½ÃÀ庸°í¼­
»óǰÄÚµå
1809706

Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : À¯Çüº°, ½ÇÀå À¯Çüº°, ¿Âµµ °è¼öº°, Á¤°Ý Àü·Âº°, ¿ëµµº°, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Current Sensing Resistor Market by Type, Mounting Type, Temperature Coefficient, Power Rating, Application, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 192 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Àü·ù °¨Áö ÀúÇױ⠽ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 6¾ï 5,183¸¸ ´Þ·¯·Î, 2025³â¿¡´Â 6¾ï 8,925¸¸ ´Þ·¯·Î ¼ºÀåÇϸç, CAGRÀº 6.09%, 2030³â¿¡´Â 9¾ï 2,952¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024³â 6¾ï 5,183¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025³â 6¾ï 8,925¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030³â 9¾ï 2,952¸¸ ´Þ·¯
CAGR(%) 6.09%

Àü·ù °¨Áö ÀúÇ׿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Á¶»ç¸¦ ÅëÇØ Çö´ë ÀüÀÚ ÀåÄ¡ÀÇ Àü·Â °ü¸® ¹× ¼¾¼­ Á¤È®µµ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ¹àÈü´Ï´Ù.

Àü·ù °¨Áö ÀúÇ×±â´Â Àü¿ø °ü¸® ½Ã½ºÅÛ¿¡¼­ °íÁ¤¹Ð ÃøÁ¤ÀÇ ÁßÃ߸¦ Çü¼ºÇÏ°í ¼ö¸¹Àº ¿ëµµ¿¡¼­ Àü·ù ¸ð´ÏÅ͸µÀ» À§ÇÑ Á¤È®ÇÑ Çǵå¹éÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ö ºÎǰÀº ½Ã½ºÅÛÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇϰí, °úÀü·ù »óÅ·κÎÅÍ º¸È£Çϸç, ¿¡³ÊÁö È¿À²À» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀüÀÚ±â±âÀÇ ¼ÒÇüÈ­ ¹× °í¼º´ÉÀÌ ¿ä±¸µÇ´Â °¡¿îµ¥, Àü·ù °¨Áö ÀúÇ×±âÀÇ ¿ªÇÒÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¿ÀÛÀ» º¸ÀåÇÏ°í ¼¶¼¼ÇÑ È¸·Î¸¦ º¸È£ÇÏ´Â µ¥ ÀÖÀ¸¸ç, Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

Àü·ù °¨Áö ÀúÇױ⠽ÃÀå »óȲÀ» Çü¼ºÇÏ´Â Áß¿äÇÑ ±â¼ú Çõ½Å ¹× ±ÔÁ¦ ÃËÁø¿äÀο¡ ´ëÇÑ °ËÅä

Àü·ù °¨Áö ÀúÇ×±â´Â ¹ÝµµÃ¼ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú »õ·Î¿î ÃÖÁ¾ ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ Å« º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ¹Ú¸· Çü¼º ¹× ±Ý¼Ó ÇÕ±Ý ¹èÇÕ ±â¼úÀÇ ¹ßÀüÀº ÀúÇ×±âÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀÌ°í ¿Âµµ µå¸®ÇÁÆ®¸¦ ÁÙÀ̸ç ÀÌÀü¿¡´Â ´Þ¼ºÇÒ ¼ö ¾ø¾ú´ø Á¤¹ÐÇÑ °øÂ÷¸¦ °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ±× °á°ú, µð¹ÙÀ̽º ¼³°èÀÚµéÀº ¼º´É°ú °ø°£ È¿À²¼ºÀÌ ¸ðµÎ ¿ä±¸µÇ´Â Â÷¼¼´ë ÀüÀÚÁ¦Ç°À» Áö¿øÇϱâ À§ÇØ ´õ ÀÛÀº ½ÇÀû¿¡ ¼¾¼­¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ Á¶Á¤ÀÌ Àü·ù °¨Áö ÀúÇױ⠰ø±Þ¸Á¿¡ ¹ÌÄ¡´Â Àü·«Àû ¿µÇ⠺м®

