow tasks like scheduling and attendance tracking, and instructional systems designed to deliver content and interactive lessons. Regarding deployment models, cloud-based implementations offer flexibility and continuous updates, with some institutions opting for hybrid cloud environments that combine local infrastructure with on-demand scalability, while others choose private cloud environments for enhanced security or public cloud infrastructures to optimize cost. On-premises installations remain relevant for organizations with strict data sovereignty requirements.

Application areas further highlight how AI is tailored to diverse educational contexts. In corporate training, businesses integrate AI for leadership training modules, professional development pathways, and technical skills enhancement programs that respond to workforce demands. Higher education institutions incorporate AI into doctoral research support tools, postgraduate curriculum customization, and undergraduate learning management systems that adapt to enrollment trends. Within K-12 settings, AI facilitates primary education focus on foundational literacy and numeracy, while in secondary education, it supports advanced analytics to prepare students for higher academic pursuits. Vocational training benefits from technical training simulations and trade course optimizations that align with real-world industry standards. By examining these interrelated segments, decision makers can pinpoint high-value opportunities and align solutions with strategic objectives.

Evaluating Distinct Regional Dynamics Across the Americas Europe Middle East Africa and Asia Pacific in the Adoption and Evolution of Artificial Intelligence in Education

Regional dynamics play an instrumental role in shaping the adoption and evolution of artificial intelligence in education. In the Americas, early adopters are predominantly in North America, where robust technology infrastructure, government initiatives, and private investment have accelerated the integration of intelligent tutoring systems and adaptive administrative platforms. Latin American institutions are increasingly piloting AI tools to address educational access gaps and improve remote learning experiences.

Across Europe, the Middle East, and Africa, regulatory harmonization and data privacy frameworks influence how institutions embrace AI technologies. Some European countries have established centralized educational data repositories to support analytics, whereas others allow decentralized innovation with localized deployments. In the Middle East, partnerships between governments and edtech providers are expanding AI-driven vocational training programs aimed at workforce upskilling. Meanwhile, Africa's focus on mobile-first learning solutions augmented by AI is growing in response to connectivity constraints.

The Asia-Pacific region stands out for its diverse educational ecosystems, from high-tech smart campuses in East Asia to rapidly expanding online learning platforms in Southeast Asia and Australia's integration of AI into vocational and higher education curricula. Governments across the region are investing heavily in AI research, fostering collaborations between universities and technology firms. This dynamic regional tapestry underscores the importance of tailoring strategies to local needs, regulatory contexts, and infrastructure capabilities to maximize impact and foster sustainable growth.

Highlighting Pivotal Industry Players Driving Innovation Competitive Dynamics and Strategic Partnerships in Artificial Intelligence Enabled Education Technologies

The competitive landscape in artificial intelligence enabled education is characterized by a blend of established technology providers, specialized edtech start-ups, and consortiums formed for joint innovation. Leading firms invest heavily in research and development, forging partnerships with universities to pilot novel applications such as predictive analytics platforms and immersive virtual classrooms. These entities often differentiate through proprietary algorithms, extensive data sets, and integrated ecosystems that connect content creation, delivery, and assessment.

Simultaneously, niche players carve out competitive advantages by focusing on specific educational segments-such as K-12 interactive storytelling engines or vocational training simulation suites-and by offering deep expertise in select pedagogical methodologies. Collaborations between large enterprises and regional solution providers facilitate rapid local market entry, while strategic alliances with cloud infrastructure companies streamline global deployment. As the value chain evolves, education institutions increasingly demand turnkey solutions that combine robust administrative systems with adaptive instructional offerings, prompting providers to deliver integrated platforms through strategic mergers and technology licensing deals.

Strategic and Practical Recommendations Empowering Education Technology Leaders to Harness Artificial Intelligence Innovations for Competitive Advantage and Impactful Learning Outcomes

To harness the full potential of artificial intelligence in education, industry leaders should first establish a clear governance framework that addresses ethical considerations, data privacy, and algorithmic transparency. By implementing comprehensive policies, organizations can build trust among stakeholders and minimize resistance to AI initiatives. Moreover, aligning AI deployment with pedagogical goals ensures that technology serves as an enabler rather than a substitute for human instruction.

Next, decision makers are advised to adopt an iterative implementation approach, beginning with pilot programs that focus on high-impact use cases such as early intervention analytics or automated grading solutions. This phased strategy enables stakeholder buy-in and provides valuable feedback loops for refinement. Concurrently, organizations should invest in capacity building, equipping educators and administrators with the skills needed to interpret AI insights and integrate them into curriculum design.

Finally, fostering strategic alliances with technology providers, research institutions, and policy makers can accelerate innovation and scale effective solutions. Collaborative initiatives such as co-development labs and knowledge sharing consortia help distribute costs, share best practices, and ensure alignment with evolving regulatory landscapes. By following these recommendations, leaders can mitigate risks, drive measurable outcomes, and position their organizations at the forefront of the AI-driven educational revolution.

Outlining Comprehensive Research Methodology Emphasizing Data Collection Analytical Frameworks and Validation Techniques for Robust Artificial Intelligence in Education Insights

This research employs a mixed-methods approach combining primary and secondary data to deliver comprehensive insights. Primary research includes in-depth interviews with education executives, technology providers, and academic researchers, as well as surveys targeting administrators and faculty members. These interactions inform the identification of key drivers, challenges, and emerging use cases in AI-enabled education.

