½ÃÀ庸°í¼­
»óǰÄÚµå
1809882

°ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : Á¦Ç° À¯Çü, ¹è¾ç À¯Çü, µ¿ÀÛ ¸ðµå, ¿ë·®, Àç·á, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Perfusion Bioreactors Market by Product Type, Culture Type, Mode of Operation, Capacity, Material, Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

°ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀåÀº 2024³â 1¾ï 5,307¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 1¾ï 6,419¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 7.51%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 3,648¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 1¾ï 5,307¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 1¾ï 6,419¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 2¾ï 3,648¸¸ ´Þ·¯
CAGR(%) 7.51%

Â÷¼¼´ë ¿¬¼Ó ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º È¿À²À» °¡´ÉÇÏ°Ô ÇÏ´Â °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒ¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.

¹ÙÀÌ¿ÀÀǾàǰ°ú Á¤¹ÐÄ¡·á¿¡ ´ëÇÑ ¼ö¿äÀÇ °¡¼ÓÈ­¿¡ ÈûÀÔ¾î Áö³­ ¼ö½Ê³âµ¿¾È Àü ¼¼°è ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ȯ°æÀº Å©°Ô º¯È­ÇØ ¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­ÀÇ Á߽ɿ¡´Â °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ ±Þ¼ÓÇÑ Ã¤ÅÃÀÌ ÀÖ½À´Ï´Ù. °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍ´Â Áö¼ÓÀûÀÎ ¿µ¾ç °ø±Þ°ú Æó±â¹° Á¦°Å¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ¼¼Æ÷ÀÇ »ýÁ¸À²À» ÃÖÀûÈ­Çϰí Á¦Ç° ¼öÀ²À» ±Ø´ëÈ­ÇÕ´Ï´Ù. Ãֽаü·ù½Ã½ºÅÛÀº ´ÜŬ·Ð Ç×ü »ý»ê, À¯ÀüÀÚ Ä¡·á, ÀçÁ¶ÇÕ ´Ü¹éÁú, ¹é½Å °³¹ß µî ÁÖ¿ä ÀÀ¿ë ºÐ¾ß¸¦ Áö¿øÇϸç, ¾÷°è°¡ ´õ ³ôÀº È¿À²¼º°ú °øÁ¤ Á¦¾î¸¦ Ãß±¸Çϰí ÀÖÀ½À» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.

µðÁöÅÐ ÅëÇÕ ÆÄÆ®³Ê½Ê°ú ÀÏȸ¿ë °ü·ù Çõ½ÅÀ¸·Î ¿¬¼Ó ¹ÙÀÌ¿À Á¦Á¦ Á¦Á¶¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.

ÃÖ±Ù °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ±â¼úÀº Æ´»õ ¿¬¼Ó ¹è¾ç ¼Ö·ç¼Ç¿¡¼­ °í󸮷® »ý¹°ÇÐÀû Á¦Á¦ »ý»ê¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¼¼Æ÷ À¯Áö ÀåÄ¡ ¹× ÅëÇÕµÈ ÀζóÀÎ ºÐ¼® µµ±¸¿Í °°Àº ±â¼úÀû °­È­´Â °øÁ¤ ¼³°è ¿öÅ©Ç÷ο츦 À籸¼ºÇÏ°í ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ±× °á°ú, ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϰí, Á¦Ç°ÀÇ Àϰü¼ºÀ» ³ôÀ̰í, ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­Çϱâ À§ÇØ Á¦Á¶¾÷ü´Â Á¡Á¡ ´õ °­È­µÈ ÇÁ·Î¼¼½º¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í±Þ°øÁ¤Á¦¾î(APC), ¸Ó½Å·¯´× ¾Ë°í¸®Áò, Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ °ü¸® µî µðÁöÅÐ Çõ½Å ÀÌ´Ï¼ÅÆ¼ºêÀÇ À¶ÇÕÀº ¿¹Áöº¸Àü°ú °øÁ¤ ÃÖÀûÈ­¸¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕ Ç÷§ÆûÀº ½Ç½Ã°£ Á¶Á¤À» ÅëÇØ ÇÁ·Î¼¼½º ÆíÂ÷¸¦ ÁÙÀ̰í Àüü ¿î¿µÀÇ Åº·Â¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ Á¶Á¤À¸·Î °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍ ºÎǰ Á¶´Þ Àü·« À籸Ãà, Á¶´ÞÀÇ º¹À⼺ Áõ´ë

