½ÃÀ庸°í¼­
»óǰÄÚµå
1808533

È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : Á¦Ç° À¯Çüº°, ±âÀ纰, ó¸® À¯Çüº°, Ç÷οì À¯Çüº°, Àåºñ À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Chemical Surface Treatment Market by Product Type, Base Material, Treatment Type, Flow Type, Equipment Type, Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 183 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀåÀº 2024³â 167¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 177¾ï 3,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR6.26%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 240¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 167¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 177¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 240¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 6.26%

È­ÇÐÀû Ç¥¸é 󸮴 Àç·á °úÇÐ ÀÀ¿ë ºÐ¾ßÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, Ç×°ø¿ìÁÖ¿¡¼­ °¡ÀüÁ¦Ç°¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷¿¡¼­ Áß¿äÇÑ ¼º´É Çâ»óÀ» Á¦°øÇÕ´Ï´Ù. Ç¥¸é Ư¼ºÀ» ¹Ì¼¼ÇÑ ¼öÁØ¿¡¼­ º¯È­½ÃÅ´À¸·Î½á ºÎ½ÄÀ» ÁÙÀ̰í, Á¢Âø·ÂÀ» Çâ»ó½Ã۸ç, ¿­ À庮, Àü±â Àüµµ¼º µî °íµµÀÇ ±â´É¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÃÖÁ¾ ½ÃÀåÀÌ ³»±¸¼º°ú ¹ÌÇп¡ ´ëÇØ ±× ¾î´À ¶§º¸´Ù ³ôÀº ±âÁØÀ» ¿ä±¸ÇÔ¿¡ µû¶ó Ȱ¼ºÁ¦, ¼¼Á¤Á¦, È­ÇÐó¸®Á¦ÀÇ ¿ªÇÒÀÌ ±× ¾î´À ¶§º¸´Ù Áß¿äÇØÁ³½À´Ï´Ù.

¿øÀÚÀç Á¶´Þ°ú °øÁ¤ ÀÚµ¿È­ÀÇ »õ·Î¿î ¿ªÇÐÀº Àü ¼¼°è »ý»ê ¶óÀο¡¼­ ó¸® ¾àǰÀÇ ¹èÇÕ ¹× ¹èÄ¡ ¹æ¹ýÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. »ê¼º Ȱ¼ºÁ¦, ºÒ¼Ò°è Ȱ¼ºÁ¦, µµ±Ý Àü Ȱ¼ºÁ¦´Â °¢°¢ ÈÄ¼Ó ÄÚÆÃ °øÁ¤À» À§ÇØ ±âÆÇÀ» ÁغñÇϵµ·Ï Á¶Á¤µË´Ï´Ù. ÀÌ¿Í ÇÔ²² »ê¼º, ¾ËÄ®¸®¼º, Áß¼º, Áß¼º, ¿ë¸Å ±â¹Ý ¼¼Ã´ ÇÁ·ÎÅäÄÝÀº ¿À¿° ¹°ÁúÀÌ ¾ø´Â Ç¥¸éÀ» º¸ÀåÇϸç, Å©·Î¸ÞÀÌÆ®, Àλ꿰, ½Ç¶õ, Áö¸£ÄÚ´½°ú °°Àº È­ÇÐÀû ó¸® ÄÚÆÃÀº °í¼º´É ¾î¼Àºí¸®¿¡ ÇʼöÀûÀÎ º¸È£ ¹× Àå½Ä ÃþÀ» Á¦°øÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ¹è°æ¿¡¼­ Á¦Á¶¾÷ü¿Í ÃÖÁ¾ »ç¿ëÀÚ´Â ±ÔÁ¦ ¹× ȯ°æ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀϰüµÈ 󸮷®°ú ¼öÀ² Çâ»óÀ» ´Þ¼ºÇÒ ¼ö ÀÖ´Â °øÁ¤¿¡ ´ëÇÑ ÅõÀÚ¸¦ Á¶Á¤Çϰí ÀÖ½À´Ï´Ù. ¿¬¼Ó ó¸® Ç÷§Æû°ú ¹èÄ¡ ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀº ºü¸¥ Àüȯ°ú »çÀÌŬ ½Ã°£ ´ÜÃàÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¿î¿µ À¯¿¬¼ºÀ¸·ÎÀÇ ±¤¹üÀ§ÇÑ ÀüȯÀ» °­Á¶ÇÕ´Ï´Ù. º» º¸°í¼­¿¡¼­´Â È­ÇÐÀû Ç¥¸é ó¸®ÀÇ ¹Ì·¡¸¦ ±ÔÁ¤ÇÏ´Â º¯ÇõÀû º¯È­, ±ÔÁ¦ ¾Ð·Â, Áö¿ªÀû ÆÐÅÏ, Àü·«Àû ¿ä±¸»çÇ׿¡ ´ëÇØ ´ÙÀ½ ¼½¼Ç¿¡¼­ ÀÚ¼¼È÷ »ìÆìº¾´Ï´Ù.

