시장보고서
상품코드
1827136

진공 밸브 시장 : 밸브 유형, 작동 방법, 최종 용도, 재료, 정격 압력별 - 세계 예측(2025-2032년)

Vacuum Valve Market by Valve Type, Actuation Method, End Use, Material, Pressure Rating - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

진공 밸브 시장은 2032년까지 연평균 복합 성장률(CAGR) 9.85%로 40억 8,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 19억 2,000만 달러
추정 연도 : 2025년 21억 1,000만 달러
예측 연도 : 2032년 40억 8,000만 달러
CAGR(%) 9.85%

진공 밸브의 기초, 산업 전반의 이용 사례, 진화하는 기술 우선순위, 전략적 의사결정권자를 위한 조달 고려사항에 대한 권위 있는 입문서

진공 밸브는 첨단 산업, 과학 및 공정 환경의 기본 구성 요소이며, 제어된 분위기와 정밀한 유체 및 기체 취급을 가능하게 하는 중요한 역할을 담당하고 있습니다. 진공 밸브는 기계 설계, 재료 과학 및 작동 공학의 교차점에서 작동하며, 극한의 압력 영역, 오염 민감도 및 규제 제약에 따라 성능 요구 사항이 결정되는 경우가 많습니다. 이러한 밸브는 신뢰성과 재현성, 제조 및 유지보수성의 균형을 유지해야 하며, 밸브의 선택과 사양은 장비 설계자와 플랜트 운영자에게 전략적인 결정이 됩니다.

최근 진공밸브의 역할은 전통적인 제조환경에서 벗어나 고성장을 지속하는 기술집약형 분야로 확대되고 있습니다. 반도체 제조, 첨단 재료 연구, 정밀 기기 등은 그 어느 때보다 높은 수준의 기밀성과 오염 제어를 요구하고 있으며, 밸브 설계는 특수 소재, 정교한 씰 형상, 첨단 액추에이션 솔루션으로 적응해 왔습니다. 동시에 화학, 발전, 석유 및 가스 등 레거시 부문은 운영의 연속성과 안전성이 가장 중요하기 때문에 현장에서 입증된 견고한 밸브 구조에 계속 의존하고 있습니다.

새로운 재료와 작동 방식의 도입은 진화하는 공급망과 거래 역학과 함께 종합적인 조달 접근 방식의 필요성을 높이고 있습니다. 엔지니어와 구매 담당자는 라이프사이클 성능, 제어 시스템과의 통합 용이성, 애프터마켓 지원 등을 제품 가치의 본질로 고려해야 합니다. 그 결과, 전략적 이해관계자들은 투자 결정을 내리기 위해 기술적 요구사항, 운영 준비성, 상업적 탄력성을 통합한 기능적 평가 프레임워크를 우선순위로 삼고 있습니다.

기술 발전, 재료 혁신, 공급망 다각화, 규제 압력이 진공 밸브의 설계, 조달, 애프터마켓 전략을 재정의하는 방법

진공 밸브의 상황은 기술 혁신, 공급망 균형 조정, 규제 강화로 인해 몇 가지 혁신적인 변화를 겪고 있습니다. 작동 기술의 발전은 보다 정밀한 공정 제어를 가능하게 하고, 자동화 및 디지털 모니터링 시스템과의 통합을 강화하고 있습니다. 전기 및 공압식 작동 방식은 스마트 센서 및 예측 진단과 결합하여 예기치 않은 다운타임을 줄이고 수명주기 비용에 대한 가시성을 향상시킵니다. 동시에 재료 공학이 성능 향상을 촉진하고 있습니다. 정교한 합금과 폴리머 배합으로 내식성이 향상되고, 민감한 환경에서의 아웃가스가 감소합니다.

또 다른 큰 변화는 반도체 제조 및 고급 분석 장비와 같은 프론티어 용도에 대응하기 위한 커스터마이징과 소형화가 가속화되고 있다는 점입니다. 과거에는 표준화되어 있던 밸브 아키텍처가 이제는 특수한 설치 공간과 청결도 요구사항에 맞게 변화하고 있으며, 제조업체는 모듈식 설계 역량을 강화하고 최종 사용자와 함께 솔루션을 공동 개발해야 합니다. 동시에, 지속가능성에 대한 압력과 순환 경제의 목표는 수명을 연장하고 사용한 제품의 취급을 단순화하는 재료 및 유지 보수 전략을 채택하도록 유도하고 있습니다.

