½ÃÀ庸°í¼­
»óǰÄÚµå
1809711

¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : À¯Çü, ¹èÅ͸® È­ÇÐ, ÀιöÅÍ ÅäÆú·ÎÁö, ¿ë·® ¹üÀ§, ¼³Ä¡ À¯Çü, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Battery-Integrated Inverters Market by Type, Battery Chemistry, Inverter Topology, Capacity Range, Installation Type, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀåÀº 2024³â¿¡´Â 114¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 125¾ï 7,000¸¸ ´Þ·¯, CAGR 10.34%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 206¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 114¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 125¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 206¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 10.34%

Áö¼Ó°¡´ÉÇÑ Àü·Â °ü¸®¸¦ À§ÇÑ Ã·´Ü ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ±â¼ú Çõ½ÅÀ» ÅëÇØ ¿¡³ÊÁö °­Àμº°ú È¿À²¼ºÀÇ ¹Ì·¡¸¦ ¿­¾î°©´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀ¸·ÎÀÇ Àüȯ°ú ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹é¾÷ Àü·Â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹èÅ͸® ÅëÇÕ ÀιöÅÍ´Â ÃֽŠ¿¡³ÊÁö ¹èÄ¡ÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀå°ú Àü·Â º¯È¯À» ÅëÇÕÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±×¸®µå ¿¬°á ¹× ¿ÀÇÁ±×¸®µå ¾ÖÇø®ÄÉÀ̼ǿ¡ Àç»ý¿¡³ÊÁö ¼Ò½º¸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ÃÖ±Ù ´Ù»ó ÅäÆú·ÎÁö¿Í ÷´Ü ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ °­È­·Î »õ·Î¿î Â÷¿øÀÇ È¿À²¼º°ú È®À强ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. µ¿½Ã¿¡ ¹èÅ͸® °ü¸® ½Ã½ºÅÛÀÇ ±â¼ú Çõ½ÅÀº º¸´Ù ½º¸¶Æ®Çϰí ÀûÀÀ·ÂÀÌ ³ôÀº ÀιöÅÍ Ç÷§ÆûÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ÁÖ°Å, »ó¾÷, »ê¾÷, À¯Æ¿¸®Æ¼ ºÐ¾ßÀÇ ÀÌÇØ°ü°èÀÚµéÀº ¿î¿µ ź·Â¼ºÀ» °­È­Çϰí ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» Æò°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³´Â ÀÌ ¿ªµ¿ÀûÀÎ ½ÃÀå »óȲÀ» Æ÷°ýÀûÀ¸·Î Á¶»çÇϱâ À§ÇÑ ¹«´ë°¡ µÉ °ÍÀÔ´Ï´Ù.

±â¼ú ¹ßÀü°ú Á¤Ã¥ °³ÇõÀÇ À¶ÇÕÀÌ Àç»ý¿¡³ÊÁö ÀúÀå ¹× ¹èÅ͸® ÅëÇÕ ÀιöÅÍ µµÀÔÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ¾î¶»°Ô ÃËÁøÇÒ °ÍÀΰ¡?

¹èÅ͸® ÅëÇÕ ÀιöÅÍÀÇ »óȲÀº ±â¼úÀÇ ºñ¾àÀûÀÎ ¹ßÀü, ±ÔÁ¦ »óȲÀÇ °³Çõ, ÁøÈ­ÇÏ´Â ½ÃÀå ¿ªÇÐÀÇ ¼ö·Å¿¡ ÀÇÇØ À籸¼ºµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ¸ðµÎ ¿¡³ÊÁö ÀúÀå ¹èÄ¡ÀÇ »õ·Î¿î ½Ã´ë¸¦ ÀǹÌÇÕ´Ï´Ù. ¹ÝµµÃ¼ Àç·á, ÀÓº£µðµå ÀÎÅÚ¸®Àü½º, ¿­ °ü¸®ÀÇ °³¼±À¸·Î Ãâ·Â ¹Ðµµ¿Í ½Å·Ú¼ºÀÌ Çâ»óµÇ´Â ÇÑÆí, ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀº °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, Áö¿ø Á¤Ã¥ Á¶Ä¡¿Í Àμ¾Æ¼ºê ÇÁ·Î±×·¥Àº ÁÖ°Å ¹× »ó¾÷ ºÐ¾ß¿¡¼­ ÅëÇÕÇü ÃàÀü º¯È¯ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ç¹°ÀÎÅÍ³Ý ¿¬°á°ú °í±Þ ºÐ¼® Ç÷§ÆûÀÇ ÅëÇÕÀ¸·Î ½Ç½Ã°£ ¼º´É ¸ð´ÏÅ͸µ°ú ¿¹Áöº¸ÀüÀÌ °¡´ÉÇØÁ® ½Ã½ºÅÛ °¡µ¿·üÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² Áö¼Ó°¡´É¼º Àǹ«È­¿Í ±â¾÷ÀÇ Å»Åº¼ÒÈ­ ¸ñÇ¥°¡ ³ô¾ÆÁü¿¡ µû¶ó À¯Æ¿¸®Æ¼ ¹× »ê¾÷üµéÀº ¿¡³ÊÁö Àü·«ÀÇ ÇÙ½É ¿ä¼Ò·Î ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î, ÀÌ·¯ÇÑ »óÈ£ ¿¬°üµÈ º¯È­´Â ÇâÈÄ ¸î ³â µ¿¾È ±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú ±¤¹üÀ§ÇÑ ½ÃÀå È®´ëÀÇ ¹ßÆÇÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹¿¡¼­ ½ÃÇàµÇ´Â »õ·Î¿î °ü¼¼°¡ ¹èÅ͸® ÅëÇÕ ÀιöÅÍ °ø±Þ¸Á°ú ºñ¿ë ±¸Á¶¿¡ ¹ÌÄ¡´Â ÁßÃþÀû ¿µÇâ Æò°¡