±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼º ±â¹Ý Çõ½ÅÀÇ ½Çõ: È­ÇÐÀû Ç¥¸é ó¸®ÀÇ ÆÄ±«Àû ÈûÀÇ ±Øº¹

±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Çå½ÅÀº È­ÇÐÀû Ç¥¸é ó¸® ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°±â À§ÇØ ¼ö·ÅÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­¿Í µðÁöÅÐÈ­¸¦ ÅëÇØ °øÁ¤ ÆÄ¶ó¹ÌÅÍÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇØÁ® ¼öÀÛ¾÷ °³ÀÔ ¾øÀÌ Á¤È®ÇÑ ¾àǰ °ø±Þ ¼Óµµ, ¿Âµµ Á¦¾î, Ç¥¸é ǰÁú Æò°¡°¡ °¡´ÉÇØÁ³½À´Ï´Ù. Àδõ½ºÆ®¸® 4.0À¸·ÎÀÇ ÀüȯÀº ¿¹Áöº¸Àü ÇÁ·ÎÅäÄݰú µ¥ÀÌÅÍ ±â¹Ý ÃÖÀûÈ­¸¦ µµÀÔÇÏ¿© Àϰü¼ºÀ» ³ôÀÌ°í ´Ù¿îŸÀÓ°ú ³¶ºñ¸¦ ÁÙÀÔ´Ï´Ù.

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ Á¤Ã¥ÀÌ °ø±Þ¸Á°ú ºñ¿ë ±¸Á¶¿¡ °ÉÃÄ È­ÇÐÀû Ç¥¸éó¸® »ýŰ迡 ¹ÌÄ¡´Â ÆÄ±ÞÈ¿°ú¿¡ ´ëÇÑ Æò°¡

¹Ì±¹¿¡¼­ 2025³â »õ·Î¿î °ü¼¼ Á¶Ä¡°¡ µµÀԵʿ¡ µû¶ó È­ÇРǥ¸é ó¸® »ê¾÷ Àü¹Ý¿¡ Å« ÆÄÀåÀÌ Àϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä Àü±¸Ã¼ È­Çй°Áú ¹× ó¸® Àåºñ¿¡ ´ëÇÑ ¼öÀÔ °ü¼¼´Â Ư¼ö Ȱ¼ºÁ¦ ¹× °í±Þ ½ºÇÁ·¹ÀÌ ¶Ç´Â ÄÁº£ÀÌ¾î ½Ã½ºÅÛÀÇ »ó·ú ºñ¿ëÀ» »ó½Â½ÃÄ×½À´Ï´Ù. ±× °á°ú, °¡°ø¾÷ü¿Í °è¾à ÄÚÆÃ¾÷üµéÀº °ø±Þ¾÷ü¿ÍÀÇ °è¾àÀ» Àç°ËÅäÇϰí, ±¹³» °ø±Þó·Î »ý»êÀ» ÀüȯÇϰųª, ±¹°æ °£ °¡°Ý »ó½ÂÀÇ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ´Â ´ëü È­Çй°ÁúÀ» ã°í ÀÖ½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÏ¿© È­ÇÐÀû Ç¥¸é ó¸®ÀÇ Á¦Ç° º¯Çü ó¸® ¹æ½Ä°ú ¿ëµµº° Æ®·»µå¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼¼ºÐÈ­¸¦ ÀÚ¼¼È÷ Á¶»çÇÏ¸é ´Ù¾çÇÑ È­ÇÐÀû Ç¥¸é ó¸® Á¦Ç°ÀÇ ¹Ì¹¦ÇÑ ¼º´É ¿äÀÎÀ» È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ó¸® È­Çй°ÁúÀº Ȱ¼ºÈ­Á¦, ¼¼Á¤Á¦, È­¼ºÃ³¸®Á¦·Î ºÐ·ùµÇ¸ç, °¢°¢ Àü¹®ÀûÀ¸·Î ´Ù¾çÇÑ À¯ÇüÀÌ ÀÖ½À´Ï´Ù. »ê¼º Ȱ¼ºÁ¦´Â °í¿¡³ÊÁö Ç¥¸é ÄÁµð¼Å´×À» Á¦°øÇϰí, ºÒ¼Ò°è Ȱ¼ºÁ¦´Â ±ÕÀÏÇÑ ¿¡Äª ´É·ÂÀ¸·Î À¯¸íÇÕ´Ï´Ù. »çÀü µµ±Ý Ȱ¼ºÁ¦´Â ±Ý¼Ó ħÀü °øÁ¤¿¡ ´ëÇÑ °¡±³ ¿ªÇÒÀ» ÇÕ´Ï´Ù. »ê¼º, ¾ËÄ®¸®¼º, Áß¼º, Áß¼º ¹× ¿ë¸Å ±â¹Ý È­ÇÐ ¹°Áú¿¡ À̸£´Â Ŭ¸®³Ê´Â °í±Þ ÄÚÆÃ °øÁ¤À» ½ÃÀÛÇϱâ Àü¿¡ ±âÆÇ¿¡ ¿ÀÀÏ, »êÈ­¹° ¹× ¹Ì¸³ÀÚ°¡ ¾ø´Â °ÍÀ» º¸ÀåÇÕ´Ï´Ù. ÄÁ¹öÀü ÄÚÆÃ¿¡´Â Å©·Î¸ÞÀÌÆ®, Àλ꿰, ½Ç¶õ, Áö¸£ÄÚ´½ ±â¼úÀÌ Àû¿ëµÇ¾î ¾ö°ÝÇÑ ¼º´É ±âÁØÀ» ÃæÁ·ÇÏ´Â ³»½Ä¼º ¶Ç´Â Àå½Ä¿ë ¸¶°¨À» ½ÇÇöÇÕ´Ï´Ù.