무역 정책의 전환과 지정학적 발전은 조달 전략을 재구성하고 있습니다. 제조업체와 최종 사용자는 관세, 운송 중단, 투입물 부족에 대한 위험을 줄이기 위해 다양한 공급업체 기반과 지역적 제조 능력을 점점 더 많이 요구하고 있습니다. 이러한 재조정은 국제 표준 준수와 공급망 전반의 추적 가능성에 대한 강조로 보완되며, 이는 총체적으로 조달 리드타임, 총소유비용 고려, 장기 전략 계획에 영향을 미칩니다.

진공 밸브 공급망에서 조달, 생산의 현지화, 공급업체와의 협력 관계 재구축을 위한 누적된 관세 주도 압력과 전략적 적응 방안 평가

최근 관세 조치와 무역 정책의 개정은 진공 밸브 공급업체와 구매자에게 기존의 압력을 더욱 강화하여 비용 구조와 조달 탄력성을 재평가하도록 유도하고 있습니다. 관세가 스테인리스 스틸, 알루미늄과 같은 주요 투입재와 국경 간 공급망에 영향을 미치는 완제품에 영향을 미치면서 많은 기업들이 가치 창출이 어디에서 이루어지는지, 그리고 조달 의사결정에 공장 출하 가격뿐만 아니라 총부가가치비용(Total Landed Cost)을 반영하는 방법을 재평가했습니다. 반영하는지를 재평가하게 되었습니다. 이에 대응하기 위해 기업들은 공급업체의 발자국을 분석하고, 경쟁력을 유지하기 위해 대체 제조 지역을 검토하고 있습니다.

이러한 무역 관련 역풍은 공급업체 통합과 장기 계약 재협상을 가속화하고 있습니다. 일부 OEM의 경우, 가장 직접적인 영향은 관세로 인한 혼란에 대비하기 위해 부품의 현지화 및 듀얼 소스 전략 구축에 대한 관심이 높아졌습니다는 점입니다. 동시에, 선진 공급업체들은 관세의 영향을 최적화하고 고객의 리드 타임을 유지하기 위해 공장 간 이동이 가능한 유연한 제조 공정과 민첩한 생산 전략에 투자해 왔습니다.

이와 병행하여 구매자는 관세에 영향을 받기 쉬운 부품에 대한 의존도를 줄이기 위해 가치 엔지니어링 및 제조에 대한 설계 접근 방식을 더 중시하고 있습니다. 여기에는 설계팀과 조달팀이 더욱 긴밀하게 협력하고, 공급 위험을 줄이면서 성능 및 규제 요건을 충족하는 재료와 작동 방식을 대체할 수 있는 기회를 식별하는 것이 포함됩니다. 전반적인 누적 효과로 제품 로드맵과 조달 절차서에 무역정책에 대한 고려가 통합되고 있습니다.

밸브 유형, 작동 방식, 최종 사용 분야, 재료 선택, 압력 등급을 조달 및 제품 전략의 필수 요소와 연결, 세분화 중심의 상세한 관점

세분화 중심의 통찰력은 기업이 기술적 적합성과 상업적 차별화를 달성하기 위해 해결해야 할 미묘한 제품 및 용도 역학을 보여줍니다. 밸브 유형에 따라 볼 밸브, 버터플라이 밸브, 체크 밸브, 게이트 밸브, 글로브 밸브의 구성에 따라 중요한 구분이 나타납니다. 볼 밸브 설계 중에서도 플로팅 볼 밸브와 트러니언 볼 밸브의 변형은 서로 다른 압력 체계와 유지 보수 철학에 대해 서로 다른 적합성 프로파일을 나타내며, 게이트 밸브 아키텍처(비 상승 스템 밸브와 상승 스템 밸브)는 작동 복잡성과 필요한 공간 측면에서 절충점을 나타냅니다. 작동의 복잡성과 필요한 공간 측면에서 트레이드오프를 나타내며, 앵글 글로브 밸브와 스트레이트 글로브 밸브와 같은 글로브 밸브 옵션은 유량 제어의 정확도와 설치 공간에 영향을 미칩니다. 또한, 앵글 글로브 밸브나 스트레이트 글로브 밸브와 같은 글로브 밸브의 옵션은 유량 제어의 정확도와 설치 면적에 영향을 미칩니다. 작동 방식에 따라 시스템 설계자는 전기, 유압, 수동, 공압, 공압 옵션의 균형을 맞추고, 공압 작동은 공기 폐쇄 동작과 공기 개방 동작으로 구분하여 페일 세이프 응답과 제어 로직을 결정합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 진공 밸브 시장 : 밸브 유형별