2025³â, ¹Ì±¹Àº ¼öÀÔ ÀιöÅÍ ¸ðµâ, ¿ø½Ã ¹èÅ͸® ºÎǰ, ÇÙ½É Àü·Â ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ÀÏ·ÃÀÇ ´Ü°èÀû °ü¼¼¸¦ µµÀÔÇÏ¿© ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ´ëÇÑ ¹«¿ª Á¤Ã¥ÀÇ Å« ÀüȯÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Ä¡´Â ±¹³» Á¦Á¶ ¿ª·®À» °­È­Çϰí Àü·« »ê¾÷À» º¸È£Çϱâ À§ÇÑ °ÍÀÌÁö¸¸, µ¿½Ã¿¡ ¹Ì±¹ ½ÃÀå¿¡ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â ¼¼°è °ø±Þ¾÷ü¿Í ½Ã½ºÅÛ ÅëÇÕ¾÷ü¿¡ »õ·Î¿î ºñ¿ë ¾Ð¹ÚÀ» °¡ÇÏ´Â °ÍÀ̱⵵ ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº °ü¼¼ °ü·Ã ºñ¿ëÀ» ÁÙÀÌ°í °æÀï·Â ÀÖ´Â ¸¶Áø ±¸Á¶¸¦ À¯ÁöÇϱâ À§ÇØ °ø±Þ¸Á ±¸¼º°ú Á¶´Þ Àü·«À» ÀçÆò°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ À¯Çü, È­ÇÐ, ÀÀ¿ë ºÐ¾ß¿¡ °ÉÄ£ ±âȸ¸¦ ¹àÇô ÅõÀÚ ¹× º¸±ÞÀ» ÃËÁøÇÕ´Ï´Ù.

´Ü»ó ¹× 3»ó ¹èÅ͸® ÅëÇÕ ÀιöÅÍÀÇ Â÷ÀÌÁ¡À» ÀÌÇØÇÏ´Â °ÍÀº ƯÁ¤ Àü¾Ð ¾ÆÅ°ÅØÃ³ ¹× ºÎÇÏ ÇÁ·ÎÆÄÀÏ¿¡ ¸Â´Â ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇÑ ±âº»ÀÔ´Ï´Ù. ´Ü»ó À¯´ÖÀº Ãʱ⠺ñ¿ëÀÌ Àú·ÅÇϰí ÅëÇÕ ¿ä±¸ »çÇ×ÀÌ ´Ü¼øÇϱ⠶§¹®¿¡ ÁÖ°Å ¹× ¼Ò±Ô¸ð »ó¾÷ ½Ã¼³¿¡¼­ ÀÚÁÖ ¼±È£µË´Ï´Ù. ¹Ý¸é, 3»ó ½Ã½ºÅÛÀº ´õ ³ôÀº Àü·Â 󸮷®°ú ±ÕÇü ÀâÈù À§»ó ºÎÇϸ¦ Á¦°øÇϱ⠶§¹®¿¡ °íºÎÇÏ¿¡¼­ °ß°íÇÑ ¼º´ÉÀ» ¿ä±¸ÇÏ´Â »ê¾÷ ½Ã¼³, ´ë±Ô¸ð »ó¾÷¿ë °Ç¹° ¹× À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼ºÀÇ ¼±ÅÃÀº Çϵå¿þ¾î ¼³°è»Ó¸¸ ¾Æ´Ï¶ó ÇöÀå ¿£Áö´Ï¾î¸µ, ½Ã¿îÀü ÀýÂ÷, Àå±â ¿î¿µ Àü·«¿¡µµ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä Áö¿ª ¿ªÇÐ ¹× ¼ºÀå ÃËÁø¿äÀÎÀ» È®ÀÎÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«¿¡¼­´Â ¼º¼÷ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í Àμ¾Æ¼ºê ÇÁ·Î±×·¥ÀÌ ÁÖÅà ¹× »ó¾÷¿ë ½ÃÀå¿¡¼­ ¹èÅ͸® ÅëÇÕ ÀιöÅÍÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö µµÀÔÀ» Áö¿øÇÏ´Â ¿¬¹æ ¹× ÁÖÁ¤ºÎ Â÷¿øÀÇ Á¤Ã¥Àº Àü·Âȸ»ç ÁÖµµÀÇ ¼ö¿ä ¹ÝÀÀ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÇÔ²² ž籤¹ßÀü ¾î·¹ÀÌ ¹× ¸¶ÀÌÅ©·Î±×¸®µå¿¡ ´ëÇÑ Àü·Â ÀúÀå ½Ã½ºÅÛÀÇ ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â °ø±Þ¸ÁÀÌ ¹ß´ÞÇϰí Á¦Á¶ °ÅÁ¡ÀÌ Áö¿ª¿¡ »Ñ¸®¸¦ ³»¸®°í ÀÖ¾î ½Å¼ÓÇÑ ÇÁ·ÎÁ§Æ® ÀÏÁ¤°ú °æÀï·Â ÀÖ´Â °¡°Ý Ã¥Á¤ÀÌ °¡´ÉÇÕ´Ï´Ù. ÇÑÆí, ¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå¿¡¼­´Â Áö¹æÀÇ Àü·Â¸Á ½Å·Ú¼º ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ¿ÀÇÁ±×¸®µå ¹× ºÐ»êÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ËÅä°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Á¤Ã¥Àû Àμ¾Æ¼ºê¿Í °í°´ ÀνÄÀÇ Áõ°¡°¡ ¿ªµ¿ÀûÀ¸·Î ¾ôÇô ÀÌ Áö¿ª Àüü¿¡¼­ ´Ù¾çÇÑ ÀÀ¿ë ½Ã³ª¸®¿À°¡ °è¼Ó ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°è °æÀï ȯ°æ µ¿Çâ°ú ÁÖ¿ä ¹èÅ͸® ÅëÇÕ ÀιöÅÍ Á¦Á¶¾÷üÀÇ Àü·«Àû ¿òÁ÷ÀÓÀº?

