시장보고서
상품코드
1808620

세계의 프린티드 일렉트로닉스 재료 시장 : 재료 유형별, 인쇄 기술별, 경화 유형별, 용도별, 용도별 예측(2025-2030년)

Printed Electronic Materials Market by Material Type, Printing Technology, Curing Type, Application, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

프린티드 일렉트로닉스 재료 시장은 2024년 40억 8,000만 달러로 평가되었고, 2025년에는 44억 1,000만 달러로 추정되며, CAGR 8.42%로 성장할 전망이며, 2030년에는 66억 3,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도(2024년) 40억 8,000만 달러
추정 연도(2025년) 44억 1,000만 달러
예측 연도(2030년) 66억 3,000만 달러
CAGR(%) 8.42%

산업 용도 및 경쟁의 포지셔닝을 일변시키는 프린티드 일렉트로닉스 재료의 혁신과 시장 역학의 무대 설정

프린티드 일렉트로닉스 재료는 기존 제조업의 경계를 재정의하고 다양성과 기능성을 융합하여 다양한 분야에서 획기적인 용도를 가능하게 하고 있습니다. 전도성 잉크, 유전성 잉크, 반도체 잉크 및 첨단 기판 기술의 기술 혁신마다 업계는 성능, 지속가능성 및 비용 효율적인 새로운 벤치마크를 설정하고 있습니다. 유연한 디스플레이, 웨어러블 센서, 통합 안테나에 대한 수요가 가속화되는 동안 새로운 기회를 활용하려는 이해관계자들에게 있어서 재료, 프로세스 및 최종 용도 요구사항의 상호 관계를 이해하는 것이 중요합니다.

프린티드 일렉트로닉스의 밸류체인과 생산 패러다임을 재정의하는 파괴적 혁신 및 파트너십 시너지 확인

프린티드 일렉트로닉스 분야는 배합 화학, 성막 기술, 기판 설계의 획기적인 진보로 전례 없는 능력을 발휘하게 되어 변혁적인 시프트를 경험하고 있습니다. 전도성과 환경 내성이 강화된 잉크가 새로운 경화 기술과 함께 등장하여 생산 사이클의 고속화와 에너지 소비의 저감을 가능하게 하고 있습니다. 이러한 기술 혁신이 제조 현장에 침투함에 따라 확장성, 품질 관리 및 비용 최적화를 위한 매개변수가 재정의되어 기존 기업은 적응할지 진부화의 위험을 감수할지의 선택을 강요받고 있습니다.

새로운 관세 제도가 프린티드 일렉트로닉스 재료 조달, 공급망 강인성 및 비용 관리 전략을 어떻게 재구성했는지 확인합니다.

2025년 미국의 새로운 관세는 프린티드 일렉트로닉스 재료 제조업체에게 비용 검토와 공급망 재조정을 복잡하게 중첩하게 되었습니다. 수입 잉크, 기판 및 경화 장비에 대한 관세가 증가함에 따라 이해 관계자는 조달 전략을 검토하고 니어 쇼어링 기회를 평가할 필요가 있습니다. 그 결과 기업은 관세의 영향을 줄이고 공급 지속성을 보장하기 위해 국내 생산 능력을 개발하거나 지역 공급업체와 제휴하는 노력을 강화하고 있습니다.

전략적 투자 및 혁신 로드맵을 안내하기 위해 부문별 재료, 기술, 경화, 용도, 산업별 인사이트 공개

프린티드 일렉트로닉스의 다양한 재료와 기술 부문을 이해하는 것은 전략적 성장 분야를 파악하는 데 필수적입니다. 재료의 유형에 기초한 제형을 고려할 때, 전도성 잉크는 구리 및 은의 변형으로 고주파 및 저저항 용도에 맞는 성능을 제공하며, 에폭시 및 실리콘 잉크와 같은 유전성 옵션은 절연층에 확장성을 제공합니다. 독자적인 반도체 잉크 블렌드는 로직과 메모리 디바이스의 패턴 정밀도를 높이고 첨단 기판의 혁신은 유연성, 열 관리, 내약품성의 요구에 대응합니다.

