시장보고서
상품코드
1808577

금속 사출성형 시장 : 재료 유형, 제품 유형, 프로세스 유형, 최종 용도별 - 세계 예측(2025-2030년)

Metal Injection Molding Market by Material Type, Product Type, Process Type, End-Use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

금속 사출성형 시장은 2024년에 52억 9,000만 달러로 평가되었습니다. 2025년에 57억 9,000만 달러에 이르고, CAGR 9.75%로 성장하여 2030년에는 92억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 52억 9,000만 달러
추정 연도 : 2025년 57억 9,000만 달러
예측 연도 : 2030년 92억 5,000만 달러
CAGR(%) 9.75%

금속 사출 성형이 현대 산업 분야의 정밀 제조 강국으로 부상할 수 있는 발판을 마련했습니다.

금속 사출 성형은 틈새 가공 공정에서 정밀 제조의 핵심으로 빠르게 진화하고 있으며, 독보적인 설계 자유도, 대량 생산의 반복성, 기존 기계 가공이 따라올 수 없는 비용 효율성을 제공합니다. 분말 야금의 다용도성과 사출 성형의 복잡성을 결합하여, 이 기술을 통해 이전에는 엄청나게 비싸거나 전혀 불가능했던 복잡한 모양과 미세한 형상을 제조할 수 있습니다. 그 결과, 미크론 단위의 정밀도를 가진 의료용 임플란트부터 극한의 동작 스트레스를 견디는 항공우주 부품까지 다양한 부품이 만들어집니다.

세계 금속 사출 성형의 상황을 형성하는 중요한 기술 규제 및 공급망 변화를 식별합니다.

금속 사출성형을 둘러싼 환경은 기술의 비약적인 발전, 규제 환경의 변화, 공급망 전략의 재구축으로 인해 크게 변화하고 있습니다. 디지털 통합이 최전선에 있으며, 머신러닝 지원 공정 제어 시스템과 실시간 모니터링이 품질 보증을 재정의하고 있습니다. 이러한 발전은 수율을 향상시킬 뿐만 아니라 예지보전 기능을 제공하여 예기치 않은 다운타임을 최소화하고 비용 효율성을 높입니다.

미국의 새로운 관세 제도가 세계 금속 사출 성형 부품 및 공급망에 미치는 복합적인 영향 분석

미국이 2025년 새로운 관세를 도입함에 따라 금속 사출 성형 제조업체와 최종 사용자에게 비용 및 규정 준수에 대한 복잡한 고려사항이 도입되었습니다. 주요 생산기지에서 수입되는 주요 원자재와 완제품에 추가 관세가 부과됨에 따라, 조달팀은 가격 책정 및 계약 협상에 영향을 미치는 갑작스러운 육지 비용 상승으로 골머리를 앓고 있습니다.

금속 사출 성형의 혁신과 전략적 집중을 촉진하기 위해, 재료 제품 공정 및 최종 사용 부문 시장 역학에 대한 이해를 돕습니다.

시장 세분화에 대한 미묘한 이해는 제품 개발 및 상품화 전략을 진화하는 고객의 요구에 맞추기 위해 필수적입니다. 재료의 유형은 고온 내성으로 유명한 코발트 합금부터 열전도율과 전기 전도성이 우수한 구리 등급까지 다양한 유형이 있습니다. 저합금강은 견고한 구조적 응용 분야에 비용 효율적인 솔루션을 제공하며, 니켈 기반 합금은 강도와 내식성을 결합합니다. 스테인리스 스틸은 균형 잡힌 성능을 제공하는 주요 강종으로 남아 있으며, 티타늄은 중량 중심의 설계를 목표로 하고, 공구강은 열악한 환경에서 높은 마모 요구 사항을 충족합니다.

미국, 유럽, 중동/아프리카, 아시아태평양의 금속 사출 성형 생태계의 지역적 차이와 새로운 비즈니스 기회를 확인합니다.