2025³â, ¹Ì±¹ÀÇ °ü¼¼ °³Á¤ Á¶Ä¡ÀÇ µµÀÔÀ¸·Î °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ Á¶´Þ ¹× °ø±Þ¸Á °ü¸®¿¡ º¹À⼺°ú ºñ¿ë¿¡ ´ëÇÑ °í·Á»çÇ×ÀÌ µµÀԵǾú½À´Ï´Ù. ÀÌ·¯ÇÑ °ü¼¼´Â ÁÖ¿ä ¼öÃâ Áö¿ª¿¡¼­ Á¶´ÞµÇ´Â ƯÁ¤ ºÎǰ ¹× ¿øÀÚÀç¿¡ ºÎ°úµÇ±â ¶§¹®¿¡ ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ÀÌÇØ°ü°èÀÚµéÀº Á¶´Þ Àü·«°ú Àç°í °èȹÀ» Àç°ËÅäÇØ¾ß ÇÕ´Ï´Ù. ƯÈ÷ ½ºÅ×Àθ®½º ÇÊÅÍ, °íÁ¤¹Ð ¼¾¼­, °íºÐÀÚ Æ©ºê µî ÀϺΠǰ¸ñÀÇ °ü¼¼°¡ ÀλóµÇ°í, »ó·ú ºñ¿ëÀÌ »ó½ÂÇÔ¿¡ µû¶ó ±â¾÷Àº ´ëü °ø±Þ¾÷ü¸¦ Æò°¡Çϰųª °æ¿ì¿¡ µû¶ó¼­´Â °ü¼¼ ¸éÁ¦ Àç·á¸¦ »ç¿ëÇϵµ·Ï ¼³°è¸¦ º¯°æÇØ¾ß ÇÕ´Ï´Ù.

Á¦Ç° À¯Çü, ¹è¾ç ¸ðµå, ¿ë·®, Àç·á »ç¿ë, ÃÖÁ¾ »ç¿ëÀÚ ¿ªÇп¡ °ÉÄ£ ½ÃÀåÀÇ Áß¿äÇÑ ´µ¾Ó½º¸¦ ¹àÈü´Ï´Ù.

°ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ »óȲÀ» ÅëÂû·Â ÀÖ°Ô ¼¼ºÐÈ­Çϸé Á¦Ç° À¯Çü, ¹è¾ç À¯Çü, ¿îÀü ¸ðµå, ¿ë·®, Àç·á ±¸¼º, ÀÀ¿ë ½ºÆåÆ®·³, ÃÖÁ¾ »ç¿ëÀÚ¿¡ °ÉÄ£ ¹Ì¹¦ÇÑ ÃËÁø¿äÀÎÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° À¯Çü¿¡ µû¶ó Â÷º°È­µÇ´Â ½Ã½ºÅÛÀº ´ë±Ô¸ð ½Ã¼³¿¡¼­ °ËÁõÀ» °¡¼ÓÈ­Çϵµ·Ï ¼³°èµÈ °ß°íÇÑ ´Ù¿ëµµ Ç÷§ÆûºÎÅÍ ½Å¼ÓÇÑ Àüȯ°ú ¼¼Ã´ ¿ä±¸ »çÇ×À» ÁÙÀÏ ¼ö ÀÖ´Â À¯¿¬ÇÑ ´ÜÀÏ »ç¿ë ÀåÄ¡±îÁö ´Ù¾çÇÕ´Ï´Ù. ¹è¾ç À¯Çü¿¡¼­´Â µ¿¹° ¼¼Æ÷¹è¾çÀÌ ´ÜÀÏŬ·ÐÇ×ü »ý»êÀÇ Áß½ÉÀûÀÎ ¿ªÇÒ·Î ÀÎÇØ ¿ìÀ§¸¦ Á¡Çϰí ÀÖÁö¸¸, ¹Ì»ý¹° ¼¼Æ÷¹è¾ç°ú ½Ä¹° ¼¼Æ÷¹è¾ç ºÐ¾ß´Â ÇÕ¼º»ý¹°ÇÐÀÇ ¹ßÀü°ú ½Ä¹° À¯·¡ ¹é½Å ±¸»ó¿¡ ÈûÀÔ¾î °è¼Ó ¼º¼÷ÇØ °¡°í ÀÖ½À´Ï´Ù.

°ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ±â¼ú Çõ½Å ±ÔÁ¦ÀÇ Áö¼Ó°¡´É¼º°ú ºñ¿ë ¾Ð·ÂÀÌ °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â Áö¿ªÀû ¿ªÇÐ ºÐ¼®

°ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ Áö¸®Àû µ¿ÇâÀº Áö¿ª¸¶´Ù ´Ù¸¥ ¿ì¼±¼øÀ§¿Í ±â¼ú Çõ½ÅÀÇ ÃßÁø·ÂÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÷´Ü ¹ÙÀÌ¿ÀÀǾàǰ ÆÄÀÌÇÁ¶óÀΰú Ä¡·áÁ¦ »ó¿ëÈ­¸¦ °¡¼ÓÈ­ÇÏ´Â Á¦Á¶ À§Å¹±â°üµéÀÇ ÅºÅºÇÑ ³×Æ®¿öÅ©°¡ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Â÷¼¼´ë »ý¹°ÇÐÀû Á¦Á¦¿¡ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ °í¹Ðµµ °ü·ù Àü·«°ú µðÁöÅÐ °øÁ¤ Á¦¾î¿¡ ´ëÇÑ ÅõÀÚ°¡ Ȱ¹ßÇÕ´Ï´Ù. ¹Ý´ë·Î À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«¿¡¼­´Â ÀüÅëÀûÀÎ ½ºÅ×Àθ®½º ½ºÆ¿ ½Ã¼³°ú ½ÅÈï ÀÏȸ¿ë ¿¡ÄڽýºÅÛÀÌ °øÁ¸ÇÏ´Â ´Ù¾çÇÑ »óȲÀ» º¼ ¼ö ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)ÀÇ Á¤ºÎ Áö¿ø ÀÌ´Ï¼ÅÆ¼ºê´Â Áö¼Ó °¡´ÉÇÑ Á¦Á¶ °üÇà°ú ¼øÈ¯ °æÁ¦ ¿øÄ¢À» °­Á¶Çϸç Àç»ç¿ë °¡´ÉÇÑ ¼¾¼­ ¸ðµâ°ú ģȯ°æ ¼ÒÀç¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

ÁÖ¿ä °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍ Á¦Á¶¾÷üµéÀÌ µðÁöÅÐ ÆÄÆ®³Ê½Ê, Áö¼Ó°¡´É¼º, ¼­ºñ½º ¸ðµ¨À» ÅëÇØ ¾î¶»°Ô Â÷º°È­¸¦ ²ÒÇϰí ÀÖ´ÂÁö »ìÆìº¾´Ï´Ù.

°ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍ ºÐ¾ßÀÇ ÁÖ¿ä ±â¾÷µéÀº Á¦Ç° Çõ½Å, Àü·«Àû Á¦ÈÞ, ¼­ºñ½º ¸ðµ¨¿¡¼­ Â÷º°È­ Àü·«À» º¸À̰í ÀÖ½À´Ï´Ù. ±âÁ¸ ¾÷°è ¸®´õµéÀº ´Ù¾çÇÑ ½ºÄÉÀϰú ÀÚµ¿ Á¦¾î ±â´ÉÀ» Áö¿øÇÏ´Â ¸ðµâ½Ä Ç÷§ÆûÀ» ÅëÇØ Æ÷Æ®Æú¸®¿À¸¦ Áö¼ÓÀûÀ¸·Î È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±âÁ¸ ±â¾÷µéÀº ¼¼°è ÆÇ¸Å ¹× ¼­ºñ½º ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© ½Å¼ÓÇÑ ±¸Ãà°ú Áö¿ª ¹ÐÂøÇü ±â¼ú Áö¿øÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²², »õ·Î¿î °úÁ¦´Â ÇÏÀ̽º·çDz ½ºÅ©¸®´× ¹× ¸ÂÃãÇü ¼¼Æ÷Ä¡·á °øÁ¤°ú °°Àº Æ´»õ ¿ëµµ¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, Çмú ±â°ü ¹× Àü¹® CMO¿Í Çù·ÂÇÏ¿© »õ·Î¿î ¿öÅ©Ç÷ο츦 °ËÁõÇϰí ÀÖ½À´Ï´Ù.

µðÁöÅÐ ÅõÀÚ ¹× °ø±Þ ´Ù°¢È­, ¸ðµâ ½Ä ÀÏȸ¿ë ¼Ö·ç¼ÇÀÇ ±ÕÇü ÀâÈù Àü·« ±¸Çö, °ü·ù ¿ìÀ§ ±Ø´ëÈ­

¾÷°è ¸®´õµéÀº ÁøÈ­ÇÏ´Â °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍÀÇ ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ´Ù°¢ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, µðÁöÅÐ °øÁ¤ Á¦¾î ¹× °í±Þ ¸ð´ÏÅ͸µ µµ±¸¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ´Â °øÁ¤ÀÇ °ß°í¼º°ú ¼öÀ²ÀÇ Àϰü¼ºÀ» °­È­ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Á¶Á÷Àº ¿¹Áöº¸Àü°ú ÇÁ·Î¼¼½º ÃÖÀûÈ­¸¦ À§ÇÑ ¸Ó½Å·¯´×À» Ȱ¿ëÇϱâ À§ÇØ µ¥ÀÌÅÍ ºÐ¼® Á¦°ø¾÷ü¿ÍÀÇ Á¦ÈÞ¸¦ ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ´Ï¾î¼î¾î¸µ°ú ¸ÖƼ¼Ò½Ì Àü·«À» ÅëÇÑ °ø±Þ¸Á ´Ùº¯È­´Â °ü¼¼ ³ëÃâ°ú °ø±Þ¸Á È¥¶õÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

Àü¹®°¡ ÀÎÅͺä¿Í 2Â÷ ºÐ¼®, ½Å·ÚÇÒ ¼ö ÀÖ´Â ÅëÂû·ÂÀ» À§ÇÑ µ¥ÀÌÅÍ °ËÁõÀ» ÅëÇÕÇÑ °­·ÂÇÑ Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¸¼¼¿ä.