세계 주요 시장에서 프린티드 일렉트로닉스의 보급을 형성하는 지역별 성장 촉진요인 및 정책적 인센티브 강조

프린티드 일렉트로닉스 재료의 지역 정세를 보면, 세계 시장 전체에 다른 성장 궤도와 투자 촉진요인이 있는 것을 알 수 있습니다. 아메리카에서는 자동차용 일렉트로닉스과 스마트 패키징 노력이 급증하고 전도성 잉크 및 RFID 솔루션에 대한 수요를 뒷받침하고 있는 반면, 제조 기지의 전략적 인센티브는 기판 및 경화 장비의 국내 생산으로의 전환을 강조하고 있습니다. 북미의 혁신 클러스터는 연구기관과 산업 파트너 간의 협업을 활용하여 차세대 웨어러블 패치와 바이오센서 플랫폼의 개발도 진행하고 있습니다.

전략적 제휴, 혁신적 파트너십 및 대기업 시장 리더십의 원동력이 되는 운영 우수성에 대한 이니셔티브 프로파일링

프린티드 일렉트로닉스 재료 분야의 주요 기업은 시장에서의 지위를 굳히고 혁신을 가속화하기 위해 다방면에 걸친 전략을 실행하고 있습니다. 선도적인 화학 제조업체는 비용과 성능이 균형을 이루는 나노 은색과 구리의 배합으로 전도성 잉크 포트폴리오를 확장하면서 유연성과 내구성을 높이기 위해 자체 기판 코팅에 투자하고 있습니다. 서비스 제공업체는 신속한 프로토타이핑, 품질 보증 및 최종 용도로의 확장성을 가능하게 하는 턴키 디자인 투 프린트 플랫폼으로 재료의 제공을 보완하고 있습니다.

프린티드 일렉트로닉스의 기능 횡단적 협업, 민첩한 제조, 전략적 파트너십 성장을 위한 실행 가능한 전략

역동적인 프린티드 일렉트로닉스 에코시스템에서 성공하기 위해서는 업계 리더가 먼저 재료 과학자, 프로세스 엔지니어 및 애플리케이션 개발자 간의 기능적 협업을 우선해야 합니다. 학제 간 팀을 통합하여 문제 해결을 가속화하고 처방, 인쇄 기술 및 경화 기술에 걸친 혁신을 촉진합니다. 게다가 공동 개발 프로젝트를 위한 명확한 거버넌스 틀을 수립함으로써 의사결정을 간소화하고 다양한 이해관계자들 간에 목적을 일치시킬 수 있습니다.

주요 인터뷰, 기술 문헌 분석 및 반복 검증 워크샵을 결합한 엄격한 멀티 모달 조사 디자인

본 조사 방법에서는 1차 조사, 2차 데이터 분석, 전문가의 협의를 조합한 다면적인 조사 방법을 채용하여 견고하고 실용적인 인사이트를 얻고 있습니다. 1차 설문조사는 주요 프린티드 일렉트로닉스 기업의 경영 임원, 조사 전문가, 재료 과학자와의 면밀한 인터뷰로 구성됩니다. 이러한 인터뷰는 기술 채용, 공급망 역학, 관세 영향에 대한 정성적인 관점을 제공하여 실제 경험에 근거한 이야기가 충실해졌습니다.

프린티드 일렉트로닉스의 전략적 의사 결정을 이끌어내는 기술, 규제, 경쟁 역학의 통합

프린티드 일렉트로닉스 시장이 계속 성숙함에 따라 이해관계자들은 전례 없는 기회와 복잡한 과제에 직면하고 있습니다. 재료 과학 및 인쇄 프로세스의 기술적 진보는 유연한 디스플레이에서 통합 센서에 이르기까지 실현 가능한 용도의 영역을 확대하는 한편, 진화하는 무역 정책과 지역적 인센티브가 전략적 우선순위를 형성하고 있습니다. 이러한 역학을 조종하려면 부문별 요구 사항, 지역 뉘앙스, 경쟁 구도를 종합적으로 이해해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