각 지역에 대한 통찰력을 통해 전략적 포지셔닝과 투자 결정에 영향을 미치는 기회와 도전이 모자이크 형태로 존재한다는 것이 밝혀졌습니다. 미주 지역에서는 미국과 멕시코의 첨단 제조 거점들이 공급망 탄력성과 주요 자동차 및 항공우주 고객과의 근접성을 바탕으로 한 온쇼어 생산 트렌드를 활용하고 있습니다. 고도의 공정 자동화 및 디지털 인프라에 대한 투자는 고정밀 응용 분야에서 경쟁력을 더욱 강화합니다.

혁신적인 생산 효율성과 세계 시장 침투를 촉진하는 주요 금속 사출 성형 제조업체 및 전략적 협력업체를 프로파일링합니다.

주요 시장 진출기업들은 전략적 투자, 포트폴리오 다각화, 제휴를 통해 경쟁 환경을 적극적으로 형성하고 있습니다. 한 대형 제조업체는 엔드 투 엔드 원자재 공급 능력을 통합하고 자동차 OEM과 파트너십을 맺어 경량 구조 부품을 공동 개발함으로써 그 입지를 확고히 하고 있습니다. 또 다른 대형 제조업체는 타겟 인수를 통해 세계 사업을 확장하고, 합금 및 장비 포트폴리오를 강화하는 한편, 엔지니어링 지원 및 신속한 프로토타이핑 서비스 제공을 강화하고 있습니다.

업계 리더들이 금속 사출 성형의 성장 궤도를 활용하기 위한 전략적 행동과 운영상의 모범 사례를 제공합니다.

업계 리더는 진화하는 용도 요구 사항과 원료 변동에 대응하기 위해 원료 포트폴리오를 다양화하는 데 중점을 두어야 합니다. 재료 과학 파트너와 협력하여 맞춤형 합금 블렌드를 개발함으로써 기업은 제품을 차별화하고 공급 리스크를 줄일 수 있습니다. 마찬가지로 중요한 것은 고급 탈 바인더와 소결 제어 시스템을 통합하여 수율을 향상시키고, 사이클의 편차를 줄여 비용 경쟁력을 높이는 것입니다.

1차 조사와 2차 데이터 분석 및 삼각측량법을 포함한 종합적인 조사방법을 통해 확실한 시장 인사이트을 제공합니다.

본 조사는 1차 조사와 2차 조사 방식을 통합하여 종합적이고 신뢰할 수 있는 인사이트를 확보하였습니다. 1차 데이터 수집을 위해 주요 금속 사출 성형 기업의 고위 임원, 공정 엔지니어, 재료 과학자와의 구조화된 인터뷰를 진행했습니다. 이러한 직접적인 관점을 통해 전 세계 각 지역의 현재 과제, 기술 채택 패턴, 전략적 우선순위를 파악할 수 있었습니다.

금속 사출 성형 기술 및 시장 응용의 미래 방향을 형성하는 주요 발견 및 전략적 중요 사항 요약

기술 발전, 규제 상황, 거래 환경의 변화를 종합하면, 중요한 정밀 제조 플랫폼으로서 금속 사출 성형의 회복력과 적응력을 강조할 수 있습니다. 첨단 합금 개발부터 바인더 혁신, 디지털 공정 제어에 이르기까지, 이 분야는 새로운 성능과 지속가능성에 대한 요구를 예측하고 대응할 수 있는 능력을 입증해 왔습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 금속 사출성형 시장 : 재료 유형별

  • 코발트 합금
  • 구리
  • 저합금망
  • 니켈 합금
  • 스테인리스 스틸
  • 티타늄
  • 공구강

제9장 금속 사출성형 시장 : 제품 유형별

  • 복잡한 형상 부품
  • 고강도 구조 부품
  • 소형 정밀 부품
  • Thin-Walled Components

제10장 금속 사출성형 시장 : 프로세스 유형별

  • 탈바인더
    • 촉매 탈지
    • 용제 탈지
    • 열 탈지
  • 소결

제11장 금속 사출성형 시장 : 최종 용도별

  • 항공우주 및 방위
    • 항공기 시스템
    • 탄약 부품
  • 자동차
    • 엔진 부품
    • 변속기 부품
  • 가전
    • 노트북
    • 스마트폰
    • 웨어러블
  • 산업
  • 의학
    • 교정용 브라켓
    • 수술 기구