È­ÇÐÀû Ç¥¸é ó¸® ¼ö¿ä ÆÐÅÏÀ» Çü¼ºÇÏ´Â Áö¿ªÀû ¿ªÇÐ °ü°è ÆÄ¾Ç ÁÖ¿ä Áö¿ª°ø±Þ¸Á °­Àμº°ú °æÀï ¿ìÀ§ È®º¸

Áö¿ªÀû ¿ªÇÐÀº È­ÇÐÀû Ç¥¸éó¸® °ü°èÀڵ鿡°Ô ¿ì¼±¼øÀ§¿Í ±âȸ¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷ÀÇ Áß½ÉÁö·ÎºÎÅÍÀÇ °­·ÂÇÑ ¼ö¿ä°¡ °í±Þ Å©·Î¸ÞÀÌÆ® ´ëüǰ ¹× °í󸮷® ¼¼Á¤ ½Ã½ºÅÛÀÇ ²ÙÁØÇÑ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì ½ÃÀåÀº À¯¿¬ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ģȯ°æ Á¦Á¶ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î ÁÖ¿ä Àü±¸Ã¼ È­Çй°ÁúÀÇ ÇöÁö »ý»ê¿¡ À¯¸®ÇÑ ´Ï¾î¼î¾î¸µ(near-shoring) Ãß¼¼ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.

È­ÇÐÀû Ç¥¸é ó¸® »ê¾÷ ȯ°æ°æÀï ±¸µµ¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä Çõ½Å ±â¾÷ ½ÃÀå ¸®´õ½Ê Àü·« °ËÅä

ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷µéÀº R&D, ÆÄÆ®³Ê½Ê, ¿ª·® È®Àå¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ¸¦ ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ´ëÇü È­Çо÷üµéÀº Àåºñ Á¦Á¶¾÷ü¿Í Çù·ÂÇÏ¿© ÅëÇÕ Ã³¸® ½ºÅ°µå¸¦ °øµ¿ °³¹ßÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¼³Ä¡ÀÇ º¹À⼺À» ÁÙÀÌ°í ¿øÈ°ÇÑ °øÁ¤ÀÇ »óÈ£ ¿î¿ë¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§Æû¿¡ µðÁöÅÐ ºÐ¼®À» ÅëÇÕÇÔÀ¸·Î½á ÃÖÁ¾ »ç¿ëÀÚ´Â ½Å¼ÓÇÑ ¹®Á¦ ÇØ°á°ú ¿ø°Ý ÇÁ·Î¼¼½º Á¶Á¤À» ÅëÇØ ¿À·ù¿Í Æó±âÀ²À» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

È­ÇÐÀû Ç¥¸é ó¸® ºÐ¾ßÀÇ Çõ½Å ¼ºÀå, ¿î¿µ ¿ì¼ö¼º, Áö¼Ó °¡´ÉÇÑ °æÀï ¿ìÀ§¸¦ À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ÅëÇØ ¾÷°è ¸®´õ¿¡°Ô ÈûÀ» ½Ç¾îÁÝ´Ï´Ù.

°æÀï ¿ìÀ§¸¦ È®º¸ÇÏ·Á´Â ¾÷°è ¸®´õ´Â ÁøÈ­ÇÏ´Â °í°´ ¿ä±¸ »çÇ×°ú ¾÷°è »óȲ¿¡ µû¶ó ÅõÀÚ¸¦ ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Àüü ÇÁ·Î¼¼½º È帧¿¡ °íµµÀÇ ºÐ¼®°ú ÀÚµ¿È­¸¦ ÅëÇÕÇÏ¿© º¯µ¿¼ºÀ» Å©°Ô ÁÙÀ̰í 󸮷®À» Çâ»ó½ÃŰ¸ç ½Å·Ú¼ºÀÇ »õ·Î¿î ±âÁØÀ» Á¦½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼¾¼­¿Í Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µÀ» µµÀÔÇÔÀ¸·Î½á ÀÇ»ç°áÁ¤ÀÚ´Â ÇÁ·Î¼¼½ºÀÇ °ÇÀü¼º¿¡ ´ëÇÑ ½Ç½Ã°£ °¡½Ã¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ°í, ÀÌ»ó ¡ÈÄ¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå Á¶»ç¿¡¼­ ºÐ¼®ÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý ¹× µ¥ÀÌÅÍ ¼öÁý ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ëÀÔ´Ï´Ù.