  • 고해상도 인쇄 RFID 안테나와 플렉서블 센서용은 나노와이어 기반의 전도성 잉크의 출현
  • 환경 지속가능성을 위한 인쇄 일회용 진단 장치에 생분해성 유기 전자 재료 통합
  • 롤 투 롤 그라비아 인쇄 기술을 채용하여 플렉서블 기판 상에 대면적 OLED 조명 패널을 양산
  • 비용 효율적인 프린트 기판 제조를 위한 산화 방지 코팅을 실시한 고전도성 구리 나노 입자 잉크의 개발
  • 실시간 출하 감시를 실현하는 스마트 패키징 솔루션에 통합된 초박형 인쇄 압력 센서의 진보
  • 웨어러블 IoT 디바이스의 에너지 수확을 위한 텔루르화 비스무트 기반 인쇄 열전 발전기의 성장
  • 다층 프린트 기판에 디지털 오프셋 인쇄를 도입하여 정렬 오차와 생산 비용 절감
  • 건물 일체형 태양광 발전 시스템의 안정성을 향상시키는 인쇄 가능한 페로브스카이트 태양배터리 재료의 혁신
  • 생체적합성 기판 재료의 개선에 의한 지속적인 혈당 모니터링을 위한 잉크젯 인쇄 생체 인증 센서의 스케일링
  • 소비자용 전자기기 제조에서 규제 기준을 충족하는 친환경 수성 전도성 폴리머 잉크의 개발

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향(2025년)

제8장 프린티드 일렉트로닉스 재료 시장 : 소재 유형별

  • 전도성 잉크
    • 구리 잉크
    • 실버 잉크
  • 유전체 잉크
    • 에폭시 잉크
    • 실리콘 잉크
  • 반도체 잉크
  • 기질

제9장 프린티드 일렉트로닉스 재료 시장 : 인쇄 기술별

  • 그라비아
  • 잉크젯
  • 오프셋 인쇄
  • 스크린 인쇄

제10장 프린티드 일렉트로닉스 재료 시장 : 경화 유형별

  • 광자 경화
  • 열경화
  • UV 경화

제11장 프린티드 일렉트로닉스 재료 시장 : 용도별

  • 태양광 발전
  • 프린트 안테나
  • 프린트 전지
  • 인쇄 디스플레이
  • 인쇄 센서
    • 바이오센서
    • 압력 센서
    • 온도 센서
  • RFID NFC 태그
    • 액티브 태그
    • 패시브 태그

제12장 프린티드 일렉트로닉스 재료 시장 : 용도별

  • 자동차
  • 가전
    • 스마트폰
    • 태블릿
    • 웨어러블
  • 헬스케어
    • 진단 장치
    • 웨어러블 패치
  • 패키지

제13장 아메리카의 프린티드 일렉트로닉스 재료 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 프린티드 일렉트로닉스 재료 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 프린티드 일렉트로닉스 재료 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • Merck KGaA
    • Henkel AG & Co. KGaA
    • DIC Corporation
    • Heraeus Holding GmbH
    • DuPont de Nemours, Inc.
    • Clariant AG
    • Cabot Corporation
    • AGC Inc.
    • Mitsubishi Chemical Corporation
    • Agfa-Gevaert Group
    • BASF SE
    • Bruckner Maschinenbau GmbH & Co. KG
    • Cicor Group
    • DuraTech Industries
    • E Ink Holdings Inc.
    • Heidelberger Druckmaschinen AG
    • InkTec Co.,Ltd.
    • Jabil Inc.
    • KOMURA-TECH CO., LTD.
    • LG Display Co., Ltd.
    • Molex, LLC
    • Nissha Co., Ltd.
    • NovaCentrix Corp.
    • Optomec, Inc.
    • Panasonic Corporation
    • Printed Electronics Ltd.
    • Samsung Electronics Co., Ltd.
    • Sheldahl Corporation