¹Ì±¹ÀÌ 2025³â È®´ë °ü¼¼ ½ºÄÉÁÙÀ» ¹ßµ¿ÇÔ¿¡ µû¶ó Àü·ù °¨Áö ÀúÇױ⠰ø±Þ¸ÁÀº ´õ¿í º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦Á¶ °ÅÁ¡¿¡¼­ Á¶´ÞµÇ´Â ºÎǰÀº Ãß°¡ °ü¼¼°¡ ºÎ°úµÇ°í, ¼öÀÔ¾÷ü¿Í À¯Åë¾÷ü´Â °ø±Þ¾÷ü¿ÍÀÇ °è¾à°ú ¹°·ù ³×Æ®¿öÅ©¸¦ Àç°ËÅäÇØ¾ß Çß½À´Ï´Ù. ±× °á°ú, Á¶´Þ Àü·«Àº ºñ¿ë ¾Ð¹ÚÀ» ¿ÏÈ­ÇÏ°í °ø±Þ Áß´ÜÀ» ÇÇÇϱâ À§ÇØ ±¹³» »ý»ê ¹× °ü¼¼ ¸éÁ¦ Áö¿ª¿¡¼­ÀÇ ´ëü Á¶´ÞÀ» Á¡Á¡ ´õ ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù.

Àü·ù °¨Áö ÀúÇױ⠽ÃÀå ¼¼ºÐÈ­¸¦ ÀÚ¼¼È÷ »ìÆìº¸¸é, À¯Çüº° Àç·á ±¸Çö ¹× ¿ëµµ ¼±È£µµ¿¡ ´ëÇÑ Æ¯Â¡ÀûÀÎ ÆÐÅÏÀÌ µå·¯³³´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ ÀÌÇØ¸¦ ÅëÇØ Àü·ù °¨Áö ÀúÇ×±âÀÇ ´Ù¾çÇÑ ¿ëµµ¿Í ¼³°è ¼±È£µµ¸¦ ¾Ë ¼ö ÀÖ½À´Ï´Ù. À¯Çüº°·Î Æò°¡Çϸé, Çʸ§ ÀúÇ×±â(Èĸ·°ú ¹Ú¸·À¸·Î ±¸ºÐ)´Â ºñ¿ë Á᫐ ¿ëµµ°ú °íÁ¤¹Ð ¿ëµµ¸¦ ¸ðµÎ Áö¹èÇÏ´Â ¹Ý¸é, ±Ý¼ÓÆÇ ¼ÇÆ® ÀúÇ×±â´Â °ß°íÇÑ Àü·Â ½Ã½ºÅÛ¿¡ ¿ì¼öÇÑ ¿­ ¾ÈÁ¤¼ºÀ» Á¦°øÇϰí, ±Ç¼± ¼Ö·ç¼ÇÀº ¿©ÀüÈ÷ °íÀü·ù ȯ°æ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¼ÒÇü °¡Àü±â±â¿¡ ÀûÇÕÇÑ Ä¨ ±¸¼º, »ê¾÷¿ë Á¦¾î ÆÐ³Î¿¡ ÀûÇÕÇÑ ÆÐ³Î ½ÇÀå Çü½Ä, °£¼ÒÈ­µÈ PCB ¼³°è¸¦ °¡´ÉÇÏ°Ô Çϴ ǥ¸é ½ÇÀå ÀåÄ¡, ·¹°Å½Ã ¿ëµµ ¹× °í½Å·Ú¼º ¿ëµµ¿¡¼­ °è¼Ó °ü·Ã¼ºÀ» À¯ÁöÇÏ´Â ½º·çȦ ½ºÅ¸ÀÏ µî ½ÇÀå À¯ÇüÀÌ ´õ¿í ´Ù¾çÇØÁö°í ÀÖ½À´Ï´Ù. ½º·çȦ ½ºÅ¸ÀÏ µîÀÌ ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áö¿ª ¿ªÇÐÀÌ Àü·ù °¨Áö ÀúÇױ⠼ö¿ä ÆÐÅÏÀ» ¾î¶»°Ô Çü¼ºÇÏ´ÂÁö »ìÆìº¾´Ï´Ù.