ÀÌ ºÐ¼®Àº 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ ´ÙÃþ Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¸¦ ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â ó¸® È­ÇÐ, °øÁ¤ Çõ½Å, Áö¿ª Á¤Ã¥ÀÇ ÃßÁø·Â¿¡ ´ëÇÑ ±âÃÊÀûÀÎ ÀÌÇØ¸¦ È®¸³Çϱâ À§ÇØ ±â¼ú Àú³Î, ¾÷°è ¹é¼­, ÀϹݿ¡ °ø°³µÈ ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâµÈ ¼­·ù¸¦ ü°èÀûÀ¸·Î Á¶»çÇß½À´Ï´Ù. µ¿½Ã¿¡ ƯÇã µ¥ÀÌÅͺ£À̽º¿Í ¾÷°è ´ÜüÀÇ º¸°í¼­¸¦ ÅëÇØ ¿ª»çÀû ¹è°æ°ú Ãß¼¼¸¦ È®ÀÎÇß½À´Ï´Ù.

¹Ì·¡ ±Ëµµ¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ Àü¸ÁÀ» Á¦°øÇÏ´Â ÁÖ¿ä ¿¬±¸ °á°ú ÅëÇÕ È­ÇÐÀû Ç¥¸é ó¸®ÀÇ °¡Ä¡ âÃâ ¹× Àü·«Àû Á߿伺 ºÐ¼®

±â¼ú ¹ßÀü, ȯ°æ º¸È£, °ø±Þ¸Á ¹Îø¼º ¿ä±¸ÀÇ ¼ö·ÅÀº È­ÇÐÀû Ç¥¸é ó¸® »ê¾÷ÀÇ ´ÙÀ½ ÀåÀ» Çü¼ºÇÒ °ÍÀÔ´Ï´Ù. µ¥ÀÌÅÍ ±â¹Ý °øÁ¤ Á¦¾î¸¦ äÅÃÇϰí, ¹ë·ùüÀÎ Àü¹Ý¿¡ °ÉÃÄ Àü·«Àû Á¦ÈÞ¸¦ ¸Î°í, Áö¼Ó °¡´ÉÇÑ È­ÇÐÁ¦Ç°À» ÇÙ½É Á¦Ç°¿¡ ÅëÇÕÇÏ´Â ±â¾÷µéÀº »õ·Î¿î ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ´Â ÁÁÀº À§Ä¡¿¡ ¼­°Ô µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¹«¿ªÁ¤Ã¥ÀÌ º¯È­ÇÏ´Â °¡¿îµ¥, ¹ÎøÇÑ Á¶´Þ ¸ðµ¨°ú Áö¿ªÀû Á¦Á¶ °ÅÁ¡Àº ½ÃÀå º¯µ¿¿¡ ´ëÇÑ Áß¿äÇÑ ¿ÏÃæ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå ºÐ¼® ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : Á¦Ç° À¯Çüº°

  • Ȱ¼ºÈ­Á¦
    • »êȰ¼ºÁ¦
    • ºÒ¼Ò°è Ȱ¼ºÁ¦
    • µµ±ÝÀü Ȱ¼ºÁ¦
  • Ŭ¸®³Ê
    • »ê¼º
    • ¾ËÄ®¸®¼º
    • Áß¼º
    • ¿ëÁ¦°è
  • È­¼º ÄÚÆÃ
    • Å©·Î¸ÞÀÌÆ®
    • Àλê
    • ½Ç¶õ
    • Áö¸£ÄÚ´½

Á¦9Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : ±âÀ纰

  • ±Ý¼Ó
  • ÇÃ¶ó½ºÆ½
  • ¸ñÀç

Á¦10Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : ó¸® À¯Çüº°

  • ¾ç±Ø »êÈ­ ó¸®
  • Å»Áö
  • Àü±âµµ±Ý
  • ¿¡Äª
  • ÆÐ½Ãº£À̼Ç
  • Pickling

Á¦11Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : Ç÷οì À¯Çüº°

  • ¹èÄ¡
  • ¿¬¼Ó

Á¦12Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : ±â±â À¯Çüº°

  • ÄÁº£ÀÌ¾î ½Ã½ºÅÛ
  • ½ºÇÁ·¹ÀÌ ½Ã½ºÅÛ
  • ÅÊÅ©
  • ÃÊÀ½ÆÄ ½Ã½ºÅÛ

Á¦13Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : ¿ëµµº°

  • Á¢Âø ÃËÁø
    • ÇÁ¶óÀÌ¸Ó ÄÚÆÃ
    • Tie-Coat ó¸®
  • ºÎ½Ä ¹æÁö
    • ¹æÃ» ÄÚÆÃ
    • ¾ïÁ¦Á¦ ó¸®
    • ºÎµ¿ÅÂÈ­
  • Àå½Ä
    • Ä÷¯ ÄÚÆÃ
    • ÅØ½ºÃ³ ¸¶°¨
  • ±â´ÉÀû
    • Ç׸¶Âû
    • Àü±â Àüµµ¼º
    • ¿­ ¹è¸®¾î
    • ³»¸¶¸ð¼º