제12장 아메리카의 금속 사출성형 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 금속 사출성형 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 금속 사출성형 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Advanced Powder Products, Inc.
    • Alpha Precision Group by Nichols Portland, Inc.
    • ARC Group Worldwide, Inc.
    • ASH Industries
    • Brm-Metal.Ltd.
    • CMG Technologies Ltd.
    • Custiv Manufacturing Solutions Private Limited
    • Form Technologies
    • GKN Powder Metallurgy
    • Hoganas AB
    • INDO-MIM Pvt. Ltd.
    • Matrix Tool Inc.
    • MDM Metal Industrial Co.,Ltd.
    • MICRO
    • Molex, LLC
    • Parmaco Metal Injection Molding AG
    • PSM Industries
    • Redstone Manufacturing
    • Rockleigh Industries Inc.
    • Sandvik AB
    • Schunk GmbH
    • Sintex A/S
    • Smith Metal Products
    • Tekna Holding ASA
    • Weiss-Aug Group

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

LSH 25.09.19

The Metal Injection Molding Market was valued at USD 5.29 billion in 2024 and is projected to grow to USD 5.79 billion in 2025, with a CAGR of 9.75%, reaching USD 9.25 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.29 billion
Estimated Year [2025] USD 5.79 billion
Forecast Year [2030] USD 9.25 billion
CAGR (%) 9.75%

Setting the Stage for Metal Injection Molding's Emergence as a Precision Manufacturing Powerhouse in Modern Industrial Applications

Metal Injection Molding has rapidly evolved from a niche fabrication process into a cornerstone of precision manufacturing, offering unparalleled design freedom, high-volume repeatability, and cost efficiencies that traditional machining struggles to match. By blending the versatility of powder metallurgy with the complexity of injection molding, this technology enables the production of intricate geometries and fine features that would otherwise be prohibitively expensive or outright impossible. The result is a spectrum of components ranging from medical implants with micron-scale accuracy to aerospace parts capable of withstanding extreme operational stresses.

While the technical underpinnings of Metal Injection Molding have matured over the past two decades, recent advances in binder chemistries, feedstock formulations, and sintering techniques have accelerated adoption across industries. Concurrently, an intensified focus on lightweighting, miniaturization, and sustainability has propelled development of high-performance alloys and process innovations tailored to exacting specifications. As global manufacturers increasingly demand precision, consistency, and rapid time to market, Metal Injection Molding stands poised to capture a larger share of critical supply chains. Transitioning smoothly into an environment marked by disruptive technological shifts and evolving trade policies, this executive summary lays the groundwork for understanding the forces shaping the sector's future trajectory.

Identifying Critical Technological Regulatory and Supply Chain Shifts Reshaping the Metal Injection Molding Landscape Worldwide

The landscape of Metal Injection Molding is undergoing transformative shifts driven by technological breakthroughs, shifting regulatory environments, and realigned supply chain strategies. Digital integration is at the forefront, with machine learning-enabled process control systems and real-time monitoring redefining quality assurance. These advancements not only improve yield rates but also offer predictive maintenance capabilities that minimize unplanned downtime and drive cost efficiencies.

Moreover, the convergence of additive manufacturing with traditional Metal Injection Molding workflows is unlocking hybrid production strategies that blend the strengths of both approaches. While additive techniques excel at rapid prototyping and complex internal geometries, Metal Injection Molding continues to lead in cost-effective large-scale manufacturing of small intricate parts. This synergy is expanding the application palette from consumer electronics to medical devices, where rapid iterations are critical.

Environmental regulations and sustainability imperatives are also reshaping feedstock selection and energy consumption patterns. Manufacturers are exploring low-carbon binders, closed-loop material recycling, and green sintering furnaces to meet stringent emissions targets. At the same time, geopolitical tensions and raw material volatility have prompted a strategic reevaluation of supplier networks, fostering nearshoring initiatives that prioritize resilience alongside cost. These converging trends set the stage for a new era of agile, sustainable, and digitally empowered Metal Injection Molding operations.