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택

제20장 리서치 기사

제21장 부록

AJY 25.09.16

The Printed Electronic Materials Market was valued at USD 4.08 billion in 2024 and is projected to grow to USD 4.41 billion in 2025, with a CAGR of 8.42%, reaching USD 6.63 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.08 billion
Estimated Year [2025] USD 4.41 billion
Forecast Year [2030] USD 6.63 billion
CAGR (%) 8.42%

Setting the Stage for Printed Electronic Materials Innovation and Market Dynamics That Will Transform Industrial Applications and Competitive Positioning

Printed electronic materials are redefining the boundaries of traditional manufacturing, merging versatility and functionality to enable groundbreaking applications across multiple sectors. With each innovation in conductive, dielectric, and semiconductor inks, as well as advanced substrate technologies, the industry is setting new benchmarks for performance, sustainability, and cost-effectiveness. As demand accelerates for flexible displays, wearable sensors, and integrated antennas, understanding the interplay of materials, processes, and end-use requirements becomes critical for stakeholders aiming to capitalize on emerging opportunities.

In response to shifting customer expectations and rapid technological progress, this report establishes a comprehensive foundation for decision-makers seeking clarity on market drivers, challenges, and success factors. By weaving together qualitative insights with rigorous data collection, the introduction frames the evolving landscape of printed electronic materials, highlighting how recent innovations are reshaping value chains and prompting redefinition of competitive advantage. The narrative underscores the importance of early adoption and strategic partnerships, while setting the stage for a deeper exploration of transformative shifts, tariff impacts, segmentation nuances, and actionable recommendations that follow.

Identifying Disruptive Innovations and Partnership Synergies That Are Redefining Printed Electronics Value Chains and Production Paradigms

The printed electronics sector is experiencing transformative shifts as breakthroughs in formulation chemistry, deposition technologies, and substrate design converge to unlock unprecedented capabilities. Inks with enhanced conductivity and environmental resilience are emerging alongside novel curing techniques, enabling faster production cycles and lower energy consumption. As these innovations permeate manufacturing floors, they redefine the parameters for scalability, quality control, and cost optimization, challenging incumbents to adapt or risk obsolescence.

Furthermore, strategic collaborations between material scientists, hardware integrators, and original equipment manufacturers are accelerating the pace of product development. Cross-industry partnerships are fostering hybrid solutions that blend traditional silicon-based components with printed circuitry, creating opportunities for flexible sensors, lightweight power sources, and embedded antennas. Consequently, value chains are becoming more decentralized, with specialized service providers offering design-to-print platforms that streamline prototyping and small-batch production. These dynamics signal a paradigm shift in how printed electronic materials are conceived, validated, and delivered to end-users.

Examining How New Tariff Structures Have Reshaped Sourcing, Supply Chain Resilience, and Cost Management Strategies for Printed Electronic Materials

In 2025, new United States tariffs have introduced a complex overlay of cost considerations and supply chain recalibrations for manufacturers of printed electronic materials. The incremental duties on imported inks, substrates, and curing equipment have compelled stakeholders to reassess sourcing strategies and evaluate nearshoring opportunities. As a result, companies are intensifying efforts to develop domestic production capabilities or forge alliances with regional suppliers to mitigate tariff exposure and ensure continuity of supply.

Transitioning away from potentially volatile trade corridors, some organizations are rationalizing their procurement networks to concentrate on partners in duty-exempt zones or free trade agreements. This shift has prompted infrastructure investments in local curing facilities and recycling programs to reduce dependency on imported materials. Simultaneously, manufacturers are renegotiating long-term contracts and exploring toll-manufacturing arrangements that distribute risk across multiple geographic nodes. Despite the initial cost headwinds, these adaptations are fostering more resilient, agile supply chains that can better withstand policy fluctuations and global disruptions.