Á¦14Àå È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • °Ç¼³¾÷
  • °¡ÀüÁ¦Ç°
  • ¿î¼Û

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ È­ÇÐÀû Ç¥¸é ó¸® ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Henkel AG & Co. KGaA
    • Element Solutions Inc.
    • A Brite Company, Inc.
    • Advanced Chemical Company
    • Atotech Deutschland by MKS Instruments, Inc.
    • Bunty LLC
    • Chemetall, Inc. by BASF SE
    • Coventya by Element Solutions Inc
    • Evonik Industries AG
    • JCU CORPORATION
    • Metal Finishing Technologies, LLC
    • Nihon Parkerizing Co., Ltd.
    • Nippon Paint Surf Chemicals Co., Ltd
    • NOF Corporation
    • OC Oerlikon Corporation AG
    • PPG Industries, Inc.
    • Quaker Chemical Corporation
    • Raschig GmbH
    • Solvay S.A.
    • The Dow Chemical Company
    • Wuhan Jadechem International Trade Co. Ltd.

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH 25.09.22

The Chemical Surface Treatment Market was valued at USD 16.71 billion in 2024 and is projected to grow to USD 17.73 billion in 2025, with a CAGR of 6.26%, reaching USD 24.06 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 16.71 billion
Estimated Year [2025] USD 17.73 billion
Forecast Year [2030] USD 24.06 billion
CAGR (%) 6.26%

Chemical surface treatment stands at the forefront of material science applications, offering critical performance enhancements across industries ranging from aerospace to household appliances. By modifying surface properties at a microscopic level, these treatments reduce corrosion, improve adhesion, and enable sophisticated functionalities such as thermal barriers and electrical conductivity. As end markets demand ever-higher standards of durability and aesthetic appeal, the role of activating agents, cleaners, and conversion coatings has never been more pivotal.

Emerging dynamics in raw material sourcing and process automation are reshaping how treatment chemistries are formulated and deployed in production lines around the world. Acid activators, fluoride-based activators, and pre-plating activators are each tailored to prime substrates for subsequent coating steps. In parallel, acidic, alkaline, neutral, and solvent-based cleaning protocols ensure contaminant-free surfaces, while conversion coatings-spanning chromate, phosphate, silane, and zirconium variants-deliver the protective and decorative layers essential to high-performance assemblies.

Against this backdrop, manufacturers and end users are aligning investments toward treatments that not only meet regulatory and environmental imperatives but also deliver consistent throughput and yield enhancements. The integration of continuous processing platforms alongside batch systems underscores a broader shift toward operational flexibility, enabling rapid changeovers and reduced cycle times. In the sections that follow, this report will delve into the transformative shifts, regulatory pressures, regional patterns, and strategic imperatives that define the future of chemical surface treatment.

Navigating Disruptive Forces Reshaping Chemical Surface Treatment Through Technological Breakthroughs and Sustainability-Driven Innovations in Practice

Technological innovation and sustainability commitments are converging to revolutionize the chemical surface treatment sphere. Automation and digitization are enabling real-time monitoring of process parameters, ensuring precise chemical feed rates, temperature control, and surface quality assessment without manual intervention. This shift toward Industry 4.0 introduces predictive maintenance protocols and data-driven optimization, reducing downtime and waste while boosting consistency.

Simultaneously, environmental regulations and customer expectations are steering chemistries toward eco-friendly formulations. The gradual phase-out of hexavalent chromium has prompted accelerated development of zirconium and silane conversion coatings, which match or exceed performance benchmarks without the associated health and disposal liabilities. Innovations in biodegradable cleaning agents and low-VOC processes further exemplify how sustainability is embedded into product development cycles.

The interplay between these disruptive forces drives a recalibration of supply chains, as upstream chemical suppliers collaborate closely with original equipment manufacturers to co-develop next-generation treatment solutions. Partnerships with technology providers are unlocking novel reactor designs and modular skids that support both batch and continuous flow regimes. As a result, the entire value chain is evolving from a transactional model to a more integrated ecosystem focused on shared R&D, risk reduction, and faster time to technical readiness.