Secondary research encompasses extensive review of policy documents, white papers, academic publications, and technology briefings to contextualize market developments and regulatory trends. Quantitative analysis utilizes proprietary data sources and longitudinal studies to track adoption patterns, while qualitative synthesis integrates thematic findings around pedagogy, governance, and technology infrastructure.

To ensure rigor and validity, triangulation is applied across data sources, and findings are subjected to expert panel reviews. The research framework also incorporates scenario analysis to explore potential policy shifts and technological breakthroughs. This robust methodology underpins the actionable recommendations and strategic insights presented throughout the executive summary.

Synthesis of Key Findings Converging Technological Trends Policy Implications and Strategic Considerations Guiding Future Directions in Artificial Intelligence Enabled Education

The synthesis of these findings underscores the transformative role of artificial intelligence across multiple facets of education. Technological advances in machine learning, computer vision, and natural language processing have enabled personalized learning experiences, automated administrative processes, and data-driven decision making. Policy shifts such as tariff adjustments highlight the need for adaptive strategies and collaborative frameworks to sustain innovation and growth.

Segmentation analysis reveals that aligning solutions with specific learning formats, technology types, system embodiments, deployment models, and application areas enhances relevance and impact. Regional insights emphasize the importance of local context, regulatory alignment, and infrastructure readiness. Competitive dynamics show that strategic partnerships and integrated offerings are key drivers of differentiation and scalability.

Together, these converging trends mark a pivotal moment in the evolution of education, where AI acts as both catalyst and cornerstone for future learning ecosystems. Stakeholders who embrace ethical governance, iterative implementation, and cross-sector collaboration will be best positioned to lead in this dynamic environment.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of adaptive learning algorithms into personalized curriculum management platforms
  • 5.2. Implementation of AI-powered virtual tutors for 24/7 individualized student support and feedback
  • 5.3. Deployment of natural language processing for automated assessment and essay grading in higher education
  • 5.4. Adoption of AI-driven predictive analytics to prevent student dropout and improve retention rates
  • 5.5. Use of computer vision for monitoring classroom engagement and driving real-time intervention strategies
  • 5.6. Expansion of AI-enabled language learning applications offering immersive augmented reality experiences for students
  • 5.7. Integration of generative AI for automated educational content creation and dynamic syllabus development
  • 5.8. Development of blockchain-based academic credentialing verified by AI for secure student identity management
  • 5.9. Enhancement of collaborative learning platforms with AI-driven peer matching and group dynamics optimization
  • 5.10. Integration of AI-enabled voice assistants for enhancing student accessibility and inclusive learning design

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Education Market, by Learning Format

  • 8.1. Introduction
  • 8.2. Group Learning
  • 8.3. Personalized Learning

9. Artificial Intelligence in Education Market, by Technology Type

  • 9.1. Introduction
  • 9.2. Computer Vision
  • 9.3. Machine Learning
  • 9.4. Natural Language Processing

10. Artificial Intelligence in Education Market, by Type

  • 10.1. Introduction
  • 10.2. Administrative Systems
  • 10.3. Instructional Systems

11. Artificial Intelligence in Education Market, by Implementation

  • 11.1. Introduction
  • 11.2. Cloud-Based
    • 11.2.1. Hybrid Cloud
    • 11.2.2. Private Cloud
    • 11.2.3. Public Cloud
  • 11.3. On-Premises

12. Artificial Intelligence in Education Market, by Application Area

  • 12.1. Introduction
  • 12.2. Corporate Training
    • 12.2.1. Leadership Training
    • 12.2.2. Professional Development
    • 12.2.3. Technical Skills Enhancement
  • 12.3. Higher Education
    • 12.3.1. Doctoral Programs
    • 12.3.2. Postgraduate Programs
    • 12.3.3. Undergraduate Programs
  • 12.4. K-12 Education
    • 12.4.1. Primary Education
    • 12.4.2. Secondary Education
  • 12.5. Vocational Training
    • 12.5.1. Technical Training
    • 12.5.2. Trade Courses

13. Americas Artificial Intelligence in Education Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Artificial Intelligence in Education Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Artificial Intelligence in Education Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. 2U, Inc.
    • 16.3.2. Academia.edu, Inc.
    • 16.3.3. Amazon Web Services, Inc.
    • 16.3.4. AstrumU Inc.
    • 16.3.5. Blackboard Inc. by Anthology
    • 16.3.6. Brilliant.org, Inc.
    • 16.3.7. Carnegie Learning, Inc.
    • 16.3.8. Century Tech Limited
    • 16.3.9. Cognii, Inc.
    • 16.3.10. Cognizant Technology Solutions Corporation
    • 16.3.11. Coursera, Inc.
    • 16.3.12. Duolingo, Inc.
    • 16.3.13. Google LLC by Alphabet Inc.
    • 16.3.14. IBM Corporation
    • 16.3.15. John Wiley & Sons, Inc.
    • 16.3.16. McGraw-Hill Education, Inc.
    • 16.3.17. Microsoft Corporation
    • 16.3.18. OCELOT
    • 16.3.19. Pearson Plc
    • 16.3.20. Querium Corporation
    • 16.3.21. Quizlet Inc.
    • 16.3.22. SMART Technologies ULC
    • 16.3.23. Thinkster Learning, Inc.
    • 16.3.24. Udacity, Inc. by Accenture public limited company
    • 16.3.25. YiXue Squirrel AI Learning Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제