Unveiling Segment-Specific Material, Technology, Curing, Application, and Vertical Insights to Guide Strategic Investment and Innovation Roadmaps

Understanding the diverse material and technology segments within printed electronics is essential for identifying strategic growth areas. When examining formulations based on material type, conductive inks emerge as a cornerstone with copper and silver variants delivering tailored performance for high-frequency and low-resistance applications, while dielectric options such as epoxy and silicone inks offer scalability for insulating layers. Proprietary semiconductor ink blends enhance patterning precision for logic and memory devices, and innovations in advanced substrates address needs for flexibility, thermal management, and chemical resistance.

Delving into printing technologies reveals distinctions that shape process efficiency and resolution. Gravure remains favored for high-volume roll-to-roll production of flexible circuits, whereas inkjet printing offers digital customization and minimal material waste for prototyping or small-batch runs. Offset printing bridges the gap between speed and image fidelity for consumer electronics, while screen printing continues to serve robust, thick-film deposit applications for power distribution components.

Curing type further influences end-use performance and throughput. Photonic curing solutions deliver near-instantaneous sintering of metal particulates with reduced thermal stress on substrates, thermal curing maintains proven reliability for large-area electronics, and UV curing supports rapid cross-linking of polymeric components with precise control over layer thickness. Finally, applications such as photovoltaics, printed antennas, printed batteries, printed displays, printed sensors-including biosensors, pressure sensors, and temperature sensors-as well as RFID and NFC tags with active and passive variants, each demand tailored material and process combinations to satisfy electrical, mechanical, and environmental requirements. When considering end-use verticals such as automotive, consumer electronics-spanning smartphones, tablets, and wearables-healthcare with diagnostic devices and wearable patches, and packaging, the interplay of performance, integration complexity, and regulatory standards guides investment priorities across the value chain.

Highlighting Regional Growth Drivers and Policy Incentives Shaping Printed Electronics Adoption Across Major Global Markets

The regional landscape for printed electronic materials reveals distinct growth trajectories and investment drivers across global markets. In the Americas, a surge in automotive electronics and smart packaging initiatives is fueling demand for conductive inks and RFID solutions, while strategic incentives in manufacturing hubs underline a shift toward domestic production of substrates and curing equipment. Innovation clusters in North America are also advancing next-generation wearable patches and biosensor platforms, leveraging collaborations between research institutions and industrial partners.

Across Europe, the Middle East & Africa, stringent regulatory frameworks and sustainability mandates are catalyzing adoption of eco-friendly dielectric formulations and energy-efficient curing technologies. Strong governmental support for renewable energy drives growth in printed photovoltaics and lightweight power modules, and the integration of printed antennas in smart cities and infrastructure projects underscores the region's focus on connectivity and resilience.

In the Asia-Pacific, high-volume consumer electronics production and robust supply chain ecosystems maintain the region's leadership in screen-printed circuit applications and photonic curing deployments. Accelerated investments in semiconductor ink R&D, combined with rapid prototyping capabilities, are positioning regional players at the forefront of innovation. Meanwhile, emerging markets in the Asia-Pacific are expanding adoption of printed sensors for healthcare diagnostics and environmental monitoring, signaling a broadening scope of applications.

Profiling Strategic Alliances, Innovation Partnerships, and Operational Excellence Initiatives Driving Leading Players' Market Leadership

Leading companies in the printed electronic materials space are executing multi-pronged strategies to solidify their market positions and accelerate innovation. Tier-one chemical providers are expanding their conductive ink portfolios with nano-silver and copper formulations that balance cost and performance, while also investing in proprietary substrate coatings to enhance flexibility and durability. Service providers are complementing material offerings with turnkey design-to-print platforms that enable rapid prototyping, quality assurance, and scalability for end-use applications.

Some technology leaders are forging alliances with equipment manufacturers to co-develop integrated printing systems optimized for specific curing techniques, ensuring compatibility across material chemistries and throughput requirements. Others are establishing joint ventures with regional converters to localize production and navigate evolving tariff regimes. Simultaneously, specialty players are focusing on niche applications such as biosensors and RFID tags, leveraging deep domain expertise to deliver customized solutions that address stringent regulatory and performance criteria.