Assessing the Ripple Effects of New Tariff Policies on Chemical Surface Treatment Ecosystem Across Supply Chains and Cost Structures in the United States 2025

The introduction of new tariff measures in the United States in 2025 has generated significant reverberations throughout the chemical surface treatment industry. Import duties across key precursor chemicals and treatment equipment have increased the landed cost of specialized activators and advanced spray or conveyor systems. As a consequence, processors and contract coaters are reevaluating supplier agreements, shifting more production to domestic sources, or seeking alternative chemistries that alleviate exposure to cross-border price inflation.

Supply chain agility has emerged as a critical competitive advantage amid these policy shifts. Companies with robust procurement strategies are leveraging hedging contracts and multilocational sourcing to mitigate cost spikes. Meanwhile, alliances with local distributors have shortened delivery cycles and reduced inventory carrying requirements. This localized network approach not only curbs tariff impact but also enhances responsiveness to urgent client specifications.

Moreover, the new tariff structure has accelerated conversations around backward integration. Some forward-thinking manufacturers are investing in in-house production of cleaner chemistries and conversion coating precursors, achieving greater control over quality and compliance. Such vertical consolidation presents operational trade-offs but offers the promise of margin stabilization in an environment where external trade constraints heighten uncertainty. Looking ahead, the industry will likely contend with ongoing policy fluctuations, making agile supply chain design and strategic sourcing indispensable components of risk management.

Leveraging Comprehensive Segmentation Insights to Decipher Product Variations Treatment Modalities and Application Specific Trends in Chemical Surface Treatment

An in-depth exploration of segmentation reveals nuanced performance drivers across diverse chemical surface treatment offerings. Treatment chemistries break down into activating agents, cleaners, and conversion coatings, each with its own specialist variants. Acid activators deliver high-energy surface conditioning, whereas fluoride-based activators are prized for their uniform etching capabilities. Pre-plating activators bridge the gap to metal deposition processes. Cleaners span acidic, alkaline, neutral, and solvent-based chemistries, ensuring that substrates are free from oils, oxides, and particulates before advanced coating steps begin. Conversion coatings embrace chromate, phosphate, silane, and zirconium technologies to deliver corrosion resistance or decorative finishes that uphold stringent performance standards.

Material compatibility adds another layer of complexity. Treatments for metals demand entirely different process parameters than those for plastics or wood. When anodizing and electroplating dominate metal surface enhancement, degreasing and etching play pivotal roles in preparing polymeric or wooden substrates for functional or decorative topcoats. Flow type considerations create further strategic choices: batch systems afford flexibility for low-volume, specialty work, while continuous lines optimize throughput for high-volume production.

Equipment platforms vary accordingly, from ultrasonic tanks that remove microscopic contaminants to conveyorized spray booths engineered for uniform film deposition. The functional end market dictates application priorities-adhesion promotion through primer coatings or tie-coat treatments, corrosion protection via inhibitor treatments or anti-corrosion coatings, decorative color coatings or textured finishes, and specialized functional enhancements such as anti-friction or thermal barrier capabilities.

Finally, end users in aerospace and defense impose the highest bar for process documentation and traceability, whereas household appliance makers prioritize cost efficiency and color consistency. Construction and transportation sectors each lean into performance and sustainability attributes, underscoring that a one-size-fits-all approach no longer holds. As a result, leading suppliers and service providers design modular, configurable treatment platforms to meet the exacting demands of each segment.

Uncovering Regional Dynamics Shaping Chemical Surface Treatment Demand Patterns Supply Chain Resilience and Competitive Advantages Across Major Geographies

Regional dynamics play an instrumental role in shaping the priorities and opportunities for chemical surface treatment stakeholders. In the Americas, robust demand from automotive and aerospace hubs drives steady uptake of advanced chromate alternatives and high-throughput cleaning systems. North American and South American markets alike benefit from nearshoring trends that favor localized production of key precursor chemicals, supported by flexible regulatory frameworks and incentives for green manufacturing.

Across Europe, the Middle East, and Africa, sustainability mandates and circular economy principles have catalyzed a wave of innovation in low-waste treatment processes. EU directives restricting hazardous substances have prompted rapid adoption of silane- and zirconium-based conversion coatings, while Middle Eastern petrochemical centers are leveraging abundant feedstock to supply regional specialized cleaners. African markets, though nascent in high-volume industrial coatings, show emerging potential in infrastructure projects where corrosion resistance is critical.

In Asia-Pacific, exponential growth in electronics, consumer appliance manufacturing, and renewable energy equipment production underscores the relentless drive for surface treatments that deliver precise functional properties at scale. China, South Korea, and Japan lead in process automation, incorporating robotics and inline analytical sensors to achieve repeatable quality. Southeast Asian nations are attracting investment through special economic zones that incentivize joint ventures between global formulators and local service providers.

These regional distinctions underscore that a successful go-to-market strategy must adapt to local standards, supply chain logistics, and end-user priorities. Integration of regional insights with segmentation intelligence empowers companies to optimize their product portfolios and align capital expenditure with the most promising geographies.