º» Á¶»ç¹æ¹ýÀº ¾÷°è Àü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÑ 1Â÷ ¼³¹®Á¶»ç¿Í 2Â÷ ¹®ÇåÁ¶»ç, ±×¸®°í ¾ö°ÝÇÑ µ¥ÀÌÅÍ »ï°¢Ãø·®À» °áÇÕÇÑ Á¾ÇÕÀûÀÎ ¹æ¹ýÀ» äÅÃÇß½À´Ï´Ù. ÁÖ¿ä ±â¼ú ¹ßÀü, ±ÔÁ¦ º¯È­, ½ÃÀå °³Ã´ ÆÐÅÏ, ÇмúÁö, ȸÀÇ·Ï, ƯÇã Ãâ¿ø µî ±¤¹üÀ§ÇÑ °ËÅ並 ÅëÇØ ÁÖ¿ä ±â¼ú °³¹ß, ±ÔÁ¦ º¯È­, ½ÃÀå °³Ã´ ÆÐÅÏÀ» ¸ÅÇÎÇß½À´Ï´Ù. ¹ÙÀÌ¿ÀÁ¦¾à, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö, À§Å¹»ý»ê Á¶Á÷ÀÇ R&D ¸®´õ, ÇÁ·Î¼¼½º ¿£Áö´Ï¾î, Á¶´Þ ´ã´ç ÀÓ¿ø°úÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ 1Â÷ÀûÀÎ ÅëÂû·ÂÀ» ¾ò¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Åä·ÐÀ» ÅëÇØ äÅà ÃËÁø¿äÀÎ, ±â¼úÀû Àå¾Ö¹°, Àü·«Àû ¿ì¼±¼øÀ§¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ °üÁ¡À» ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù.

°ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅͰ¡ Çõ½ÅÀÇ È®À强°ú Áö¼Ó°¡´É¼ºÀÇ ±ÕÇüÀ» ÅëÇØ °ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅͰ¡ ¹Ì·¡ÀÇ ¹ÙÀÌ¿ÀÇÁ·Î¼¼½ºÀ» ¾î¶»°Ô Á¤ÀÇÇÒ °ÍÀÎÁö¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ °íÂû

°ü·ùÇü ¹ÙÀÌ¿À¸®¾×ÅÍ ºÐ¾ß´Â ±â¼ú Çõ½Å, ±ÔÁ¦ ÁøÈ­, ½ÃÀå ¼¼·ÂÀÇ º¯È­¶ó´Â ¸Å¿ì Áß¿äÇÑ ±³Â÷Á¡¿¡ ¼­ ÀÖ½À´Ï´Ù. ¿¬¼Ó °¡°øÀÌ ´ëÁßÈ­µÊ¿¡ µû¶ó Á¦Á¶¾÷ü´Â °ü¼¼ÀÇ º¹À⼺, °ø±Þ¸ÁÀÇ Ãë¾à¼º, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ¿¡ ´ëÀÀÇØ¾ß ÇÕ´Ï´Ù. ¼¼ºÐÈ­ ºÐ¼® °á°ú, °í¹Ðµµ µ¿¹° ¼¼Æ÷ ¹è¾ç¿¡¼­ Ư¼ö ¹Ì»ý¹° ¹× ½Ä¹° ¼¼Æ÷ ¿ëµµ¿¡ À̸£±â±îÁö ÃÖÁ¾ »ç¿ëÀÚÀÇ ¿ä±¸°¡ ´Ù¾çÇÏ´Ù´Â »ç½ÇÀÌ ¹àÇôÁ³À¸¸ç, ÀÌ´Â ¸ÂÃãÇü Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Áö¿ªº°·Î´Â ¹ÌÁÖ ´ë·úÀÌ Ã·´Ü ¹ÙÀÌ¿À ÀǾàǰÀ» ¼±µµÇϰí, EMEA´Â ģȯ°æ Á¦Á¶¸¦ ¿ì¼±½ÃÇϸç, ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ´ë·® »ý»êÀÇ Çãºê·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : Á¦Ç° À¯Çüº°

  • ´Ù¿ëµµ °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ
  • ÀÏȸ¿ë °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ

Á¦9Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : ¹è¾ç À¯Çüº°

  • µ¿¹°¼¼Æ÷ ¹è¾ç
  • ¹Ì»ý¹° ¼¼Æ÷¹è¾ç
  • ½Ä¹°¼¼Æ÷ ¹è¾ç

Á¦10Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : ¿î¿µ ¸ðµåº°

  • Batch
  • Continuous Perfusion
  • Fed-batch

Á¦11Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : ¿ë·®º°

  • 10-50¸®ÅÍ
  • 50-100¸®ÅÍ
  • 10¸®ÅÍ ¹Ì¸¸
  • 100¸®ÅÍ ÀÌ»ó

Á¦12Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : Àç·áº°

  • À¯¸®
  • ÇÃ¶ó½ºÆ½
  • ½ºÅ×Àθ®½º ½ºÆ¿

Á¦13Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : ¿ëµµº°

  • À¯ÀüÀÚ Ä¡·á
  • ´ÜÀÏŬ·ÐÇ×ü
  • ÀçÁ¶ÇÕ ´Ü¹éÁú »ý»ê
  • Áٱ⼼Æ÷ ¿ä¹ý
    • ¼ºÃ¼ Áٱ⼼Æ÷
    • ¹è¼º Áٱ⼼Æ÷
    • À¯µµ ´Ù´É¼º Áٱ⼼Æ÷
    • Àç»ýÀÇ·á
  • ¹é½Å

Á¦14Àå °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¹ÙÀÌ¿ÀÀǾàǰ ±â¾÷
  • ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ¼öŹ Á¦Á¶ Á¶Á÷
  • ¿¬±¸±â°ü

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °ü·ù ¹ÙÀÌ¿À¸®¾×ÅÍ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • CELLEC BIOTEK AG
    • INFROS HT
    • 3D Biotek LLC
    • bbi-biotech GmbH
    • Cell Culture Company, LLC.
    • Colder Products Company
    • Cytiva by Danaher Corporation
    • FiberCell Systems Inc
    • Merck KGaA
    • Nanjing BioPAS Pharmaceutical Equipment Co.
    • PBS Biotech, Inc.
    • Sartorius AG
    • SYNTHECON, INCORPORATED
    • TA Instruments
    • Zellwerk GmbH

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH 25.09.22

The Perfusion Bioreactors Market was valued at USD 153.07 million in 2024 and is projected to grow to USD 164.19 million in 2025, with a CAGR of 7.51%, reaching USD 236.48 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 153.07 million
Estimated Year [2025] USD 164.19 million
Forecast Year [2030] USD 236.48 million
CAGR (%) 7.51%

Exploring the pivotal role of perfusion bioreactors in enabling next-generation continuous bioprocessing efficiencies

The global bioprocessing landscape has undergone a remarkable transformation over the past decades, driven by accelerating demand for biologics and precision therapies. Central to this evolution is the rapid adoption of perfusion bioreactors, which enable continuous nutrient supply and waste removal, thereby optimizing cell viability and maximizing product yield. Modern perfusion systems support key applications across monoclonal antibody production, gene therapies, recombinant proteins, and vaccine development, reflecting the industry's pursuit of higher efficiency and greater process control.

As organizations adapt to rising complexity in cell culture, perfusion bioreactors have emerged as critical platforms for enhancing productivity and scalability. Unlike traditional batch or fed-batch systems, perfusion fosters steady-state conditions that mitigate downstream variability and yield fluctuations. Subsequently, this approach facilitates consistent quality attributes essential for regulatory compliance and patient safety. Moreover, advances in sensor integration, automation, and data analytics have converged with perfusion technologies to deliver real-time monitoring and predictive process management, setting new standards for operational excellence.

Looking ahead, the intersection of intensified cell culture demands and continuous processing paradigms positions perfusion bioreactors at the forefront of next-generation biomanufacturing. With expectations for rising biologics pipelines and complex therapeutic modalities, perfusion systems are poised to address critical industry imperatives: accelerating time to clinic, reducing production footprints, and driving cost-effective scalability. This introduction sets the stage for an executive exploration of the strategic dynamics reshaping the perfusion bioreactor market.

Revolutionizing continuous biologics manufacturing through digital integration partnerships and single-use perfusion innovations

Over recent years, perfusion bioreactor technology has transitioned from a niche continuous culture solution into an indispensable cornerstone of high-throughput biologics manufacturing. Technological enhancements, such as advanced cell retention devices and integrated inline analytical tools, have reshaped process design workflows, enabling seamless data-driven decision making. As a result, manufacturers increasingly embrace intensified processing to meet strict regulatory requirements, heighten product consistency, and optimize resource utilization. Moreover, the convergence of digital transformation initiatives-including advanced process control, machine learning algorithms, and cloud-based data management-facilitates predictive maintenance and process optimization. Such integrated platforms allow real-time adjustments that reduce process deviations and enhance overall operational resilience.