Investment in advanced analytics and digital quality control tools is becoming a differentiator, with companies deploying real-time process monitoring to reduce defects and accelerate time-to-market. By blending R&D prowess with agile manufacturing capabilities and strategic partnerships, key players are charting a course toward sustainable growth in an increasingly competitive environment.

Actionable Strategies for Cultivating Cross-Functional Collaboration, Agile Manufacturing, and Strategic Partnerships in Printed Electronics

To thrive in a dynamic printed electronics ecosystem, industry leaders should first prioritize cross-functional collaboration between material scientists, process engineers, and application developers. Embedding multidisciplinary teams accelerates problem solving and fosters innovation across formulation, printing technology, and curing methodology. Moreover, establishing clear governance frameworks for joint development projects can streamline decision-making and align objectives across diverse stakeholders.

Next, companies must invest in flexible manufacturing infrastructures that support rapid reconfiguration for variable batch sizes and new material chemistries. Integrating modular printing platforms with adaptable curing modules will reduce changeover times and enable just-in-time production models. Concurrently, organizations should deepen their supply chain intelligence by mapping critical suppliers, evaluating tariff exposure, and creating contingency plans for sourcing alternatives.

Finally, forging strategic partnerships with end-users, research institutions, and equipment providers will catalyze co-innovation. These alliances can unlock access to specialized testing facilities, expand validation use cases, and facilitate early market entry for new product offerings. By executing these recommendations, industry leaders can build resilient, agile operations capable of capitalizing on emerging trends and sustaining competitive differentiation.

Rigorous Multimodal Research Design Combining Executive Interviews, Technical Literature Analysis, and Iterative Validation Workshops

This study employs a multifaceted methodology that combines primary research, secondary data analysis, and expert consultations to generate robust, actionable insights. Primary research consisted of in-depth interviews with senior executives, R&D specialists, and materials scientists from leading printed electronics organizations. These interviews provided qualitative perspectives on technology adoption, supply chain dynamics, and tariff impacts, enriching the narrative with real-world experience.

Secondary research involved a structured review of peer-reviewed journals, white papers, patent filings, and technical conference proceedings. This literature analysis helped triangulate findings on innovative material formulations, printing technologies, and curing advancements. Additionally, company disclosures and regulatory documents were analyzed to understand investment trends, strategic initiatives, and regional policy influences.

Data synthesis incorporated a rigorous validation process, wherein conflicting inputs were cross-checked with multiple sources and reconciled through iterative expert workshops. The outcome is a comprehensive framework that balances quantitative rigor with qualitative depth, ensuring that recommendations and insights are grounded in current industry realities and future outlooks.

Synthesis of Technological, Regulatory, and Competitive Dynamics Guiding Strategic Decision-Making in Printed Electronics

As the printed electronics market continues to mature, stakeholders face both unprecedented opportunities and complex challenges. Technological advancements in material science and printing processes are expanding the realm of feasible applications, from flexible displays to integrated sensors, while evolving trade policies and regional incentives shape strategic priorities. Navigating these dynamics requires a holistic understanding of segment-specific requirements, regional nuances, and competitive landscapes.

By synthesizing insights across innovation trajectories, tariff impacts, segmentation frameworks, and leading company strategies, this executive summary lays the groundwork for informed decision-making. Whether prioritizing collaboration within multidisciplinary teams, fortifying supply chain resilience, or investing in agile manufacturing, organizations that heed these findings will be well positioned to capture growth and drive transformative outcomes in printed electronics.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Emergence of conductive inks based on silver nanowires for high-resolution printed RFID antennas and flexible sensors
  • 5.2. Integration of biodegradable organic electronic materials in printed disposable diagnostic devices for environmental sustainability
  • 5.3. Adoption of roll-to-roll gravure printing techniques to mass-produce large-area OLED lighting panels on flexible substrates
  • 5.4. Development of high-conductivity copper nanoparticle inks with anti-oxidation coatings for cost-efficient printed circuit board manufacturing
  • 5.5. Advancement of ultra-thin printed pressure sensors integrated into smart packaging solutions for real-time shipment monitoring
  • 5.6. Growth of printed thermoelectric generators based on bismuth telluride for energy harvesting in wearable IoT devices
  • 5.7. Implementation of digital offset printing for multilayer printed circuit boards to reduce alignment errors and production costs
  • 5.8. Innovations in printable perovskite solar cell materials offering enhanced stability for building-integrated photovoltaics
  • 5.9. Scaling of inkjet-printed biometric sensors for continuous glucose monitoring with improved biocompatible substrate materials
  • 5.10. Development of eco-friendly water-based conductive polymer inks to meet regulatory standards in consumer electronics manufacturing

