시장보고서
상품코드
1827986

생세포 인캡슐레이션 시장 : 용도별, 기술별, 재료별, 최종사용자별, 세포 유형별 - 세계 예측(2025-2032년)

Live Cell Encapsulation Market by Application, Technology, Material, End User, Cell Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

생세포 인캡슐레이션 시장은 2032년까지 CAGR 4.58%로 4억 6,656만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 3억 2,589만 달러
추정연도 2025 3억 4,117만 달러
예측연도 2032 4억 6,656만 달러
CAGR(%) 4.58%

기술, 용도, 임상적 필요성을 간결하게 소개하여 생세포 인캡슐레이션의 돌파구를 마련

생세포 인캡슐레이션는 재료과학, 세포치료, 의료기기 공학의 교차점에 위치하여 치료용 세포의 생물학적 활성을 보호, 유지, 제어하는 획기적인 수단을 제공합니다. 기본적으로 인캡슐레이션 기술은 살아있는 세포를 반투과성 장벽 안에 가두어 면역 거부 반응과 기계적 스트레스로부터 세포를 보호하면서 영양과 노폐물 교환을 가능하게 하는 반투과성 장벽을 형성합니다. 이러한 기술적 전제는 종양학, 대사성 질환, 약물전달, 조직 복구 등의 분야에서의 적용을 촉진하고, 이 개념을 실험실에서 입증에서 번역 개발로 전환하는 데 기여했습니다.

최근 수년간 고분자 화학, 미세 가공 및 세포 조달의 발전은 인캡슐레이션된 세포 치료의 기능적 범위와 번역적 타당성 모두를 확장시켰습니다. 규제 당국도 배합 제제에 대한 기대치를 점점 더 명확히 하고 있으며, 임상 프로그램도 개념 증명에서 장기적인 안전성 및 유효성 평가로 전환하고 있습니다. 그 결과, 업계 관계자들은 국소적 조직공학 구조물에서 내분비 및 면역 조절 기능을 제공하는 이식형 장치에 이르기까지 다양한 상용화 경로를 따라 전진하고 있습니다.

이러한 역학을 고려할 때, 이해관계자들에게는 전략적 명확성이 필수적입니다. 개발자는 물질 적합성, 제조 가능성, 규제 전략을 동시에 우선순위에 두어야 하며, 투자자와 파트너는 기술 차별화에 대한 임상적 위험을 평가해야 합니다. 이 소개에서는 인캡슐레이션에 자원을 집중할 수 있는 기술적, 상업적 근거를 정리하고, 다음 섹션에서 시장 성장 촉진요인, 세분화 및 운영 고려사항에 대해 심도 있게 논의할 수 있는 토대를 마련합니다.

과학의 발전, 규제 변화, 다학제간 협업으로 생세포 인캡슐레이션를 재구성하는 변혁적 변화의 식별

생세포 인캡슐레이션의 상황은 기회와 위험을 재정의하는 일련의 상호 의존적인 변화로 인해 빠르게 변화하고 있습니다. 인캡슐레이션 재료와 미세 가공의 과학적 발전은 내구성과 세포 생존율을 향상시키고, 장기적인 기능성을 가능하게 하며, 적응증에 대한 가능성을 넓혀주고 있습니다. 동시에, 세포 조달, 특히 재생한 줄기세포 유래 제품 및 세포주 공학의 개선으로 변동성이 감소하고 인캡슐레이션할 수 있는 치료 페이로드의 범위가 확대되고 있습니다.

동시에, 규제 프레임워크는 복합제제 및 바이오소재와 디바이스의 인터페이스를 수용하도록 진화하고 있으며, 개발자와 규제 당국과의 대화를 가속화하고 전임상 안전성 데이터, 제조 관리, 혜택과 위험에 대한 명확한 설명의 중요성을 높이고 있습니다. 상업적 측면에서 지불자와 의료 시스템은 지속적인 임상적 혜택과 비용 효과에 대한 증거를 찾고 있으며, 개발 우선순위를 의미 있는 환자 결과와 의료 경제적 가치를 입증하는 평가지표로 전환하고 있습니다.

이러한 기술적, 규제적, 상업적 변화는 공급망 물류, 품질관리 시스템, 디지털 제조 관리의 발전과 함께 증폭되어 많은 개발자들에게 이전에는 접근하기 어려웠던 스케일업의 길을 열어주고 있습니다. 그 결과, 업계에서는 세포 조달, 인캡슐레이션, 제조를 자체적으로 관리할 수 있는 수직계열화 기업과 소재, 디바이스, 위탁개발 및 제조 서비스를 전문으로 하는 전문 공급업체로 계층화가 진행되고 있습니다. 이러한 변화는 기술적 차별화와 규율적인 규제 및 상업화 전략을 병행하는 조직에 유리하게 작용할 것입니다.

2025년 미국 관세가 생세포 인캡슐레이션 공급망, 부품 비용, 전략적 조달에 미치는 누적 영향 평가

2025년 관세 부과와 무역 정책의 전환은 수입 부품의 경제성을 변화시키고, 조달처를 변경하고, 공급망의 취약성을 부각시킴으로써 생세포 인캡슐레이션 생태계에 누적 영향을 미치고 있습니다. 많은 인캡슐레이션 시스템은 전 세계에서 조달되는 특수 폴리머, 시약, 의료기기, 정밀 기기에 의존하고 있습니다. 투입재에 대한 관세는 상륙 비용을 상승시킬 수 있으며, 그 결과 제조업체, 계약 프로바이더, 최종사용자의 프로젝트 예산과 의사결정 시점을 압박할 수 있습니다.