¹èÅ͸® ÅëÇÕ ÀιöÅÍÀÇ °æÀï ±¸µµ´Â ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º Àü¹® Á¦Á¶¾÷ü¿Í ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ ±íÀº Àü¹®¼ºÀ» °¡Áø ¼öÁ÷ ÅëÇÕÇü ´ë±â¾÷ÀÌ È¥ÀçµÇ¾î ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ±âÁ¸ ´ë±â¾÷µéÀº ´ë±Ô¸ð »ý»ê´É·Â°ú ¼¼°è À¯Åë¸ÁÀ» Ȱ¿ëÇÏ¿© À¯Æ¿¸®Æ¼ ±Ô¸ð¿Í »ó¾÷¿ë ºÎ¹®ÀÇ ÁÖ¿ä °í°´µéÀ» È®º¸ÇØ ¿Ô½À´Ï´Ù. ¹Ý¸é, ½ÅÈï µµÀüÀÚµéÀº ¸ðµâ ¼³°è¿Í ¼ÒÇÁÆ®¿þ¾î Áß½ÉÀÇ °¡Ä¡ Á¦¾È¿¡ ÁßÁ¡À» µÎ¾î ÀÚ»ç Á¦Ç°ÀÇ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. °¢ ¾÷üµéÀÌ ÀιöÅÍÀÇ È¿À²¼º, ¿¬°á¼º, ¾ÈÀü ±â´ÉÀ» °­È­Çϰí ÃֽŠ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ °æÀïÇϰí Àֱ⠶§¹®¿¡ R&D¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ°¡ ÇÙ½É ÀüÀåÀÌ µÇ°í ÀÖ½À´Ï´Ù.

»õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇϰí, ½ÃÀå °úÁ¦¸¦ ¿ÏÈ­Çϱâ À§ÇÑ Àü·«Àû Á¦¾ÈÀ» ÅëÇØ ¾÷°è ¸®´õ¿¡°Ô ÈûÀ» ½Ç¾îÁÝ´Ï´Ù.

ÁøÈ­ÇÏ´Â ¹èÅ͸® ÅëÇÕ ÀιöÅÍ »óȲÀ» Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õ´Â ÷´Ü Àü·Â ÀüÀÚ, »õ·Î¿î ¹èÅ͸® È­ÇÐÁ¦Ç°, ÅëÇÕ Á¦¾î ¼ÒÇÁÆ®¿þ¾î¿¡ ÃÊÁ¡À» ¸ÂÃá ¿¬±¸ °³¹ß¿¡ ´õ ¸¹Àº ÀÚ¿øÀ» ÇÒ´çÇØ¾ß ÇÕ´Ï´Ù. ºÎǰ Á¦Á¶»ç, Çаè, ¼ÒÇÁÆ®¿þ¾î Çõ½Å°¡µé°ú Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ¿© Â÷¼¼´ë Ç÷§ÆûÀÇ ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ðµâ½Ä Çϵå¿þ¾î¿Í °³¹æÇü ¾ÆÅ°ÅØÃ³ ¼³°è¿¡ ÅõÀÚÇÔÀ¸·Î½á »õ·Î¿î ±â¼úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô Çϰí, ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç ºÐ¾ß¿¡¼­ ºü¸¥ È®À强À» ÃËÁøÇÕ´Ï´Ù.