Áö¿ª ¿ªÇÐÀº Àü·ù °¨Áö ÀúÇ×±âÀÇ µ¿Çâ°ú ÅõÀÚ ¿ì¼±¼øÀ§¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì Áö¿ª¿¡¼­´Â ÷´Ü ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º °³¹ß°ú µ¥ÀÌÅͼ¾ÅÍ ÀÎÇÁ¶óÀÇ È®´ë°¡ ¸Â¹°·Á °íÁ¤¹Ð, °í½Å·Ú¼º ¼¾½Ì ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì OEM°ú 1Â÷ Çù·Â¾÷üµéÀº °ø±Þ¸Á ź·Â¼º°ú ¾ö°ÝÇÑ ÀÚµ¿Â÷ ǰÁú ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ Á¡Á¡ ´õ ¸¹Àº ¿Â¼î¾î ÆÄÆ®³Ê½ÊÀ» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù.

¼¼°è ½ÃÀå¿¡¼­ÀÇ ÁÖ¿ä Àü·ù °¨Áö ÀúÇ×±â Á¦Á¶¾÷üÀÇ °æÀï Â÷º°È­ Àü·«¿¡ ´ëÇÑ ÀÌÇØ

Àü·ù °¨Áö ÀúÇױ⠰æÀï ºÐ¾ß¿¡´Â Àß ¾Ë·ÁÁø ´Ù±¹Àû ´ë±â¾÷°ú Æ´»õ ½ÃÀå Àü¹® ¾÷üµéÀÌ È¥ÀçµÇ¾î ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷Àº ÃÊÀú¿­ µå¸®ÇÁÆ®¸¦ Á¦°øÇÏ´Â µ¶ÀÚÀûÀÎ ÇÕ±Ý ¹èÇÕºÎÅÍ ¼ÒÇü ½ÇÀû¿¡¼­ È®Àå °¡´ÉÇÑ Àü·ù °¨Áö¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¸ðµâÇü ÀúÇױ⠾ÀÌ¿¡ À̸£±â±îÁö Â÷º°È­µÈ °¡Ä¡ Á¦¾ÈÀ» °­Á¶ÇØ ¿Ô½À´Ï´Ù. ¸¹Àº ½ÃÀå ¸®´õµéÀº ¹ÝµµÃ¼ Á¦Á¶¾÷ü ¹× µðÀÚÀÎ ÇϿ콺¿ÍÀÇ °øµ¿¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ ÅëÇØ ÅëÇÕ ¼¾¼­ ¸ðµâÀ» °øµ¿ °³¹ßÇϰí ÀÖ½À´Ï´Ù.

Çõ½ÅÀû °ø±Þ¸Á °­Àμº°ú µðÁöÅÐ Àο¡À̺í¸ÕÆ®°¡ ÅëÇÕµÈ ±ÕÇü ÀâÈù ¼ºÀå û»çÁøÀ» ¼ö¸³ÇØ ¾÷°è¸¦ ¼±µµÇÒ ¼ö ÀÖµµ·Ï Áö¿ø

¾÷°è ¸®´õµéÀº Çõ½Å°ú »ç¾÷ ¿î¿µÀÇ °­ÀÎÇÔÀ» µ¿½Ã¿¡ Ãß±¸ÇÏ´Â ´Ù°¢ÀûÀÎ Àü·«À» Ãß±¸ÇÔÀ¸·Î½á »õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ÕÀú, ÷´Ü ¼ÒÀç ¿¬±¸ ¹× °øµ¿ ¼³°è ÆÄÆ®³Ê½Ê¿¡ ÅõÀÚÇÔÀ¸·Î½á Àü±âÀÚµ¿Â÷, 5G ÀÎÇÁ¶ó µî °í¼ºÀå ºÐ¾ß¿¡ ´ëÀÀÇÏ´Â ¾ÈÁ¤¼º°ú ¼ÒÇüÈ­°¡ °­È­µÈ ÀúÇױ⠰³¹ß¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ÇöÁö »ý»ê ´É·ÂÀ» È®´ëÇϰí ÇöÁö Á¶¸³¾÷ü¿Í Àü·«Àû Á¦ÈÞ¸¦ ¸ÎÀ½À¸·Î½á °ü¼¼·Î ÀÎÇÑ °ø±Þ¸Á ¸®½ºÅ©¸¦ ÁÙÀ̰í Áß¿äÇÑ ÇÁ·ÎÁ§Æ®°ø±Þ ¿¬¼Ó¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Àü¹®°¡ ÀÎÅͺä¿Í 2Â÷ µ¥ÀÌÅÍ »ï°¢Ãø·®À» ÅëÇÕÇÑ ¸ÖƼ ¼Ò½º Á¶»ç ¹æ¹ýº° È®½ÇÇÑ ÀλçÀÌÆ® »ó¼¼ Á¤º¸ Á¦°ø