Analyzing the Compound Effects of New United States Tariff Regime on Global Metal Injection Molded Components and Supply Networks

The United States' implementation of new tariffs in 2025 has introduced a complex layer of cost and compliance considerations for Metal Injection Molding producers and end users alike. With additional duties levied on key feedstocks and finished components imported from major manufacturing hubs, procurement teams are grappling with sudden increases in landed costs that ripple through pricing and contract negotiations.

In response, many global players are recalibrating production footprints, exploring regional manufacturing partnerships, and diversifying supplier relationships to mitigate exposure. Some have accelerated investments in domestic facilities, leveraging advanced automation to compensate for higher input prices, while others are evaluating alternative feedstock sources from non-tariffed regions to maintain margin targets. These strategic moves have, in turn, put a premium on agility and supply chain transparency.

Additionally, the tariff environment has catalyzed a shift in long-term sourcing strategies, with firms engaging in structured dialogues with policy makers and industry associations to advocate for tariff relief or exemptions on critical materials. Such proactive measures underscore the importance of strategic risk management and underscore how duty structures can influence everything from design choices to geographical investments. As these patterns solidify, they will continue to shape the competitive dynamics of the Metal Injection Molding market.

Uncovering Market Dynamics Across Material Product Process and End Use Segments to Drive Metal Injection Molding Innovations and Strategic Focus

A nuanced understanding of market segmentation is indispensable for aligning product development and commercialization strategies to evolving customer demands. Material Type variations span from cobalt alloys renowned for high-temperature resilience to copper grades offering exceptional thermal and electrical conductivity. Low alloy steel provides a cost-effective solution for robust structural applications, while nickel-based alloys combine strength with corrosion resistance. Stainless steel remains the workhorse for balanced performance, titanium targets weight-critical designs, and tool steel addresses high-wear requirements in demanding environments.

On the product type front, the ability to deliver complex-shaped components with intricate undercuts and internal channels establishes a distinct competitive advantage. High-strength structural parts fulfill rigorous load-bearing specifications in automotive and industrial contexts. Meanwhile, small and precision parts drive progress in medical devices and consumer electronics, and thin-walled components serve thermal management and lightweighting objectives across various sectors.

Process Type segmentation highlights the two critical phases of Metal Injection Molding: debinding and sintering. Debinding encompasses catalytic debinding that leverages specialized catalysts, solvent debinding for selective binder extraction, and thermal debinding using controlled heating profiles. These sub-processes ensure near-defect-free green parts. Subsequent sintering consolidates powder particles into dense, mechanically robust structures. End-use segmentation underscores how Aerospace & Defense demands are subcategorized into aircraft systems and ammunition components, Automotive targets engine and transmission parts, Consumer Electronics spans laptops, smartphones, and wearables, Industrial includes diverse equipment applications, and Medical focuses on orthodontic brackets and surgical tools. By aligning offerings with these segments, market participants can optimize resource allocation and innovation pipelines.

Examining Regional Variations and Emerging Opportunities in the Americas Europe Middle East Africa and Asia Pacific Metal Injection Molding Ecosystems

Regional insights reveal a mosaic of opportunities and challenges that influence strategic positioning and investment decisions. In the Americas, advanced manufacturing hubs within the United States and Mexico are capitalizing on onshore production trends driven by supply chain resilience and proximity to major automotive and aerospace clients. Investments in sophisticated process automation and digital infrastructure further strengthen competitiveness in high-precision applications.

Across Europe, the Middle East, and Africa, stringent environmental and safety regulations shape feedstock sourcing and process controls. Western European hubs benefit from well-established aerospace and defense supply chains, while emerging Middle Eastern facilities leverage free-trade zones to attract investment. In Africa, pilot initiatives in industrial manufacturing are gradually integrating Metal Injection Molding for specialized tooling and small-batch components.

The Asia-Pacific region remains a powerhouse, with China, Japan, South Korea, and India leading capacity expansions and technological adoption. Cost-effective labor markets support large-scale production, while targeted R&D investments in Japan and South Korea drive novel alloy development and equipment innovation. Overall, these regional landscapes underscore the importance of tailored strategies that reflect local regulatory frameworks, talent availability, and end-use demand patterns.