  • 볼 밸브
    • Floating Ball Valve
    • Trunnion Ball Valve
  • 버터플라이 밸브
  • 체크 밸브
  • 게이트 밸브
    • Nonrising Stem Valve
    • Rising Stem Valve
  • 글로브 밸브
    • 앵글 글로브 밸브
    • 스트레이트 글로브 밸브

제9장 진공 밸브 시장 : 작동 방법별

  • 전기
  • 유압
  • 수동
  • 공기압
    • Air To Close
    • Air To Open

제10장 진공 밸브 시장 : 최종 용도별

  • 화학제품 및 석유화학제품제품
  • 헬스케어
  • 석유 및 가스
  • 발전
  • 반도체

제11장 진공 밸브 시장 : 재료별

  • 알루미늄
  • 황동
  • 플라스틱
  • 스테인리스 스틸

제12장 진공 밸브 시장 : 정격 압력별

  • 고진공
  • 저진공
  • 초고진공

제13장 진공 밸브 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 진공 밸브 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 진공 밸브 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • VAT Group AG
    • MKS Instruments, Inc.
    • Pfeiffer Vacuum Technology AG
    • ULVAC, Inc.
    • Atlas Copco AB(publ)
    • Brooks Automation, Inc.
LSH 25.10.15

The Vacuum Valve Market is projected to grow by USD 4.08 billion at a CAGR of 9.85% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.92 billion
Estimated Year [2025] USD 2.11 billion
Forecast Year [2032] USD 4.08 billion
CAGR (%) 9.85%

An authoritative primer on vacuum valve fundamentals, cross-industry use cases, evolving technical priorities, and procurement considerations for strategic decision-makers

Vacuum valves are a foundational component across advanced industrial, scientific, and process environments, serving as critical enablers of controlled atmospheres and precise fluid or gas handling. They operate at the intersection of mechanical design, materials science, and actuation engineering, with performance requirements frequently dictated by extreme pressure regimes, contamination sensitivity, and regulatory constraints. These valves must balance reliability and repeatability with manufacturability and maintainability, making their selection and specification a strategic decision for equipment designers and plant operators alike.

Over recent years, the role of vacuum valves has expanded beyond traditional manufacturing environments into high-growth, technology-intensive sectors. As semiconductor fabrication, advanced materials research, and precision instrumentation demand ever-higher standards of leak-tightness and contamination control, valve design has adapted with specialized materials, refined sealing geometries, and advanced actuation solutions. At the same time, legacy sectors such as chemicals, power generation, and oil and gas continue to rely on robust, field-proven valve architectures where operational continuity and safety remain paramount.

The introduction of new materials and actuation methods, combined with evolving supply chain and trade dynamics, has heightened the need for a holistic procurement approach. Engineers and purchasing professionals must now consider lifecycle performance, ease of integration with control systems, and aftermarket support as intrinsic to product value. Consequently, strategic stakeholders are increasingly prioritizing cross-functional evaluation frameworks that unify technical requirements, operational readiness, and commercial resilience to guide investment decisions.

How technological advances, material innovation, supply chain diversification, and regulatory pressures are redefining vacuum valve design, sourcing, and aftermarket strategies

The vacuum valve landscape is experiencing several transformative shifts driven by technological innovation, supply chain rebalancing, and heightened regulatory scrutiny. Advances in actuation technologies are enabling more precise process control and tighter integration with automation and digital monitoring systems. Electric and pneumatic actuation methods are being paired with smart sensors and predictive diagnostics to reduce unscheduled downtime and to improve lifecycle cost visibility. Concurrently, materials engineering is driving performance improvements: refined alloys and polymer formulations are enhancing corrosion resistance and reducing outgassing in sensitive environments.

Another major inflection is the acceleration of customization and miniaturization in response to frontier applications such as semiconductor manufacturing and advanced analytics instrumentation. Valve architectures that were once standardized are now being adapted for specialized footprints and cleanliness requirements, prompting manufacturers to enhance modular design capabilities and to co-develop solutions with end users. At the same time, sustainability pressures and circular-economy objectives are encouraging the adoption of materials and maintenance strategies that extend service life and simplify end-of-life handling.