Examining Market Leadership Strategies of Key Innovators Driving Competitive Performance in Chemical Surface Treatment Industry Landscape

Key market participants are differentiating through strategic investments in R&D, partnerships, and capacity expansions. Leading chemical producers increasingly collaborate with equipment manufacturers to co-develop integrated treatment skids, reducing installation complexity and ensuring seamless process interoperability. By embedding digital analytics into these platforms, they enable end users to conduct rapid troubleshooting and remote process adjustments, thereby minimizing errors and scrap rates.

Some trailblazers are expanding their footprint via targeted acquisitions of niche formulators that specialize in eco-friendly chemistries or proprietary inhibitor technologies. These moves not only broaden application portfolios but also bring valuable intellectual property under one corporate umbrella, fostering cross-pollination of innovation across product lines. Similarly, contract coaters are forging alliances with raw material suppliers to secure priority access to specialty activators and advanced corrosion-protective coatings, ensuring continuity of supply and first-mover advantage on emergent formulations.

Additionally, certain end-to-end service providers are investing in pilot-scale centers of excellence where customers can test new chemistries in real-world production conditions. This consultative approach accelerates technical adoption and creates deeper client relationships built on shared problem solving. In parallel, a subset of companies is pursuing sustainability credentials through third-party certifications and membership in cross-industry consortia focused on environmental stewardship, further reinforcing their commitment to responsible innovation.

Empowering Industry Leaders with Strategic Roadmaps for Innovation Growth Operational Excellence and Sustainable Competitive Edge in Chemical Surface Treatment

Industry leaders looking to secure competitive advantages must prioritize investments that align with evolving customer requirements and regulatory landscapes. First, integrating advanced analytics and automation across the process flow can drastically reduce variability and enhance throughput, setting a new standard for reliability. By deploying sensors and cloud-based monitoring, decision makers gain real-time visibility into process health and can pivot swiftly in response to deviations.

Second, forging strategic partnerships along the value chain-whether with raw material producers, equipment fabricators, or specialized service bureaus-accelerates the development of next-generation chemistries. These collaborative networks foster joint innovation, spread risk, and shorten time to commercialization. Third, embedding sustainability principles into every stage of the treatment cycle-from chemical selection to wastewater management-bolsters regulatory compliance and resonates with end-users seeking greener supply chains.

Moreover, scenarios planning for policy shifts, particularly around trade and environmental regulations, can inform resilient sourcing strategies and capital allocation. Organizations should model tariff impacts, evaluate back-integration opportunities, and diversify manufacturing footprints to hedge against geopolitical shocks. Finally, cultivating talent with cross-disciplinary expertise-combining chemical engineering acumen with data analytics and automation skills-ensures that the workforce is equipped to harness the full potential of emerging technologies and maintain leadership in a rapidly transforming market.

Detailing Rigorous Research Methodologies and Data Collection Protocols Ensuring Analytical Precision and Reliability in Chemical Surface Treatment Market Study

This analysis rests on a rigorous, multi-tiered research framework that combines primary and secondary intelligence gathering. In the secondary phase, technical journals, industry white papers, and publicly available regulatory filings were systematically reviewed to establish a foundational understanding of treatment chemistries, process innovations, and regional policy drivers. Concurrently, patent databases and trade association reports provided historical context and trend validation.

The primary research phase involved in-depth interviews with senior executives at leading chemical formulators, equipment manufacturers, contract coaters, and end-user organizations. These structured dialogues surfaced firsthand perspectives on strategic priorities, technology adoption timelines, and evolving sustainability commitments. Field visits to pilot-scale treatment facilities offered practical insights into process configurations and throughput optimization challenges.

Data triangulation ensured analytical robustness, with quantitative inputs cross-verified against multiple sources to mitigate bias. Advanced statistical techniques were applied to identify correlation patterns between tariff movements and procurement decisions, for example, while scenario analysis was used to stress-test supply chain resilience. Finally, all insights underwent peer review by subject matter experts to guarantee technical accuracy and relevance, yielding a comprehensive and reliable basis for the conclusions and recommendations presented herein.

Synthesis of Key Findings Offering Holistic Perspective on Future Trajectories Value Creation and Strategic Imperatives in Chemical Surface Treatment

The converging imperatives of technological advancement, environmental stewardship, and supply chain agility will shape the next chapter of the chemical surface treatment industry. Companies that embrace data-driven process controls, partner strategically across the value chain, and integrate sustainable chemistries into their core offerings will be well positioned to capture emerging opportunities. As trade policies evolve, agile procurement models and regional manufacturing footprints will serve as critical buffers against market volatility.

Segmentation-led strategies-attuned to product, substrate, and application-specific nuances-will empower organizations to tailor solutions that meet the exacting demands of aerospace, transportation, construction, and consumer electronics sectors. By aligning research investments with these finely calibrated insights, stakeholders can unlock value through differentiated performance attributes and enhanced compliance credentials.