Profiling Leading Metal Injection Molding Manufacturers and Strategic Collaborators Driving Innovation Production Efficiency and Market Penetration Globally

Key market participants are actively shaping the competitive environment through strategic investments, portfolio diversification, and collaborations. One leading manufacturer has solidified its position by integrating end-to-end feedstock capabilities and establishing partnerships with automotive OEMs to co-develop lightweight structural components. Another major player has expanded globally through targeted acquisitions, augmenting its alloy and equipment portfolio while bolstering service offerings in engineering support and rapid prototyping.

A technology-centric firm has distinguished itself by pioneering advanced binder formulations and proprietary sintering processes that achieve superior mechanical properties and reduced cycle times. Meanwhile, established metalworking conglomerates are investing in specialized Metal Injection Molding platforms to capture growth in medical device components, leveraging their decades-long expertise in regulatory compliance and certification.

Collaborative ventures between material science innovators and equipment vendors are also on the rise, aimed at co-optimizing feedstock characteristics and machine parameters. These alliances are accelerating time-to-market for novel applications while mitigating technical risk. As leading companies continue to forge alliances, invest in next-generation technologies, and refine operational footprints, the market's competitive contours will remain dynamic.

Delivering Targeted Strategic Actions and Operational Best Practices for Industry Leaders to Capitalize on Metal Injection Molding Growth Trajectories

Industry leaders should place a premium on diversifying their feedstock portfolios to address evolving application requirements and raw material volatility. By collaborating with material science partners to develop bespoke alloy blends, companies can differentiate their offerings and mitigate supply risks. Equally important is the integration of advanced debinding and sintering control systems to enhance yield rates and reduce cycle variability, thereby improving cost competitiveness.

Strengthening regional manufacturing footprints through joint ventures or localized partnerships can alleviate tariff pressures and support quicker response times to customer demands. Embedding digital twins and machine-learning models within production lines will further optimize process parameters, driving continuous improvement and predictive maintenance capabilities.

To capitalize on growing sustainability mandates, organizations must invest in closed-loop recycling initiatives and low-emission binder chemistries. Engaging with regulatory bodies proactively can secure favorable policy outcomes and unlock incentives for green manufacturing. Finally, fostering cross-disciplinary collaboration between engineering, quality, and sales teams ensures alignment on application-specific requirements and accelerates commercialization pathways. These targeted actions will empower leaders to navigate an increasingly complex landscape and capture emerging opportunities.

Detailing Comprehensive Research Methods Including Primary Interviews Secondary Data Analysis and Triangulation Techniques Ensuring Robust Market Insights

This research integrates a robust mix of primary and secondary methodologies to ensure comprehensive and reliable insights. Primary data collection involved structured interviews with senior executives, process engineers, and materials scientists from leading Metal Injection Molding enterprises. These firsthand perspectives illuminated current challenges, technology adoption patterns, and strategic priorities across global regions.

Secondary research encompassed a thorough analysis of trade journals, technical publications, regulatory documents, and equipment suppliers' white papers. Market data was triangulated against publicly available financial reports and press releases to validate company strategies and investment trends. Rigorous cross-verification was applied at every stage to minimize bias and confirm consistency between qualitative and quantitative data streams.

Finally, the findings underwent validation workshops with independent industry experts to refine key assumptions and test emerging hypotheses. This iterative approach allowed for the calibration of analysis frameworks and ensured that conclusions accurately reflect the rapid advancements and dynamic forces shaping the Metal Injection Molding market.

Summarizing Key Findings and Strategic Imperatives Shaping the Future Direction of Metal Injection Molding Technologies and Market Applications

The synthesis of technological evolution, regulatory dynamics, and shifting trade landscapes underscores the resilience and adaptability of Metal Injection Molding as a critical precision manufacturing platform. From advanced alloy development to binder innovation and digital process control, the sector has demonstrated a capacity to anticipate and address emerging performance and sustainability demands.

Segmentation insights have revealed targeted pathways for differentiation, whether through material customization, specialized component geometries, or optimized sub-processes. Regional analyses further highlight that localized strategies and strategic partnerships are instrumental in navigating tariff environments and regulatory complexities. Meanwhile, leading companies are driving momentum through collaborative R&D, portfolio expansion, and process optimization initiatives.