Trade policy shifts and geopolitical developments are reshaping sourcing strategies. Manufacturers and end users are increasingly seeking diversified supplier bases and regional manufacturing capacity to mitigate exposure to tariffs, shipping disruptions, and input shortages. This rebalancing is complemented by growing emphasis on compliance with international standards and traceability across the supply chain, which collectively influence procurement lead times, total cost of ownership considerations, and long-term strategic planning.

Assessment of cumulative tariff-driven pressures and strategic adaptation measures reshaping sourcing, production localization, and supplier collaboration in the vacuum valve supply chain

Recent tariff actions and trade policy revisions have compounded existing pressures on suppliers and buyers of vacuum valves, prompting a reassessment of cost structures and sourcing resilience. Tariffs affecting key inputs such as stainless steel and aluminum, as well as finished goods subject to cross-border supply chains, have led many organizations to re-evaluate where value is created and how procurement decisions reflect total landed cost rather than factory price alone. In response, firms are analyzing supplier footprints and considering alternative manufacturing geographies to preserve competitiveness.

These trade-related headwinds have also accelerated supplier consolidation and the renegotiation of long-term contracts as buyers seek stability and assured capacity. For some OEMs, the most immediate impact has been increased attention to component localization and the creation of dual-source strategies to guard against tariff-driven dislocations. At the same time, forward-thinking suppliers have invested in nimble production strategies and in flexible manufacturing processes that can be shifted across plants to optimize tariff exposure and to sustain customer lead times.

In parallel, buyers are placing greater emphasis on value engineering and design-for-manufacture approaches to reduce reliance on tariff-sensitive components. This involves closer collaboration between design teams and procurement to identify substitution opportunities in materials and actuation methods that meet performance and regulatory requirements while easing supply risk. Overall, the cumulative effect is a heightened integration of trade-policy considerations into product roadmaps and procurement playbooks.

Detailed segmentation-driven perspectives that connect valve types, actuation methods, end-use sectors, material choices, and pressure ratings to procurement and product strategy imperatives

Segmentation-driven insight reveals nuanced product and application dynamics that companies must address to achieve technical fit and commercial differentiation. Based on Valve Type, important distinctions emerge among Ball Valve, Butterfly Valve, Check Valve, Gate Valve, and Globe Valve configurations; within Ball Valve designs, Floating Ball Valve and Trunnion Ball Valve variants show divergent suitability profiles for different pressure regimes and maintenance philosophies, while Gate Valve architectures-Nonrising Stem Valve and Rising Stem Valve-present trade-offs in terms of actuation complexity and space requirements, and Globe Valve options such as Angle Globe Valve and Straight Globe Valve influence flow control precision and footprint. Based on Actuation Method, system architects balance electric, hydraulic, manual, and pneumatic options, with pneumatic actuation further differentiated into Air To Close and Air To Open behaviors that determine fail-safe responses and control logic.

Based on End Use, sector-specific demands create material and performance constraints that differentiate supplier offerings: Chemicals & Petrochemicals demand aggressive corrosion resistance and robust sealing, Healthcare prioritizes sterilizable and contamination-free designs, Oil & Gas emphasizes ruggedness and safety compliance, Power Generation requires endurance under thermal cycling, and Semiconductor applications demand ultra-clean, ultra-low leak performance. Based on Material, manufacturing choices among Aluminum, Brass, Plastic, and Stainless Steel affect durability, weight, chemical resistance, and compatibility with vacuum processes, with stainless steel often used where highest cleanliness and strength are required and plastics selected for cost efficiency or chemical inertness. Finally, Based on Pressure Rating, distinctions between High Vacuum, Low Vacuum, and Ultra High Vacuum drive sealing technology, surface treatment, and assembly environment requirements.

These segmentation layers intersect: actuation choices influence suitability for specific valve types; materials constrain achievable pressure ratings; and end-use requirements dictate the level of validation, documentation, and traceability necessary for procurement. Consequently, product roadmaps and procurement specifications must be crafted with multidimensional alignment to ensure both technical performance and operational resilience.

Comparative regional assessment of demand drivers, sourcing strategies, regulatory influences, and aftermarket priorities across the Americas, Europe, Middle East & Africa, and Asia-Pacific

Regional dynamics are shaping demand patterns, supply chain strategies, and aftermarket support models in distinct ways across the globe. In the Americas, buyers are emphasizing near-term resilience and faster lead times, prompting an uptick in regional sourcing and in the co-location of assembly activities close to major end users. This approach reduces exposure to long transit times and supports rapid service response, which is particularly valuable for critical infrastructure and energy-related installations. In addition, regulatory and safety frameworks in the region drive requirements for documented traceability and for compliance testing that suppliers must accommodate.