¹èÅ͸® ÅëÇÕ ÀιöÅÍÀÇ Åõ¸í¼º°ú µ¥ÀÌÅÍ ¹«°á¼ºÀ» ³ôÀ̱â À§ÇØ ¹èÅ͸® ÅëÇÕ ÀιöÅÍÀÇ »óȲÀ» ÀÚ¼¼È÷ ºÐ¼®Çϱâ À§ÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀÇ ¼¼ºÎ »çÇ×.

ÀÌ º¸°í¼­´Â 1Â÷ ¹× 2Â÷ Á¤º¸¸¦ ¸ðµÎ ÅëÇÕÇÏ´Â °­·ÂÇÑ ¿¬±¸ ¹æ¹ýÀ» ±â¹ÝÀ¸·Î ÇÏ¿© ºÐ¼®ÀÇ ¾ö°Ý¼º°ú ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ Æ÷°ý¼ºÀ» º¸ÀåÇÕ´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â ¾÷°è °£Ç๰, ±â¼ú ¹é¼­, ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâÇÑ ¼­·ù, ¾÷°è ´ÜüÀÇ º¸°í¼­ µîÀ» ü°èÀûÀ¸·Î Á¶»çÇÏ¿© ½ÃÀåÀÇ ±âº» »óȲÀ» È®¸³Çϰí ÀϹÝÀûÀÎ µ¿ÇâÀ» ÆÄ¾ÇÇß½À´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â ÁÖ¿ä Áö¿ªÀÇ ÀιöÅÍ Á¦Á¶¾÷ü, ¹èÅ͸® °ø±Þ¾÷ü, ÇÁ·ÎÁ§Æ® °³¹ßÀÚ, Á¤Ã¥ ºÐ¼®°¡ÀÇ °æ¿µÁø, Á¦Ç° °ü¸®ÀÚ, ±â¼ú Àü¹®°¡¸¦ ´ë»óÀ¸·Î ½ÉÃþ ÀÎÅͺ並 ÁøÇàÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­¸¦ ÅëÇØ ¾òÀº ÀλçÀÌÆ®´Â Á¤·®Àû µ¥ÀÌÅÍ Æ÷ÀÎÆ®¿ÍÀÇ »ï°¢ ºñ±³¸¦ ÅëÇØ Ÿ´ç¼ºÀ» ³ôÀ̰í, ½ÃÀå ÃËÁø¿äÀΰú À庮¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ °üÁ¡À» µå·¯³Â½À´Ï´Ù.

ÁøÈ­ÇÏ´Â ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ºÐ¾ß¿¡¼­ Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ±×¸®±â À§ÇÑ ÁÖ¿ä ÀλçÀÌÆ® ÅëÇÕ

ÁøÈ­ÇÏ´Â ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀåÀº ¿¡³ÊÁö ÀúÀå ±â¼ú°ú Àü·Â º¯È¯ ±â¼úÀÇ À¶ÇÕ¿¡ ÀÖ¾î º¯È­ÀÇ °¥¸²±æÀÔ´Ï´Ù. µðÁöÅÐÈ­, Á¤Ã¥Àû Áö¿ø, ¼º´É Çõ½ÅÀÌ ¼ö·ÅµÊ¿¡ µû¶ó, ÀÌ·¯ÇÑ ÅëÇÕ ½Ã½ºÅÛÀº ¸ðµç ÃÖÁ¾ »ç¿ë ºÎ¹®¿¡¼­ Àü·Ê ¾ø´Â ¼öÁØÀÇ ½Ã½ºÅÛ À¯¿¬¼º, ¿î¿µ ź·Â¼º, ºñ¿ë È¿À²¼ºÀ» ´Þ¼ºÇÒ ¼ö Àִ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù. Á¦Ç° °³¹ß ¹× ¹èÆ÷¿¡ Á¾ÇÕÀûÀÌ°í µ¥ÀÌÅÍ Áß½ÉÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇÏ´Â ÀÌÇØ°ü°èÀÚ´Â »õ·Î¿î ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ´Â °¡Àå ÁÁÀº À§Ä¡¿¡ ¼­°Ô µÉ °ÍÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : À¯Çüº°

  • ´Ü»ó ¹èÅ͸® ÅëÇÕ ÀιöÅÍ
  • »ï»ó ¹èÅ͸® ÅëÇÕ ÀιöÅÍ

Á¦9Àå ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : ¹èÅ͸® È­Çк°

  • ³³Ãà¹èÅ͸®
    • ¾×»ó
    • VRLA
  • ¸®Æ¬À̿ ¹èÅ͸®
    • Àλêö¸®Æ¬
    • ¸®Æ¬ ´ÏÄÌ ÄÚ¹ßÆ® ¾Ë·ç¹Ì´½ »êÈ­¹°
    • ¸®Æ¬ ´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®
  • ´ÏÄÌ Ä«µå¹Å ¹èÅ͸®