Concurrently, strategic partnerships between instrument developers and contract manufacturing organizations have accelerated technology transfer and process scale-up. This collaborative ecosystem fosters rapid commercialization of novel therapies by streamlining scale-down modeling and tech-transfer protocols. In turn, end users benefit from accelerated time to market and reduced technology risk. Furthermore, emerging cell and gene therapies, particularly those requiring high-density cultures, highlight perfusion systems' unique capacity for maintaining cell viability and productivity over extended runs. As a result, the landscape is shifting toward modular, single-use architectures that ensure flexibility, minimize cleaning validation burdens, and support rapid campaign change-over.

These transformative shifts underscore the industry's collective drive for continuous improvement, enhanced agility, and sustainable manufacturing paradigms. Ultimately, perfusion bioreactors stand at the nexus of innovation and operational excellence, redefining how biologics are produced at scale.

Navigating heightened procurement complexity as 2025 U.S. tariff adjustments reshape sourcing strategies for perfusion bioreactor components

In 2025, the introduction of revised United States tariff measures has introduced complexity and cost considerations for perfusion bioreactor procurement and supply chain management. These tariffs, levied on selected components and raw materials sourced from key exporting regions, have prompted bioprocessing stakeholders to reevaluate sourcing strategies and inventory planning. Notably, increased duties on stainless steel filters, high-precision sensors, and certain polymeric tubing segments have elevated landed costs, compelling organizations to assess alternative suppliers or in some cases, reconfigure designs to utilize tariff-exempt materials.

In response, several leading manufacturers have leveraged near-shoring strategies and expanded regional production footprints to circumvent tariff impacts. By establishing localized manufacturing hubs closer to primary consumer markets, these players maintain competitive pricing while mitigating supply chain disruptions. At the same time, the imperative for compliance with evolving trade regulations has accelerated investments in supply chain analytics and tariff classification tools. These capabilities provide real-time visibility into duty liabilities and support rapid scenario modeling, enabling procurement teams to optimize order timing, mode of transport, and supplier selection.

As a result of these cumulative tariff pressures, end users are witnessing tighter margin environments and greater emphasis on total cost of ownership analyses. Consequently, cost mitigation strategies-such as component standardization, yield improvement initiatives, and strategic long-term supplier agreements-are gaining traction. Moving forward, the interplay between tariff dynamics and global procurement will shape vendor relationships and inform investment decisions across R&D, manufacturing scale-up, and capital equipment acquisition in the perfusion bioreactor domain.

Uncovering critical market nuances across product type culture type mode capacity material application and end user dynamics

Insightful segmentation of the perfusion bioreactor landscape reveals nuanced drivers across product type, culture type, mode of operation, capacity, material composition, application spectrum, and end user. Systems differentiated by product type range from robust multi-use platforms designed for accelerated validation in large-scale facilities to flexible single-use units enabling rapid changeover and reduced cleaning requirements. In culture type, animal cell culture dominates due to its central role in monoclonal antibody production, while microbial and plant cell culture segments continue to mature, fueled by synthetic biology advances and plant-based vaccine initiatives.

Operational mode segmentation highlights the merits of batch, continuous perfusion, and fed-batch approaches. Although fed-batch remains prevalent for established processes, continuous perfusion's superior volumetric productivity is driving its adoption, particularly in high-value applications. Capacity segmentation underscores that smaller vessel systems below 10 liters serve research institutes and biotech startups, while mid-range capacities of 10 to 100 liters support clinical-stage development. More than 100-liter systems are increasingly sought for commercial-scale production.

In material segmentation, glass and stainless steel maintain footholds in traditional facilities, yet plastic-based disposables have gained momentum due to reduced cross-contamination risk and elimination of cleaning validation. Application segmentation spans gene therapy, monoclonal antibody development, recombinant protein manufacturing, stem cell therapy sub-segments including adult, embryonic, and induced pluripotent stem cells, regenerative medicine, and high-throughput vaccine production. End users range from biopharmaceutical and biotechnology enterprises to CMOs and research institutes, each influencing product feature priorities and service models. Collectively, these segmentation insights illuminate critical market dynamics and guide strategic positioning efforts.

Analyzing regional dynamics where innovation regulation sustainability and cost pressures drive perfusion bioreactor adoption

Geographic trends in the perfusion bioreactor domain are characterized by distinct regional priorities and innovation drivers. In the Americas, demand is propelled by advanced biopharmaceutical pipelines and a robust network of contract manufacturing organizations accelerating therapeutic commercialization. The region's focus on next-generation biologics underscores investments in high-density perfusion strategies and digital process control, while regulatory frameworks encourage continuous processing adoption. Conversely, Europe, Middle East & Africa exhibit a diversified landscape where legacy stainless steel facilities coexist with emerging single-use ecosystems. Government-backed initiatives in the European Union emphasize sustainable manufacturing practices and circular economy principles, driving interest in reusable sensor modules and eco-friendly materials.