º» ºÐ¼®Àº 1Â÷ µ¥ÀÌÅÍ¿Í 2Â÷ µ¥ÀÌÅÍ ¼öÁý ¹æ½ÄÀ» °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. 2Â÷ µ¥ÀÌÅÍ ¼öÁý ´Ü°è¿¡¼­´Â ¾÷°è ÀâÁö, ±â¼ú ¹é¼­, ƯÇã µ¥ÀÌÅͺ£À̽º¸¦ Á¶»çÇÏ¿© ±â¼ú ±ËÀû°ú Àç·á Çõ½ÅÀ» ¸ÅÇÎÇß½À´Ï´Ù. µ¿½Ã¿¡ ±â¾÷ÀÇ º¸µµÀÚ·á¿Í ±ÔÁ¦ ´ç±¹ ½Å°í¸¦ ÅëÇØ °ø±Þ¸Á¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÃÖ±Ù °ü¼¼ ¹× ¹«¿ª Á¤Ã¥ µ¿Çâ¿¡ ´ëÇÑ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù.

ÁøÈ­ÇÏ´Â Àü·ù °¨Áö ÀúÇױ⠻ýŰ踦 Ž»öÇϱâ À§ÇÑ ½ÃÀå Çõ½Å ±ÔÁ¦ º¯È­¿Í Àü·«Àû ÀÓÆÛÅϽº ÅëÇÕÀ» ÅëÇÑ ½ÃÀå Çõ½Å ÃßÁø

Àü·ù °¨Áö ÀúÇױ⠽ÃÀåÀº ±â¼ú Çõ½Å, ±ÔÁ¦ ÁøÈ­, ÃÖÁ¾ ¿ëµµ ¼ö¿äÀÇ º¯È­°¡ ±³Â÷ÇÏ´Â ÁöÁ¡¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀÌ Àç·á¿Í Á¦Á¶ °øÁ¤À» °³¼±ÇÏ°í ¼ÒÇü ÆûÆÑÅÍ¿¡¼­ ´õ ³ôÀº Á¤¹Ðµµ¿Í ´õ Å« ÆÄ¿ö Çڵ鸵À» ´Þ¼ºÇÔ¿¡ µû¶ó ÀÚµ¿Â÷, »ê¾÷ ¹× Åë½Å ºÐ¾ßÀÇ ÃÖÁ¾»ç¿ëÀÚ´Â ½Ã½ºÅÛ È¿À²¼º°ú ½Å·Ú¼ºÀÌ Çâ»óµÇ¾î ÇýÅÃÀ» ´©¸± ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : À¯Çüº°

  • Çʸ§ ÀúÇ×±â
    • Èĸ·
    • ¹Ú¸·
  • ±Ý¼ÓÆÇ ¼ÇÆ® ÀúÇ×±â
  • ±Ç¼±(Wirewound)

Á¦9Àå Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : ½ÇÀå À¯Çüº°

  • Ĩ
  • ÆÐ³Î ¸¶¿îÆ®
  • Ç¥¸é ½ÇÀå
  • ½º·çȦ( Through Hole)