Looking ahead, stakeholders who embrace a holistic view-integrating advanced technological capabilities with agile supply chain strategies and sustainability-focused practices-will be best positioned to capitalize on forthcoming market inflection points. This executive summary equips decision-makers with a clear understanding of both the challenges and the levers available to secure competitive advantage in the evolving Metal Injection Molding arena.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rapid adoption of micro metal injection molding for next-generation medical implant components
  • 5.2. Integration of digital twin technology and real-time process monitoring in MIM production lines
  • 5.3. Development of high-temperature nickel-based superalloy MIM components for aerospace engines
  • 5.4. Emergence of water-based debinding processes to reduce emissions and improve workplace safety
  • 5.5. Trend toward utilizing metal injection molding for mass production of electric vehicle battery housings
  • 5.6. Reshoring of metal injection molding capacity in North America to mitigate supply chain disruptions
  • 5.7. Growing use of cobalt-chrome and titanium alloys in MIM for high-strength biomedical devices
  • 5.8. Implementing recycled stainless steel feedstock in MIM processes to enhance sustainability metrics
  • 5.9. Convergence of metal injection molding with powder bed fusion for complex part prototyping and production

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Metal Injection Molding Market, by Material Type

  • 8.1. Introduction
  • 8.2. Cobalt Alloys
  • 8.3. Copper
  • 8.4. Low Alloy Steel
  • 8.5. Nickel Alloys
  • 8.6. Stainless Steel
  • 8.7. Titanium
  • 8.8. Tool Steel

9. Metal Injection Molding Market, by Product Type

  • 9.1. Introduction
  • 9.2. Complex-Shaped Components
  • 9.3. High-Strength Structural Parts
  • 9.4. Small & Precision Parts
  • 9.5. Thin-Walled Components

10. Metal Injection Molding Market, by Process Type

  • 10.1. Introduction
  • 10.2. Debinding
    • 10.2.1. Catalytic Debinding
    • 10.2.2. Solvent Debinding
    • 10.2.3. Thermal Debinding
  • 10.3. Sintering

11. Metal Injection Molding Market, by End-Use

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
    • 11.2.1. Aircraft Systems
    • 11.2.2. Ammunition Components
  • 11.3. Automotive
    • 11.3.1. Engine Components
    • 11.3.2. Transmission Parts
  • 11.4. Consumer Electronics
    • 11.4.1. Laptops
    • 11.4.2. Smartphones
    • 11.4.3. Wearables
  • 11.5. Industrial
  • 11.6. Medical
    • 11.6.1. Orthodontic Brackets
    • 11.6.2. Surgical tools

12. Americas Metal Injection Molding Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Metal Injection Molding Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Metal Injection Molding Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Advanced Powder Products, Inc.
    • 15.3.2. Alpha Precision Group by Nichols Portland, Inc.
    • 15.3.3. ARC Group Worldwide, Inc.
    • 15.3.4. ASH Industries
    • 15.3.5. Brm-Metal.Ltd.
    • 15.3.6. CMG Technologies Ltd.
    • 15.3.7. Custiv Manufacturing Solutions Private Limited
    • 15.3.8. Form Technologies
    • 15.3.9. GKN Powder Metallurgy
    • 15.3.10. Hoganas AB
    • 15.3.11. INDO-MIM Pvt. Ltd.
    • 15.3.12. Matrix Tool Inc.
    • 15.3.13. MDM Metal Industrial Co.,Ltd.
    • 15.3.14. MICRO
    • 15.3.15. Molex, LLC
    • 15.3.16. Parmaco Metal Injection Molding AG
    • 15.3.17. PSM Industries
    • 15.3.18. Redstone Manufacturing
    • 15.3.19. Rockleigh Industries Inc.
    • 15.3.20. Sandvik AB
    • 15.3.21. Schunk GmbH
    • 15.3.22. Sintex A/S
    • 15.3.23. Smith Metal Products
    • 15.3.24. Tekna Holding ASA
    • 15.3.25. Weiss-Aug Group

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제