Meanwhile, Asia-Pacific has emerged as a dynamic growth engine, underpinned by expanding biotech hubs in China, India, and Australia. Local OEMs and CMOs are rapidly scaling operations to serve both domestic and international markets, and public-private collaborations facilitate technology transfer and capacity expansion. Cost competitiveness and large volumes of clinical trial production further establish the region as a preferred destination for perfusion process scale-up. Collectively, these regional insights reveal a mosaic of strategic imperatives-regulatory drivers, sustainability mandates, and cost-efficiency pressures-that shape regional technology diffusion and roadmap prioritization for perfusion bioreactor stakeholders.

Examining how leading perfusion bioreactor manufacturers leverage digital partnerships sustainability and service models to differentiate

Key players in the perfusion bioreactor arena demonstrate differentiated strategies in product innovation, strategic alliances, and service models. Established industry leaders continue to expand their portfolios through modular platforms supporting multiple scales and automated control features. These incumbents leverage global sales and service networks to ensure rapid deployment and localized technical support. In parallel, emerging challengers focus on niche applications such as high-throughput screening or bespoke cell therapy processes, partnering with academic institutions and specialty CMOs to validate novel workflows.

Collaborations between technology vendors and software providers are intensifying, as integrated digital applications become critical for real-time process monitoring and predictive analytics. Through strategic acquisitions and co-development agreements, companies are embedding advanced sensor arrays, AI-driven modeling tools, and cloud connectivity into their offerings. Moreover, several market participants are extending service portfolios to include training, validation packages, and remote monitoring subscriptions, reflecting a shift toward outcome-based delivery models. This trend enables end users to offload operational complexities and focus on core R&D objectives.

Additionally, sustainability has emerged as a differentiator, with some companies introducing recyclable single-use components and energy-efficient hardware designs. These actions resonate with growing environmental stewardship mandates and corporate social responsibility goals. Taken together, the strategic posturing of key market participants underscores an evolutionary phase defined by digital transformation, collaborative ecosystems, and service-oriented business frameworks.

Implementing a balanced strategy of digital investments supply diversification and modular single-use solutions to maximize perfusion advantages

Industry leaders must adopt a multifaceted approach to capitalize on evolving perfusion bioreactor opportunities. First, strategic investments in digital process control and advanced monitoring tools are imperative to bolster process robustness and yield consistency. Organizations should prioritize partnerships with data analytics providers to leverage machine learning for predictive maintenance and process optimization. Moreover, diversification of supplier networks through near-shoring and multi-sourcing strategies will mitigate tariff exposures and supply chain disruptions.

In tandem, companies should invest in modular single-use systems that offer rapid validation cycles and minimize cleaning burdens. This flexibility supports accelerated candidate screening and faster scale-up, catering to both research institutes and CMOs. To drive adoption, cross-functional teams must develop comprehensive training and support programs, ensuring that end users can seamlessly integrate perfusion workflows into existing manufacturing footprints. Additionally, environmental sustainability initiatives, such as recyclable disposables and energy-efficient hardware, will reinforce corporate responsibility and appeal to regulators prioritizing green manufacturing.

Finally, forging co-development alliances with academic, biotech, and software innovators will accelerate novel application development in cell and gene therapies. By positioning themselves at the nexus of collaborative ecosystems, industry leaders can shape future perfusion standards, secure early access to emerging technologies, and strengthen their competitive advantage.

Detailing a robust research framework integrating expert interviews secondary analysis and data validation for dependable insights

This research employs a comprehensive methodology combining primary interviews with industry experts, secondary literature reviews, and rigorous data triangulation. Initial scoping involved mapping key technology developments, regulatory changes, and market adoption patterns through an extensive review of peer-reviewed journals, conference proceedings, and patent filings. Primary insights were captured via structured interviews with senior R&D leaders, process engineers, and procurement executives across biopharmaceutical, biotechnology, and contract manufacturing organizations. These discussions provided nuanced perspectives on adoption drivers, technical hurdles, and strategic priorities.

Subsequently, secondary research complemented primary findings by analyzing publicly available company reports, regulatory agency publications, and financial disclosures. Data points were cross-verified to ensure consistency and accuracy, and a conceptual framework was developed to segment the market by product type, culture type, mode of operation, capacity, material, application, and end user. Additionally, tariff impacts and supply chain dynamics were modeled using trade data and customs filings to quantify cost implications and sourcing adjustments.

Throughout the process, methodological rigor was maintained by validating assumptions and scenario analyses with an expert advisory panel. The resulting insights are designed to equip stakeholders with actionable intelligence for strategic decision making, investment planning, and technology road-mapping in the perfusion bioreactor field.