Á¦10Àå Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : ¿Âµµ °è¼öº°

  • +-200ppm/¡É ÀÌ»ó
  • +-5 - +-50ppm/¡É
  • +-50 - +-200ppm/¡É

Á¦11Àå Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : Á¤°Ý Àü·Âº°

  • 1-5W
  • 5W ÀÌ»ó
  • 1W ¹Ì¸¸

Á¦12Àå Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : ¿ëµµº°

  • ÀÚµ¿Â÷
  • °¡Àü
  • »ê¾÷
  • ÀÇ·áÀåºñ
  • Åë½Å

Á¦13Àå Àü·ù °¨Áö ÀúÇױ⠽ÃÀå : À¯Åë ä³Îº°

  • ¿ÀÇÁ¶óÀÎ ÆÇ¸Å
    • Á÷Á¢ ÆÇ¸Å
    • ÆÇ¸Å ´ë¸®Á¡
  • ¿Â¶óÀÎ ÆÇ¸Å

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ Àü·ù °¨Áö ÀúÇױ⠽ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Àü·ù °¨Áö ÀúÇױ⠽ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àü·ù °¨Áö ÀúÇױ⠽ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024³â
  • °æÀï ºÐ¼®
    • Yageo Corporation
    • Murata Manufacturing Co., Ltd.
    • TDK Corporation
    • Vishay Intertechnology, Inc.
    • Panasonic Corporation
    • Bourns, Inc.
    • TE Connectivity Ltd.
    • ROHM Co., Ltd.
    • Susumu Co., Ltd.
    • Stackpole Electronics, Inc.
    • Mouser Electronics, Inc.
    • Asahi Kasei Corporation
    • Infineon Technologies AG
    • Allegro MicroSystems, Inc.
    • LEM International SA
    • KOA Corporation
    • Viking Tech Corporation
    • Analog Devices, Inc.
    • Digi-Key Corporation
    • TT Electronics PLC
    • Delta Electronics, Inc.
    • KWK Resistors Pvt. Ltd.
    • Ohmite Mfg Co.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSA 25.09.25

The Current Sensing Resistor Market was valued at USD 651.83 million in 2024 and is projected to grow to USD 689.25 million in 2025, with a CAGR of 6.09%, reaching USD 929.52 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 651.83 million
Estimated Year [2025] USD 689.25 million
Forecast Year [2030] USD 929.52 million
CAGR (%) 6.09%

A Comprehensive Exploration of Current Sensing Resistors Unveils Critical Roles in Power Management and Sensor Accuracy for Modern Electronics

Current sensing resistors form the backbone of precision measurement in power management systems, delivering accurate feedback for current monitoring across a multitude of applications. These specialized components enable systems to maintain stability, protect against overcurrent conditions, and optimize energy efficiency. As electronic devices continue to shrink in size while demanding greater performance, the role of current sensing resistors has become increasingly critical in ensuring reliable operation and safeguarding sensitive circuitry.

By integrating ultra-low resistance elements with high stability characteristics, current sensing resistors provide precise voltage drop measurements under varying thermal and electrical stress. They serve as the linchpin in applications ranging from automotive battery management and industrial motor control to consumer electronics and medical instrumentation. Their performance directly impacts the overall system accuracy, thermal resilience, and long-term reliability of electronic assemblies.

In recent years, material innovations and advanced manufacturing techniques have driven enhancements in temperature coefficients and power ratings, enabling designers to meet more stringent specifications. Additionally, evolving design requirements for surface mountability and miniaturization are influencing market demand in favor of compact form factors without compromising performance. This introduction sets the stage for understanding the critical technological, regulatory, and competitive factors shaping the current sensing resistor market today.

Examining the Pivotal Technological Innovations and Regulatory Drivers Reshaping the Current Sensing Resistor Market Landscape

The landscape of current sensing resistors has undergone profound transformation driven by rapid advances in semiconductor technologies and emerging end-use demands. Technological strides in thin film deposition and metal alloy formulations have enhanced resistor stability, reduced temperature drift, and enabled precise tolerances previously unattainable. Consequently, device architects are now integrating sensors in tighter footprints to support next-generation electronics that demand both performance and space efficiency.

Concurrently, the global shift toward electrification-particularly in the automotive sector-has underscored the need for high-reliability sensing solutions capable of withstanding harsh environments. This has accelerated adoption of robust wirewound and metal plate shunt configurations for high-current applications, while thick film variants continue to address cost-sensitive segments. Moreover, the proliferation of renewable energy infrastructures and industrial automation initiatives has further stimulated demand for power monitoring modules reliant on advanced current sensing resistors.

As regulators and OEMs intensify focus on energy conservation and safety standards, the market has seen increased investment in components that combine high power ratings with minimal footprint. The integration of smart sensing functionalities and predictive analytics has also emerged as a pivotal trend, offering real-time diagnostics and enabling proactive maintenance strategies. These convergent shifts highlight a market in flux, where innovation and regulatory imperatives jointly reshape opportunities.