Á¦10Àå ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : ÀιöÅÍ ÅäÆú·ÎÁöº°

  • Áß¾Ó
  • ¸¶ÀÌÅ©·Î
  • ½ºÆ®¸µ

Á¦11Àå ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : ¿ë·® ¹üÀ§º°

  • 100-500kW
  • 500kW ÀÌ»ó
  • 100kW ÀÌÇÏ

Á¦12Àå ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • ¿ÀÇÁ±×¸®µå
  • ¿Â±×¸®µå

Á¦13Àå ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå : ¿ëµµº°

  • »ó¾÷¿ë
  • »ê¾÷
  • ÁÖ°Å¿ë
  • À¯Æ¿¸®Æ¼

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹èÅ͸® ÅëÇÕ ÀιöÅÍ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Alpha ESS Co., Ltd.
    • Blue Planet Energy Systems LLC
    • Ampere Energy, S.L.
    • Bosch Power Tec GmbH
    • Delta Electronics, Inc.
    • Eguana Technologies Inc.
    • Enphase Energy, Inc.
    • FIMER S.p.A.
    • Ginlong Technologies Co., Ltd.(Solis)
    • GoodWe Technologies Co., Ltd.
    • Growatt New Energy Technology Co., Ltd.
    • Huawei Technologies Co., Ltd.
    • Hybrid Power Solutions Inc.
    • KACO new energy GmbH
    • Midnite Solar, Inc.
    • Northern Electric Power Technology Inc.
    • OutBack Power Technologies, Inc.
    • Portable Solar, LLC
    • Pylon Technologies Co., Ltd.
    • Redback Technologies Pty Ltd.
    • Schneider Electric Solar Inverters USA, Inc.
    • SENEC GmbH
    • Shenzhen Lux Power Technology Co., Ltd.
    • SMA Solar Technology AG
    • SolarEdge Technologies, Inc.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSM

The Battery-Integrated Inverters Market was valued at USD 11.44 billion in 2024 and is projected to grow to USD 12.57 billion in 2025, with a CAGR of 10.34%, reaching USD 20.65 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 11.44 billion
Estimated Year [2025] USD 12.57 billion
Forecast Year [2030] USD 20.65 billion
CAGR (%) 10.34%

Unlocking the Future of Energy Resilience and Efficiency Through Advanced Battery-Integrated Inverter Innovations for Sustainable Power Management

The global transition to distributed energy resources and intensifying demand for reliable backup power have elevated battery-integrated inverters as a cornerstone of modern energy deployments. By combining energy storage and power conversion in a unified unit, these systems enable the seamless integration of renewable sources into grid-connected and off-grid applications. Recent enhancements in multi-phase topologies and advanced power electronics have unlocked new levels of efficiency and scalability. At the same time, innovations in battery management systems are driving smarter, more adaptive inverter platforms. As a result, stakeholders across residential, commercial, industrial, and utility segments are evaluating these solutions to bolster operational resilience and reduce total cost of ownership. This introduction sets the stage for a comprehensive exploration of this dynamic market landscape.

This executive summary distills the critical trends, regulatory influences, and technological breakthroughs reshaping the battery-integrated inverter landscape to provide decision-makers with a clear strategic framework. The impact of evolving tariff policies and trade dynamics is examined alongside the realignment of global supply chains. A detailed segmentation analysis across product type, battery chemistry, inverter topology, capacity range, installation mode, and end-use application offers a granular view of market drivers. Each regional perspective highlights how infrastructure investments and policy initiatives are accelerating adoption in key territories. Competitive insights underscore the strategic moves of leading manufacturers. Together, these elements form a cohesive foundation for actionable recommendations addressing the challenges and opportunities ahead.

How Converging Technology Advances and Policy Reforms Are Driving a Paradigm Shift in Renewable Energy Storage and Battery-Integrated Inverter Deployment

The landscape of battery-integrated inverters is being reshaped by a convergence of technological breakthroughs, regulatory reforms, and evolving market dynamics that together signify a new era in energy storage deployment. Improvements in semiconductor materials, embedded intelligence, and thermal management are enhancing power density and reliability while driving down lifecycle costs. Simultaneously, supportive policy measures and incentive programs are accelerating the adoption of integrated storage-conversion systems across residential and commercial segments. Moreover, the integration of Internet of Things connectivity and advanced analytics platforms enables real-time performance monitoring and predictive maintenance, boosting system uptime. In parallel, heightened sustainability mandates and corporate decarbonization targets are prompting utilities and industrial operators to embrace stored power solutions as a key component of their energy strategies. Consequently, these interrelated shifts are setting the stage for rapid innovation and broader market expansion in the coming years.

In addition, the proliferation of renewable generation assets, from rooftop photovoltaics to utility-scale wind farms, is creating a demand for inverters capable of seamlessly managing bidirectional energy flows. As digital twin simulations and machine learning algorithms become more accessible, system designers are optimizing inverter-battery integration to achieve peak operational efficiency under variable load conditions. This trend is further reinforced by collaborative partnerships between inverter vendors, battery suppliers, and software developers seeking to deliver turnkey energy storage solutions. The cumulative effect of these alliances is a more modular and scalable approach to energy management, empowering end users to tailor system capacities and functionalities based on evolving needs. Looking ahead, the interplay between autonomous grid islands, microgrid architectures, and virtual power plants will further expand the role of integrated inverters as foundational elements of intelligent energy networks.