Across Europe, Middle East & Africa, regulatory harmonization and established industrial bases continue to support sophisticated engineering partnerships and certification-driven procurement. Manufacturers serving this region often invest in local technical support and in certifications that facilitate cross-border projects. In the Middle East, infrastructure and energy projects create opportunities for high-capacity valve suppliers, while in parts of Africa, the focus is on robust, low-maintenance solutions suited to austere operating conditions. In Asia-Pacific, dynamic manufacturing ecosystems, dense supplier networks, and deep OEM relationships enable rapid product iteration and scale. This region is also central to semiconductor supply chains and advanced materials production, leading to strong demand for ultra-clean and ultra-high vacuum solutions. Across these regions, differences in labor costs, regulatory regimes, and logistics infrastructure influence where firms choose to locate manufacturing, where they maintain spare-part inventories, and how they structure service agreements to meet customer expectations.

Strategic approaches adopted by prominent suppliers encompassing product differentiation, lifecycle services, partnerships, and manufacturing flexibility to strengthen competitive positioning

Leading firms in the vacuum valve ecosystem are pursuing a combination of technological differentiation, service innovation, and supply chain optimization to sustain advantage. Product development is increasingly focused on integrating intelligence into valve systems through embedded sensors, predictive-maintenance algorithms, and standardized communication interfaces that simplify integration into plant control systems. Concurrently, investments in materials science and surface treatments are enabling higher-performance seals and lower outgassing rates, which are particularly consequential for ultra-high vacuum and semiconductor applications.

At the commercial level, top suppliers are refining go-to-market models to emphasize lifecycle partnerships rather than one-time transactions. This includes expanded aftermarket services, extended warranties tied to condition-based monitoring, and rapid-response field service teams. Strategic partnerships with actuator makers, materials specialists, and control-system integrators are common, facilitating turnkey solutions for complex end users. On the operational front, many leading companies are optimizing their manufacturing footprints by adopting flexible production lines and by qualifying alternate suppliers to mitigate tariff and logistics risk. They are also enhancing documentation and quality-control processes to meet stringent sectoral requirements and to support cross-border projects with consistent standards of traceability and certification.

Actionable recommendations for executives to integrate modular design, predictive maintenance, supplier diversification, and customer-aligned service models to drive resilience and growth

Industry leaders should adopt an integrated strategy that links product design, supply chain architecture, and commercial engagement to drive sustainable differentiation and risk mitigation. First, prioritize modular design principles and standardized interfaces that enable quicker customization without extensive retooling. This reduces time-to-deploy for specialized applications while preserving economies of scale. Second, embed condition-monitoring capabilities into valve assemblies to unlock aftermarket revenue streams and to materially reduce unplanned downtime through predictive maintenance programs. Third, pursue supplier diversification and pragmatic localization where tariffs or logistics volatility materially affect total landed cost, while maintaining stringent quality oversight and certification traceability to ensure interchangeability and compliance.

Additionally, align material selection and validation protocols with end-use requirements to ensure performance across pressure rating categories, from low to ultra-high vacuum. Collaborate closely with key customers in chemicals, healthcare, oil & gas, power generation, and semiconductor segments to co-develop specifications that balance performance, manufacturability, and cost. On the commercial front, move toward outcome-based contracts and service-level agreements that tie compensation to uptime or performance metrics, thereby deepening customer relationships and creating recurring revenue. Finally, invest in continuous workforce training and in quality systems that support rapid product updates and that maintain regulatory readiness, enabling swift response to evolving standards and customer expectations.

Transparent and replicable research methodology combining primary interviews, on-site validation, secondary technical review, and supply chain analysis to underpin insights

The research methodology underpinning this analysis combined a multi-source approach to ensure balanced, verifiable insights. Primary research included structured interviews with design engineers, procurement leaders, maintenance managers, and original equipment manufacturers to capture first-hand perspectives on performance priorities, sourcing challenges, and validation practices. These interviews were complemented by on-site observations of assembly and testing procedures to validate claims regarding sealing technologies, actuation integration, and cleanliness protocols.