Analyzing the Strategic Repercussions of the 2025 United States Tariff Adjustments on Current Sensing Resistor Supply Chains

The imposition of expanded tariff schedules by the United States in 2025 has introduced heightened complexity to the current sensing resistor supply chain. Components sourced from key manufacturing hubs have faced additional duties, compelling importers and distributors to revisit supplier agreements and logistics networks. As a result, procurement strategies have increasingly prioritized domiciled production and alternate sourcing from tariff-exempt jurisdictions to mitigate cost pressures and avoid supply disruptions.

Although some entities have passed incremental cost burdens to end customers, many OEMs have sought to absorb the financial impacts through lean inventory management and just-in-time procurement frameworks. Strategic stockpiling and renegotiated contracts with domestic assemblers have emerged as interim measures to ensure continuity. Importantly, manufacturers with vertically integrated capabilities or onshore production lines have gained competitive advantage by offering more stable pricing and faster turnaround times.

Looking ahead, the tariff environment underscores the necessity for multinational electronics suppliers to adopt agile sourcing policies and develop robust trade compliance programs. Collaborative relationships with logistics partners and proactive engagement with trade advisory services have become critical to navigating evolving regulations. Ultimately, this shift toward localized value chains and diversified vendor portfolios will redefine the cost structure and risk profile for the current sensing resistor industry.

Diving Deep into Current Sensing Resistor Market Segmentation Reveals Distinctive Patterns in Type Material Mounting and Application Preferences

A nuanced understanding of market segmentation reveals the diversity of current sensing resistor applications and design preferences. When evaluated by type, film resistors-distinguished into thick film and thin film variants-have dominated cost-sensitive and high-precision applications alike, while metal plate shunt resistors offer superior thermal stability for heavy-duty power systems, and wirewound solutions remain indispensable for the highest current environments. The mounting type further diversifies the landscape, with chip configurations addressing compact consumer electronics, panel mount formats serving industrial control panels, surface mount devices enabling streamlined PCB designs, and through hole styles continuing to hold relevance in legacy and high-reliability applications.

Temperature coefficient preferences also define market sub-segments, spanning extremely stable resistors rated between five and fifty parts per million per degree Celsius to broader tolerance options above two hundred parts per million per degree Celsius. Power rating considerations differentiate offerings from sub-watt thin film sensors for portable devices and medical instruments, through one to five watt variants in automotive and telecom systems, up to heavy-duty solutions exceeding five watts in industrial motor control. Application-driven demand further bifurcates the market across automotive battery management and motor drive systems, consumer electronics ranging from laptops to smart appliances, industrial automation sensors, precision medical equipment, and high-speed telecommunication modules. Lastly, distribution channel dynamics-spanning offline direct sales, distributor networks, and burgeoning online platforms-shape how manufacturers reach designers and engineers, underscoring the importance of omnichannel strategies and digital storefront optimization.

Exploring How Regional Dynamics in the Americas Europe Middle East Africa and Asia-Pacific Shape Current Sensing Resistor Demand Patterns

Regional dynamics play a pivotal role in shaping current sensing resistor trends and investment priorities. In the Americas, the confluence of advanced automotive electronics development and expanding data center infrastructure has driven demand for high-precision, high-reliability sensing solutions. OEMs and Tier-1 suppliers across North America have increasingly prioritized onshore partnerships to address supply chain resilience and stringent automotive quality standards.

Across Europe, Middle East, and Africa, rising automation in manufacturing hubs and growing emphasis on renewable energy projects have elevated the adoption of medium- to high-power sensors with robust temperature coefficient profiles. Stringent regulations on energy efficiency and safety have also stimulated investment in resistors with industry-certified performance attributes, fostering collaboration between local research institutions and component manufacturers.

Meanwhile, the Asia-Pacific region continues to command significant production capacity for current sensing resistors, driven by strong consumer electronics growth in countries such as China and South Korea. Rapid development of 5G networks and electric vehicle ecosystems throughout this region has further propelled demand for advanced resistor solutions. Regional supply chain integration and cost efficiencies have reinforced Asia-Pacific as a manufacturing powerhouse and key export hub for global electronics markets.