Synthesis of how perfusion bioreactors will define future bioprocessing by balancing innovation scalability and sustainability

The perfusion bioreactor sector stands at a pivotal intersection of technological innovation, regulatory evolution, and shifting market forces. As continuous processing gains traction, manufacturers must navigate tariff complexities, supply chain vulnerabilities, and rising sustainability expectations. Segmentation analysis underscores diverse end-user requirements-from high-density animal cell culture to specialized microbial and plant cell applications-driving demand for tailored platforms. Regional dynamics reveal distinct adoption patterns, with the Americas leading in advanced biologics, EMEA prioritizing green manufacturing, and Asia-Pacific emerging as a high-volume production hub.

Key players are differentiating through digital integration, service-oriented models, and modular single-use architectures, while collaborative alliances fuel rapid process advancements. To thrive in this competitive landscape, stakeholders should embrace holistic strategies centered on data-driven process control, supply chain resilience, and sustainable design. By aligning technological capabilities with evolving regulatory frameworks and market needs, companies can unlock greater operational efficiencies and secure leadership in next-generation bioprocessing. Ultimately, the future of perfusion bioreactors hinges on the industry's ability to harmonize innovation with scalability, cost-effectiveness, and environmental stewardship.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Expansion of single-use perfusion bioreactors to reduce contamination risks and operational costs
  • 5.2. Regulatory advancements and standardization impacting the commercial adoption of perfusion bioreactor systems
  • 5.3. Innovations in sensor technology enabling deeper insights into perfusion bioreactor cell culture dynamics
  • 5.4. Role of 3D bioprinting combined with perfusion bioreactors in tissue engineering breakthroughs
  • 5.5. Integration of real-time monitoring systems in perfusion bioreactors for improved process control
  • 5.6. Implementation of sustainable and cost-effective practices in perfusion bioreactor production workflows
  • 5.7. Emerging trends in perfusion bioreactors for personalized medicine and cell therapy manufacturing
  • 5.8. Development of novel biomaterials for optimized cell growth in perfusion bioreactor environments
  • 5.9. Shift towards automated and AI-driven perfusion bioreactor operations to increase productivity
  • 5.10. Advancements in microfluidic technologies enhancing perfusion bioreactor efficiency and scalability

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Perfusion Bioreactors Market, by Product Type

  • 8.1. Introduction
  • 8.2. Multi-Use Perfusion Bioreactors
  • 8.3. Single-Use Perfusion Bioreactors

9. Perfusion Bioreactors Market, by Culture Type

  • 9.1. Introduction
  • 9.2. Animal Cell Culture
  • 9.3. Microbial Cell Culture
  • 9.4. Plant Cell Culture

10. Perfusion Bioreactors Market, by Mode of Operation

  • 10.1. Introduction
  • 10.2. Batch
  • 10.3. Continuous Perfusion
  • 10.4. Fed-batch

11. Perfusion Bioreactors Market, by Capacity

  • 11.1. Introduction
  • 11.2. 10-50 Liters
  • 11.3. 50-100 Liters
  • 11.4. Less than 10 Liters
  • 11.5. More than 100 Liters

12. Perfusion Bioreactors Market, by Material

  • 12.1. Introduction
  • 12.2. Glass
  • 12.3. Plastic
  • 12.4. Stainless Steel

13. Perfusion Bioreactors Market, by Application

  • 13.1. Introduction
  • 13.2. Gene Therapy
  • 13.3. Monoclonal Antibodies
  • 13.4. Recombinant Protein Production
  • 13.5. Stem Cell Therapy
    • 13.5.1. Adult Stem Cells
    • 13.5.2. Embryonic Stem Cells
    • 13.5.3. Induced Pluripotent Stem Cells
    • 13.5.4. Regenerative Medicine
  • 13.6. Vaccines

14. Perfusion Bioreactors Market, by End User

  • 14.1. Introduction
  • 14.2. Biopharmaceutical Companies
  • 14.3. Biotechnology Companies
  • 14.4. Contract Manufacturing Organizations
  • 14.5. Research Institutes

15. Americas Perfusion Bioreactors Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Perfusion Bioreactors Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Perfusion Bioreactors Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. CELLEC BIOTEK AG
    • 18.3.2. INFROS HT
    • 18.3.3. 3D Biotek LLC
    • 18.3.4. bbi-biotech GmbH
    • 18.3.5. Cell Culture Company, LLC.
    • 18.3.6. Colder Products Company
    • 18.3.7. Cytiva by Danaher Corporation
    • 18.3.8. FiberCell Systems Inc
    • 18.3.9. Merck KGaA
    • 18.3.10. Nanjing BioPAS Pharmaceutical Equipment Co.
    • 18.3.11. PBS Biotech, Inc.
    • 18.3.12. Sartorius AG
    • 18.3.13. SYNTHECON, INCORPORATED
    • 18.3.14. TA Instruments
    • 18.3.15. Zellwerk GmbH

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