Assessing the Layered Effects of Newly Implemented United States Tariffs in 2025 on the Battery-Integrated Inverter Supply Chain and Cost Structures

In 2025, the United States introduced a series of layered tariffs on imported inverter modules, raw battery components, and critical power electronics, marking a significant shift in trade policy for energy storage technologies. These measures aim to bolster domestic manufacturing capabilities and protect strategic industries, but they also introduce new cost pressures for global suppliers and system integrators servicing the U.S. market. As a result, manufacturers are reevaluating supply chain configurations and sourcing strategies to mitigate tariff-related expenses and maintain competitive margin structures.

Consequently, the effective landed cost of integrated inverter systems has risen, prompting some end users to reconsider deployment timelines or shift procurement toward tariff-exempt product categories. In response, several vendors are accelerating partnerships with North American component producers and expanding local assembly operations to preserve price stability and delivery timelines. Meanwhile, manufacturers with vertically integrated battery and inverter divisions are leveraging internal synergies to insulate end customers from the full impact of import duties.

Looking forward, the tariff environment is likely to drive strategic realignments across the value chain, with an emphasis on innovation in cost-effective manufacturing processes and the development of alternative chemistries that may qualify for preferential trade treatment. By proactively adapting procurement models and fostering closer collaboration with domestic suppliers, stakeholders can transform tariff challenges into catalysts for localized growth and resilience within the battery-integrated inverter ecosystem.

Unveiling Critical Market Segmentation Insights That Illuminate Opportunities Across Types, Chemistries, and Applications to Drive Investment and Adoption

Understanding the distinctions between single-phase and three-phase battery-integrated inverters is fundamental to tailoring solutions for specific voltage architectures and load profiles. Single-phase units are often favored in residential settings and smaller commercial installations due to their lower upfront costs and simplified integration requirements. In contrast, three-phase systems deliver higher power throughput and balanced phase loading, making them well suited for industrial facilities, large commercial buildings, and utility-scale applications that demand robust performance under heavy loads. The choice between these configurations influences not only hardware design but also site engineering, commissioning procedures, and long-term operational strategies.

Equally critical is the selection of battery chemistry, which dictates energy density, cycle life, thermal management needs, and total cost of ownership. Lead acid batteries remain a cost-effective choice, with flooded variants offering deep discharge capabilities and valve-regulated lead acid options providing maintenance-free operation. Lithium ion batteries have emerged as the predominant chemistry for integrated systems, with lithium iron phosphate cells prized for their safety and cycle longevity, and nickel cobalt aluminum oxide and nickel manganese cobalt formulations valued for their high energy density. Nickel-cadmium batteries continue to serve niche applications where extreme temperature tolerance and extended lifecycle are paramount.

Diverse inverter topologies-from centralized plants to modular string configurations and distributed micro-inverter setups-allow system architects to optimize performance, redundancy, and scalability across projects of varying sizes. Coupled with a range of capacity bands spanning below 100 kilowatts for residential microgrids, mid-range 100-to-500 kilowatt systems for commercial or small industrial uses, and above 500 kilowatt installations for utility-scale deployments, these options deliver versatility in addressing diverse customer requirements.

Finally, differentiating between off-grid and on-grid installation types, alongside the specific demands of residential, commercial, industrial, and utility applications, underscores the importance of a nuanced segmentation strategy. Whether prioritizing islanding capabilities for remote sites or grid-tied functionalities for peak shaving and load shifting, vendors and project developers must align product offerings with the operational profiles and regulatory landscapes of each use case.

Examining Key Regional Dynamics and Growth Drivers Shaping the Battery-Integrated Inverter Market Across Americas, Europe, Middle East & Africa, and Asia-Pacific

In the Americas, mature regulatory frameworks and incentive programs have spurred significant uptake of battery-integrated inverters across residential and commercial markets. Federal and state-level policies supporting renewable deployment, alongside utility-driven demand response initiatives, have propelled the integration of storage systems into solar arrays and microgrids. North America's well-developed supply chains and localized manufacturing footprint have enabled rapid project timelines and competitive price structures, while Latin American markets are increasingly exploring off-grid and decentralized solutions to address grid reliability challenges in rural areas. The dynamic interplay of policy incentives and growing customer awareness continues to drive diverse application scenarios throughout the region.

Across Europe, the Middle East, and Africa, a mosaic of regulatory regimes and grid infrastructures has given rise to differentiated growth trajectories. European countries with ambitious carbon reduction targets and robust feed-in mechanisms have embraced battery-integrated inverters as tools for enhancing self-consumption and grid stabilization. In the Middle East and Africa, interest in standalone power systems is accelerating, particularly for remote industrial operations, telecommunications towers, and rural electrification projects. Regional utilities are also piloting virtual power plant schemes that leverage distributed energy assets, creating opportunities for integrated inverter solutions to contribute to grid flexibility and resilience.