Uncovering Competitive Differentiation Strategies Among Leading Current Sensing Resistor Manufacturers Across Global Markets

The competitive arena for current sensing resistors features a mix of established multinational conglomerates and specialized niche players. Key companies have emphasized differentiated value propositions-ranging from proprietary alloy formulations offering ultra-low thermal drift to modular resistor arrays enabling scalable current sensing in compact footprints. Many market leaders have invested heavily in research collaborations with semiconductor manufacturers and design houses to co-develop integrated sensor modules.

Strategic partnerships and acquisitions have been instrumental in broadening product portfolios and expanding geographic reach. Global component houses have supplemented their resistor offerings with smart sensing platforms, incorporating diagnostic circuitry for real-time monitoring and predictive maintenance capabilities. Conversely, smaller firms have leveraged agility to introduce customized solutions for emerging applications such as energy harvesting devices and Internet of Things endpoints.

Competitive dynamics are also influenced by customer service excellence, with an increasing number of suppliers deploying digital tools for order tracking, technical support, and application engineering. The ability to provide rapid prototyping, alongside stringent quality assurance certifications, remains a critical differentiator. As the industry continues to evolve, companies that harmonize innovation, operational flexibility, and customer-centric service models will maintain leadership in this specialized segment.

Formulating a Balanced Growth Blueprint That Integrates Innovation Supply Chain Resilience and Digital Enablement for Industry Leadership

Industry leaders can capitalize on emerging opportunities by pursuing a multifaceted strategy that balances innovation with operational resilience. First, investing in advanced materials research and collaborative design partnerships will accelerate the development of resistors with enhanced stability and miniaturization, catering to high-growth segments such as electric vehicles and 5G infrastructure. Simultaneously, expanding localized manufacturing capabilities and forging strategic alliances with regional assemblers will mitigate tariff-induced supply chain risks and ensure continuity of supply for critical projects.

Furthermore, embracing digital transformation across sales and support functions will unlock efficiency gains. Deploying eCommerce platforms and interactive configuration tools can streamline the customer journey, while predictive analytics embedded within sensing solutions can deliver actionable insights and foster recurring revenue through value-added services. In parallel, reinforcing quality management systems and acquiring relevant industry certifications will bolster credibility in regulated sectors such as medical devices and aerospace.

Lastly, cultivating cross-functional teams that align engineering, marketing, and regulatory expertise will facilitate rapid go-to-market execution for new product introductions. By integrating market intelligence into the product development lifecycle, companies can anticipate shifting requirements and adapt swiftly, thereby sustaining a competitive edge in this dynamic components market.

Detailing the Multi-Source Research Methodology That Integrates Primary Expert Interviews with Secondary Data Triangulation for Robust Insights

This analysis is grounded in a rigorous research methodology combining primary and secondary data collection techniques. In the secondary phase, industry journals, technical white papers, and patent databases were examined to map technological trajectories and material innovations. Concurrently, company press releases and regulatory filings provided insight into recent tariffs and trade policy developments impacting supply chains.

Primary research included in-depth interviews with senior engineers, procurement specialists, and strategic purchase decision-makers across automotive, telecommunications, industrial automation, and medical equipment sectors. These conversations yielded nuanced perspectives on performance requirements, sourcing challenges, and the adoption cadence of emerging resistor technologies. Furthermore, data triangulation methods were employed to validate findings, ensuring alignment between qualitative inputs and available trade statistics.

Complementing these efforts, surveys of distributor networks and comparisons of digital versus offline sales channels illuminated evolving purchasing behaviors. The integration of multiple data sources and cross-validation protocols underpins the credibility of the insights presented, offering a comprehensive view of market dynamics and strategic levers for stakeholders.

Synthesizing Market Innovations Regulatory Shifts and Strategic Imperatives to Navigate the Evolving Current Sensing Resistor Ecosystem

The current sensing resistor market is poised at the intersection of technological innovation, regulatory evolution, and shifting end-use demands. As manufacturers refine materials and fabrication processes to deliver higher precision and greater power handling in compact form factors, end users across automotive, industrial, and telecommunications sectors stand to benefit from enhanced system efficiency and reliability.

Regulatory pressures and tariff policies have underscored the importance of supply chain adaptability, driving a strategic pivot toward localized production and diversified sourcing models. Simultaneously, the imperative to integrate intelligent sensing functionalities has catalyzed collaboration between resistor manufacturers and semiconductor vendors, fostering the emergence of smart sensing modules capable of real-time diagnostics and predictive maintenance.