Ultimately, the industry's trajectory will depend on its capacity to foster collaborative innovation, anticipate regulatory shifts, and deploy next-generation technologies at scale. Those who commit to continuous improvement in process efficiency and environmental impact will set the pace for sustainable growth and competitive resilience in the years ahead.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for eco-friendly surface treatment chemicals across automotive and electronics sectors
  • 5.2. Increased use of anodizing and passivation for corrosion protection in metal applications
  • 5.3. Surging popularity of bio-based cleaners driven by strict environmental regulations globally
  • 5.4. Growing adoption of surface treatment in lightweight plastics for vehicle and aerospace components
  • 5.5. Technological advancements in nanocoatings and conversion coatings for enhanced surface durability
  • 5.6. Electric vehicle manufacturing driving demand for specialized surface coatings and adhesion promoters
  • 5.7. Smart coatings integration in surface treatment processes for self-healing and anti-fouling properties
  • 5.8. R&D investments rising to develop high-performance water-based surface treatment formulations
  • 5.9. Stringent waste disposal norms encouraging closed-loop and recyclable chemical treatment systems

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Chemical Surface Treatment Market, by Product Type

  • 8.1. Introduction
  • 8.2. Activating Agents
    • 8.2.1. Acid Activators
    • 8.2.2. Fluoride-Based Activators
    • 8.2.3. Pre-Plating Activators
  • 8.3. Cleaners
    • 8.3.1. Acidic
    • 8.3.2. Alkaline
    • 8.3.3. Neutral
    • 8.3.4. Solvent-Based
  • 8.4. Conversion Coatings
    • 8.4.1. Chromate
    • 8.4.2. Phosphate
    • 8.4.3. Silane
    • 8.4.4. Zirconium

9. Chemical Surface Treatment Market, by Base Material

  • 9.1. Introduction
  • 9.2. Metals
  • 9.3. Plastics
  • 9.4. Wood

10. Chemical Surface Treatment Market, by Treatment Type

  • 10.1. Introduction
  • 10.2. Anodizing
  • 10.3. Degreasing
  • 10.4. Electroplating
  • 10.5. Etching
  • 10.6. Passivation
  • 10.7. Pickling

11. Chemical Surface Treatment Market, by Flow Type

  • 11.1. Introduction
  • 11.2. Batch
  • 11.3. Continuous

12. Chemical Surface Treatment Market, by Equipment Type

  • 12.1. Introduction
  • 12.2. Conveyor Systems
  • 12.3. Spray Systems
  • 12.4. Tanks
  • 12.5. Ultrasonic Systems

13. Chemical Surface Treatment Market, by Application

  • 13.1. Introduction
  • 13.2. Adhesion Promotion
    • 13.2.1. Primer Coatings
    • 13.2.2. Tie-Coat Treatments
  • 13.3. Corrosion Protection
    • 13.3.1. Anti-Corrosion Coatings
    • 13.3.2. Inhibitor Treatments
    • 13.3.3. Passivation
  • 13.4. Decorative
    • 13.4.1. Color Coatings
    • 13.4.2. Textured Finishes
  • 13.5. Functional
    • 13.5.1. Anti-Friction
    • 13.5.2. Electrical Conductivity
    • 13.5.3. Thermal Barrier
    • 13.5.4. Wear Resistance

14. Chemical Surface Treatment Market, by End-User

  • 14.1. Introduction
  • 14.2. Aerospace & Defense
  • 14.3. Construction
  • 14.4. Household Appliances
  • 14.5. Transportation

15. Americas Chemical Surface Treatment Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Chemical Surface Treatment Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Chemical Surface Treatment Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Henkel AG & Co. KGaA
    • 18.3.2. Element Solutions Inc.
    • 18.3.3. A Brite Company, Inc.
    • 18.3.4. Advanced Chemical Company
    • 18.3.5. Atotech Deutschland by MKS Instruments, Inc.
    • 18.3.6. Bunty LLC
    • 18.3.7. Chemetall, Inc. by BASF SE
    • 18.3.8. Coventya by Element Solutions Inc
    • 18.3.9. Evonik Industries AG
    • 18.3.10. JCU CORPORATION
    • 18.3.11. Metal Finishing Technologies, LLC
    • 18.3.12. Nihon Parkerizing Co., Ltd.
    • 18.3.13. Nippon Paint Surf Chemicals Co., Ltd
    • 18.3.14. NOF Corporation
    • 18.3.15. OC Oerlikon Corporation AG
    • 18.3.16. PPG Industries, Inc.
    • 18.3.17. Quaker Chemical Corporation
    • 18.3.18. Raschig GmbH
    • 18.3.19. Solvay S.A.
    • 18.3.20. The Dow Chemical Company
    • 18.3.21. Wuhan Jadechem International Trade Co. Ltd.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