Secondary research entailed a systematic review of technical white papers, standards documentation, regulatory guidance, and industry publications to corroborate material selection criteria and to map pressure-rating requirements to typical sealing solutions. Supply chain analysis used customs and trade flow indicators, along with publicly available manufacturing footprints, to identify sourcing concentrations and potential tariff exposures. Finally, the methodology incorporated comparative product benchmarking across valve types, actuation methods, and materials to identify differentiation points and to assess the practicality of design-for-manufacture recommendations. Throughout, quality-control processes ensured that findings were triangulated and that assertions reflected replicable evidence rather than isolated anecdotes.

Synthesis of strategic imperatives emphasizing integrated technical, commercial, and supply chain approaches to secure performance, resilience, and competitive advantage

In conclusion, vacuum valves remain a mission-critical component set whose importance extends well beyond simple flow control. The convergence of higher precision requirements, material innovations, and changing trade dynamics necessitates a more strategic approach to design, procurement, and aftermarket support. Organizations that integrate technical, commercial, and supply chain considerations into a unified decision framework will be better positioned to manage risk, capture operational efficiencies, and respond to sector-specific demands.

As technology-driven sectors continue to raise performance thresholds, suppliers that invest in modular, sensor-enabled valve architectures and that offer robust lifecycle services will create stronger differentiation. Simultaneously, procurement teams must adopt a total-cost perspective that incorporates tariff exposure, lead time variability, and aftermarket responsiveness. By aligning product roadmaps with regional operational realities and by cultivating collaborative supplier relationships, stakeholders can convert current challenges into opportunities for innovation and long-term competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of high-temperature and abrasion-resistant valve materials for semiconductor fabrication enhancements
  • 5.2. Integration of smart sensors and IoT connectivity for real-time vacuum system monitoring and predictive maintenance
  • 5.3. Rise in demand for vacuum valves compatible with ultra-high purity gases in pharmaceutical and biotech sectors
  • 5.4. Development of miniaturized vacuum valve solutions for precision instrumentation in analytical equipment
  • 5.5. Growing emphasis on energy-efficient vacuum valve designs to reduce operational costs in industrial processes
  • 5.6. Expansion of modular valve architectures enabling rapid customization for diverse vacuum application requirements
  • 5.7. Advancement in cryogenic vacuum valve technologies to support next-generation space exploration and superconducting research
  • 5.8. Increasing regulatory pressures driving the adoption of leak-tight vacuum valves with advanced sealing mechanisms
  • 5.9. Collaboration between valve manufacturers and automation firms to deliver integrated vacuum control systems
  • 5.10. Surge in hybrid pneumatic and electric actuation vacuum valves for enhanced control and operational flexibility

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Vacuum Valve Market, by Valve Type

  • 8.1. Ball Valve
    • 8.1.1. Floating Ball Valve
    • 8.1.2. Trunnion Ball Valve
  • 8.2. Butterfly Valve
  • 8.3. Check Valve
  • 8.4. Gate Valve
    • 8.4.1. Nonrising Stem Valve
    • 8.4.2. Rising Stem Valve
  • 8.5. Globe Valve
    • 8.5.1. Angle Globe Valve
    • 8.5.2. Straight Globe Valve

9. Vacuum Valve Market, by Actuation Method

  • 9.1. Electric
  • 9.2. Hydraulic
  • 9.3. Manual
  • 9.4. Pneumatic
    • 9.4.1. Air To Close
    • 9.4.2. Air To Open

10. Vacuum Valve Market, by End Use

  • 10.1. Chemicals & Petrochemicals
  • 10.2. Healthcare
  • 10.3. Oil & Gas
  • 10.4. Power Generation
  • 10.5. Semiconductor

11. Vacuum Valve Market, by Material

  • 11.1. Aluminum
  • 11.2. Brass
  • 11.3. Plastic
  • 11.4. Stainless Steel

12. Vacuum Valve Market, by Pressure Rating

  • 12.1. High Vacuum
  • 12.2. Low Vacuum
  • 12.3. Ultra High Vacuum

13. Vacuum Valve Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Vacuum Valve Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Vacuum Valve Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. VAT Group AG
    • 16.3.2. MKS Instruments, Inc.
    • 16.3.3. Pfeiffer Vacuum Technology AG
    • 16.3.4. ULVAC, Inc.
    • 16.3.5. Atlas Copco AB (publ)
    • 16.3.6. Brooks Automation, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제