Looking forward, companies that align product innovation with digital sales and support infrastructures, while maintaining operational agility in the face of trade uncertainties, will secure leadership positions. The nuanced segmentation insights, regional dynamics, and competitive differentiation strategies outlined herein provide a roadmap for making informed decisions and capturing growth in this dynamic market segment.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rapid expansion of galvanic isolation integrated current sensing resistors for high-voltage applications
  • 5.2. Increasing demand for precision thin-film current sensing resistors in automotive advanced driver assistance systems
  • 5.3. Emerging focus on low-temperature coefficient metal alloy resistors for stabilized current sensing in industrial controls
  • 5.4. Surging innovation in compact current sense resistor packaging for miniature wearable medical devices
  • 5.5. Advancement of ultra-low resistance current sense resistors to enable efficiency in data center power supplies
  • 5.6. Integration of current sensing resistors with smart monitoring ICs for real-time energy management in IoT networks
  • 5.7. Shift towards highly scalable current sensing resistor networks to support modular renewable energy inverters
  • 5.8. Development of robust high-power current sensing resistors for next-generation electric vehicle charging infrastructures
  • 5.9. Advent of additive manufacturing techniques for producing bespoke current sensing resistor geometries in prototyping
  • 5.10. Growing requirement for automotive-qualified high-reliability current sensing resistors in electric power steering systems

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Current Sensing Resistor Market, by Type

  • 8.1. Introduction
  • 8.2. Film Resistors
    • 8.2.1. Thick Film
    • 8.2.2. Thin Film
  • 8.3. Metal Plate Shunt Resistors
  • 8.4. Wirewound

9. Current Sensing Resistor Market, by Mounting Type

  • 9.1. Introduction
  • 9.2. Chip
  • 9.3. Panel Mount
  • 9.4. Surface Mount
  • 9.5. Through Hole

10. Current Sensing Resistor Market, by Temperature Coefficient

  • 10.1. Introduction
  • 10.2. Above +-200 ppm/°C
  • 10.3. +-5 to +-50 ppm/°C
  • 10.4. +-50 to +-200 ppm/°C

11. Current Sensing Resistor Market, by Power Rating

  • 11.1. Introduction
  • 11.2. 1-5W
  • 11.3. Above 5W
  • 11.4. Below 1W

12. Current Sensing Resistor Market, by Application

  • 12.1. Introduction
  • 12.2. Automotive
  • 12.3. Consumer Electronics
  • 12.4. Industrial
  • 12.5. Medical Equipment
  • 12.6. Telecommunication

13. Current Sensing Resistor Market, by Distribution Channel

  • 13.1. Introduction
  • 13.2. Offline Sales
    • 13.2.1. Direct Sales
    • 13.2.2. Distributors
  • 13.3. Online Sales

14. Americas Current Sensing Resistor Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Current Sensing Resistor Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Current Sensing Resistor Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Yageo Corporation
    • 17.3.2. Murata Manufacturing Co., Ltd.
    • 17.3.3. TDK Corporation
    • 17.3.4. Vishay Intertechnology, Inc.
    • 17.3.5. Panasonic Corporation
    • 17.3.6. Bourns, Inc.
    • 17.3.7. TE Connectivity Ltd.
    • 17.3.8. ROHM Co., Ltd.
    • 17.3.9. Susumu Co., Ltd.
    • 17.3.10. Stackpole Electronics, Inc.
    • 17.3.11. Mouser Electronics, Inc.
    • 17.3.12. Asahi Kasei Corporation
    • 17.3.13. Infineon Technologies AG
    • 17.3.14. Allegro MicroSystems, Inc.
    • 17.3.15. LEM International SA
    • 17.3.16. KOA Corporation
    • 17.3.17. Viking Tech Corporation
    • 17.3.18. Analog Devices, Inc.
    • 17.3.19. Digi-Key Corporation
    • 17.3.20. TT Electronics PLC
    • 17.3.21. Delta Electronics, Inc.
    • 17.3.22. KWK Resistors Pvt. Ltd.
    • 17.3.23. Ohmite Mfg Co.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