The Asia-Pacific region represents a high-growth frontier for battery-integrated inverter adoption, driven by rapid industrialization, urbanization, and ambitious renewables expansion plans. China and India, as leading solar markets, are extending their focus to paired storage solutions, with domestic manufacturers scaling production to meet domestic and export demand. In Southeast Asia, microgrid projects for island and off-grid communities are gaining traction, buoyed by international development funding and public-private partnerships. Australia's policy environment and high residential solar penetration have likewise fostered a robust market for integrated systems that support both self-sufficiency and grid services.

Highlighting Competitive Landscape Trends and Strategic Movements of Leading Battery-Integrated Inverter Manufacturers in a Global Arena

The competitive landscape for battery-integrated inverters is characterized by a mix of specialized power electronics manufacturers and vertically integrated conglomerates with deep expertise in energy storage. Leading incumbents have leveraged large-scale production capabilities and global distribution networks to capture key accounts in utility-scale and commercial segments, while emerging challengers have focused on modular designs and software-driven value propositions to differentiate their offerings. Strategic investments in research and development have become a central battleground, as companies race to enhance inverter efficiency, connectivity, and safety features to meet the stringent requirements of modern energy systems.

Partnerships between inverter vendors, battery cell producers, and software developers are proliferating, often manifesting in joint ventures that bundle complementary strengths into cohesive solution sets. Mergers and acquisitions have accelerated as well, with several major players acquiring smaller technology firms to broaden their product portfolios and accelerate time to market. In parallel, collaborations with academic institutions and government research laboratories are fostering breakthroughs in advanced materials and control algorithms, further elevating the competitive bar and reshaping the innovation landscape.

To maintain a competitive edge, companies are increasingly prioritizing customer-centric services, including remote monitoring, predictive maintenance, and performance analytics delivered through cloud-based platforms. Differentiation strategies also extend to modular hardware architectures that facilitate rapid scaling and integration of new battery chemistries. As market pressures intensify, the ability of firms to align operational agility with strategic partnerships and technology roadmaps will be a defining factor in capturing emerging growth opportunities and asserting market leadership.

Empowering Industry Leaders with Targeted Strategic Recommendations to Capitalize on Emerging Opportunities and Mitigate Market Challenges

To capitalize on the evolving battery-integrated inverter landscape, industry leaders should allocate increased resources to research and development efforts focused on advanced power electronics, novel battery chemistries, and integrated control software. Establishing strategic partnerships with component manufacturers, academic institutions, and software innovators can accelerate time to market for next-generation platforms. Moreover, investing in modular hardware and open architecture designs will enable seamless integration of emerging technologies and facilitate rapid scalability across diverse application segments.

Diversifying supply chains and expanding local manufacturing footprints are essential steps for mitigating the impact of trade barriers and fluctuating commodity prices. By forging closer relationships with regional suppliers and exploring alternative sourcing strategies, companies can enhance supply chain resilience and reduce lead times. In parallel, adopting lean manufacturing practices and advanced digital manufacturing techniques, such as additive production and automated quality assurance, will drive down production costs and strengthen competitiveness.

Engagement with policymakers, industry associations, and standardization bodies is critical to shaping favorable regulatory environments and tariff frameworks. Proactive participation in stakeholder forums and pilot projects can help define technical standards and incentive schemes that support large-scale deployment of integrated inverter systems. Finally, embracing data-driven service models-such as remote performance monitoring, predictive maintenance, and energy optimization analytics-will unlock new revenue streams and deepen customer relationships while reinforcing the value proposition of integrated energy solutions.

Detailing the Rigorous Research Methodology Underpinning In-Depth Analysis of the Battery-Integrated Inverter Landscape for Enhanced Transparency and Data Integrity

This report is grounded in a robust research methodology that integrates both primary and secondary data sources to ensure analytical rigor and comprehensive coverage of the battery-integrated inverter market. Secondary research involved systematic review of industry publications, technical whitepapers, regulatory filings, and trade association reports to establish foundational market context and identify prevailing trends. Primary research encompassed in-depth interviews with senior executives, product managers, and technical experts spanning inverter manufacturers, battery suppliers, project developers, and policy analysts in key geographies. Insights gleaned from these conversations were triangulated with quantitative data points to enhance validity and uncover nuanced perspectives on market drivers and barriers.

Data synthesis and validation processes employed rigorous cross-verification techniques, including consistency checks across disparate data sets and historical trend analysis to detect anomalies. Market segmentation assumptions were refined through scenario modeling and sensitivity analysis, allowing for a granular breakdown of performance characteristics and adoption dynamics. The resulting analytical framework supports a holistic view of the ecosystem-from technology evolution and regulatory influences to competitive positioning and regional growth patterns. Quality assurance procedures, including peer reviews and expert consultations, further reinforce the credibility and reliability of the findings presented in this document.

Synthesizing Key Insights to Chart a Strategic Roadmap for Sustainable Growth in the Evolving Battery-Integrated Inverter Sector

The evolving battery-integrated inverter market represents a transformative juncture in the convergence of energy storage and power conversion technologies. As digitalization, policy support, and performance innovations converge, these integrated systems are poised to deliver unprecedented levels of grid flexibility, operational resilience, and cost efficiency across all end-use segments. Stakeholders who embrace a holistic, data-driven approach to product development and deployment will be best positioned to capture the full spectrum of emerging opportunities.