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Printed Electronic Materials Market, by Material Type

  • 8.1. Introduction
  • 8.2. Conductive Inks
    • 8.2.1. Copper Inks
    • 8.2.2. Silver Inks
  • 8.3. Dielectric Inks
    • 8.3.1. Epoxy Inks
    • 8.3.2. Silicone Inks
  • 8.4. Semiconductor Inks
  • 8.5. Substrates

9. Printed Electronic Materials Market, by Printing Technology

  • 9.1. Introduction
  • 9.2. Gravure
  • 9.3. Inkjet
  • 9.4. Offset Printing
  • 9.5. Screen Printing

10. Printed Electronic Materials Market, by Curing Type

  • 10.1. Introduction
  • 10.2. Photonic Curing
  • 10.3. Thermal Curing
  • 10.4. UV Curing

11. Printed Electronic Materials Market, by Application

  • 11.1. Introduction
  • 11.2. Photovoltaics
  • 11.3. Printed Antennas
  • 11.4. Printed Batteries
  • 11.5. Printed Displays
  • 11.6. Printed Sensors
    • 11.6.1. Biosensors
    • 11.6.2. Pressure Sensors
    • 11.6.3. Temperature Sensors
  • 11.7. RFID NFC Tags
    • 11.7.1. Active Tags
    • 11.7.2. Passive Tags

12. Printed Electronic Materials Market, by Application

  • 12.1. Introduction
  • 12.2. Automotive
  • 12.3. Consumer Electronics
    • 12.3.1. Smartphones
    • 12.3.2. Tablets
    • 12.3.3. Wearables
  • 12.4. Healthcare
    • 12.4.1. Diagnostic Devices
    • 12.4.2. Wearable Patches
  • 12.5. Packaging

13. Americas Printed Electronic Materials Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Printed Electronic Materials Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Printed Electronic Materials Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Merck KGaA
    • 16.3.2. Henkel AG & Co. KGaA
    • 16.3.3. DIC Corporation
    • 16.3.4. Heraeus Holding GmbH
    • 16.3.5. DuPont de Nemours, Inc.
    • 16.3.6. Clariant AG
    • 16.3.7. Cabot Corporation
    • 16.3.8. AGC Inc.
    • 16.3.9. Mitsubishi Chemical Corporation
    • 16.3.10. Agfa-Gevaert Group
    • 16.3.11. BASF SE
    • 16.3.12. Bruckner Maschinenbau GmbH & Co. KG
    • 16.3.13. Cicor Group
    • 16.3.14. DuraTech Industries
    • 16.3.15. E Ink Holdings Inc.
    • 16.3.16. Heidelberger Druckmaschinen AG
    • 16.3.17. InkTec Co.,Ltd.
    • 16.3.18. Jabil Inc.
    • 16.3.19. KOMURA-TECH CO., LTD.
    • 16.3.20. LG Display Co., Ltd.
    • 16.3.21. Molex, LLC
    • 16.3.22. Nissha Co., Ltd.
    • 16.3.23. NovaCentrix Corp.
    • 16.3.24. Optomec, Inc.
    • 16.3.25. Panasonic Corporation
    • 16.3.26. Printed Electronics Ltd.
    • 16.3.27. Samsung Electronics Co., Ltd.
    • 16.3.28. Sheldahl Corporation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제