Critical success factors include agile supply chain management, strategic partnerships, and proactive engagement with regulatory bodies to shape favorable market frameworks. Additionally, a relentless focus on advancing hardware modularity, software intelligence, and sustainable materials will serve as the foundation for differentiation in a competitive landscape. The interplay between decentralized energy assets and centralized grid services underscores the importance of interoperable platforms that can seamlessly adapt to evolving system architectures.

In charting a strategic roadmap, decision-makers must balance near-term operational imperatives with long-term technology investments, ensuring that integrated inverter solutions remain aligned with overarching sustainability and decarbonization objectives. By leveraging the insights and recommendations detailed in this summary, organizations can forge resilient strategies that navigate market uncertainties and deliver tangible value to customers and investors alike.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising deployment of lithium iron phosphate batteries in inverter systems for enhanced safety and cycle life
  • 5.2. Integration of AI-powered energy management algorithms within inverters to optimize residential load balancing
  • 5.3. Adoption of second-life electric vehicle battery packs in residential inverter modules for cost reduction
  • 5.4. Development of modular, stackable battery inverter units scalable for commercial and microgrid applications
  • 5.5. Incorporation of vehicle-to-grid and vehicle-to-home capabilities in hybrid inverter designs for flexibility
  • 5.6. Enhanced grid resiliency through inverter systems with advanced fast-charging and power boost features
  • 5.7. Expansion of IoT-enabled monitoring and remote diagnostics platforms for proactive inverter maintenance
  • 5.8. Regulatory incentives and dynamic net metering policies accelerating solar-plus-storage inverter installations
  • 5.9. Growth of off-grid solar microgrids in emerging markets driven by affordable battery-integrated inverters
  • 5.10. Integration of bi-directional DC coupling in inverter systems to improve overall system efficiency and lifespan

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Battery-Integrated Inverters Market, by Type

  • 8.1. Introduction
  • 8.2. Single-Phase Battery-Integrated Inverters
  • 8.3. Three-Phase Battery-Integrated Inverters

9. Battery-Integrated Inverters Market, by Battery Chemistry

  • 9.1. Introduction
  • 9.2. Lead Acid Battery
    • 9.2.1. Flooded
    • 9.2.2. VRLA
  • 9.3. Lithium Ion Battery
    • 9.3.1. Lithium Iron Phosphate
    • 9.3.2. Lithium Nickel Cobalt Aluminum Oxide
    • 9.3.3. Lithium Nickel Manganese Cobalt
  • 9.4. Nickel-Cadmium Battery

10. Battery-Integrated Inverters Market, by Inverter Topology

  • 10.1. Introduction
  • 10.2. Central
  • 10.3. Micro
  • 10.4. String

11. Battery-Integrated Inverters Market, by Capacity Range

  • 11.1. Introduction
  • 11.2. 100-500 kW
  • 11.3. Above 500 kW
  • 11.4. Below 100 kW

12. Battery-Integrated Inverters Market, by Installation Type

  • 12.1. Introduction
  • 12.2. Off Grid
  • 12.3. On Grid

13. Battery-Integrated Inverters Market, by Application

  • 13.1. Introduction
  • 13.2. Commercial
  • 13.3. Industrial
  • 13.4. Residential
  • 13.5. Utility

14. Americas Battery-Integrated Inverters Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Battery-Integrated Inverters Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Battery-Integrated Inverters Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Alpha ESS Co., Ltd.
    • 17.3.2. Blue Planet Energy Systems LLC
    • 17.3.3. Ampere Energy, S.L.
    • 17.3.4. Bosch Power Tec GmbH
    • 17.3.5. Delta Electronics, Inc.
    • 17.3.6. Eguana Technologies Inc.
    • 17.3.7. Enphase Energy, Inc.
    • 17.3.8. FIMER S.p.A.
    • 17.3.9. Ginlong Technologies Co., Ltd. (Solis)
    • 17.3.10. GoodWe Technologies Co., Ltd.
    • 17.3.11. Growatt New Energy Technology Co., Ltd.
    • 17.3.12. Huawei Technologies Co., Ltd.
    • 17.3.13. Hybrid Power Solutions Inc.
    • 17.3.14. KACO new energy GmbH
    • 17.3.15. Midnite Solar, Inc.
    • 17.3.16. Northern Electric Power Technology Inc.
    • 17.3.17. OutBack Power Technologies, Inc.
    • 17.3.18. Portable Solar, LLC
    • 17.3.19. Pylon Technologies Co., Ltd.
    • 17.3.20. Redback Technologies Pty Ltd.
    • 17.3.21. Schneider Electric Solar Inverters USA, Inc.
    • 17.3.22. SENEC GmbH
    • 17.3.23. Shenzhen Lux Power Technology Co., Ltd.
    • 17.3.24. SMA Solar Technology AG
    • 17.3.25. SolarEdge Technologies, Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