이에 대응하기 위해 기업은 국내 공급업체 인증, 지역 간 원자재 이중 조달, 업스트림 공급업체가 생산 기지와 가까운 곳에서 생산하도록 장려하는 등 중요한 공급망을 현지화하기 위한 노력을 가속화하고 있습니다. 이러한 추세는 리드 타임, 재고 전략, 스케일업을 위한 자본 배분에 영향을 미칩니다. 일부 개발 기업은 관세의 영향을 완화하고 임상 프로그램의 연속성을 유지하기 위해 장기 공급 계약을 협상하고 공동 제조 파트너십을 체결하여 관세를 완화하고 있습니다.

관세는 비용에 미치는 영향뿐만 아니라 무역 마찰이 적은 재료와 부품으로의 전환을 포함하여 제품 설계와 부품표에 대한 신중한 재평가를 촉구하고 있습니다. 전략적 대응에는 무역우선 프로그램, 보세창고, 법적으로 적절한 경우 관세 엔지니어링 등 관세 완화 메커니즘의 활용도 포함됩니다. 요약하면, 2025년 관세 환경은 인캡슐레이션 세포치료제 상업화 계획에서 탄력적인 조달 전략과 조기 공급망 통합의 중요성을 강조하고 있습니다.

전략적 의사결정을 위해 용도, 기술, 재료, 최종사용자, 셀 유형별로 가치 경로를 명확히 하는 주요 세분화 인사이트를 제공

뉘앙스가 풍부한 세분화 프레임워크를 통해 생세포 인캡슐레이션에서 기술적 노력과 상업적 집중이 가장 높은 매출을 가져다 줄 수 있는 곳을 명확히 합니다. 용도별로는 세포치료, 당뇨병 관리, 약물전달, 조직공학, 세포치료, 당뇨병 관리, 약물전달, 조직공학 등이 있습니다. 세포치료에서는 암 면역치료와 재생치료에 집중하고, 당뇨병 관리 프로그램에서는 인슐린 생산 세포 전달과 췌장섬 세포 이식을 구분하고 있습니다. 약물전달은 방출제어형과 표적형으로 나뉘며, 조직공학은 골조직공학, 심장조직공학, 연골조직공학을 대상으로 합니다. 이러한 용도의 차이에 따라 디바이스의 형태, 면역격리 성능, 임상적 평가지표에 대한 요구사항도 달라집니다.

목차

제1장 서론

제2장 분석 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 생세포 인캡슐레이션 시장 : 용도별

  • 세포치료
    • 암 면역치료
    • 재생 요법
  • 당뇨병 관리
    • 인슐린산생세포에 대한 전달
    • 췌도 세포 이식
  • 약물전달
    • 제어 방출
    • 표적 약물전달
  • 조직공학
    • 골조직 공학
    • 심장 조직공학
    • 연골 조직 공학

제9장 생세포 인캡슐레이션 시장 : 기술별

  • 매크로 인캡슐레이션
    • 중공 섬유 디바이스
    • 하이드로겔 시트
  • 마이크로캡슐화
    • 에멀전 테크닉
    • 압출 성형 기술
    • 스프레이 건조

제10장 생세포 인캡슐레이션 시장 : 재료별

  • 알긴산
    • 고겔화 알긴산
    • 저겔화 알긴산염
  • 키토산
    • 가교 키토산
    • 탈아세틸 키토산
  • 콜라겐
  • 합성 폴리머

제11장 생세포 인캡슐레이션 시장 : 최종사용자별

  • 바이오테크놀러지 기업
  • 병원·클리닉
  • 제약 기업
  • 조사기관

제12장 생세포 인캡슐레이션 시장 : 세포 유형별

  • 췌도 세포
    • 도너 췌도 세포
    • 줄기세포 유래 췌도 세포
  • 프로바이오틱스균
    • 비피더스균
    • 유산균
  • 줄기세포
    • 유도 다능성 줄기세포
    • 중간엽줄기세포

제13장 생세포 인캡슐레이션 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 생세포 인캡슐레이션 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 생세포 인캡슐레이션 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • AUSTRIANOVA
    • Merck KGaA
    • Sphere Fluidics Ltd.
    • ViaCyte, Inc.
    • Blacktrace Holdings Ltd.(Dolomite Microfluidics)
    • BIO INX
    • Living Cell Technologies Ltd.
    • Sigilon Therapeutics, Inc.
    • Isogen
    • Diatranz Otsuka Ltd.
    • Sernova Corporation
    • Atelerix Ltd.
    • Neurotech Pharmaceuticals
    • Kadimastem
    • BUCHI Labortechnik AG
    • Fluigent
    • Encapsys LLC
    • MiKroCaps
    • Reed Pacific Pty Limited
    • Lycored
KSA 25.10.22

The Live Cell Encapsulation Market is projected to grow by USD 466.56 million at a CAGR of 4.58% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 325.89 million
Estimated Year [2025] USD 341.17 million
Forecast Year [2032] USD 466.56 million
CAGR (%) 4.58%

Setting the stage for live cell encapsulation breakthroughs with a concise introduction to technologies, applications, and clinical imperatives

Live cell encapsulation stands at the intersection of materials science, cellular therapy, and medical device engineering, offering a transformative means to protect, sustain, and control the biological activity of therapeutic cells. At a basic level, encapsulation technologies enclose living cells within a semi-permeable barrier that permits nutrient and waste exchange while shielding cells from immune rejection or mechanical stress. This technical premise has catalyzed applications across oncology, metabolic disease, drug delivery, and tissue repair, transitioning the concept from laboratory demonstration to translational development.

Over recent years, advances in polymer chemistry, microfabrication, and cell sourcing have converged to expand both the functional scope and translational feasibility of encapsulated cell therapies. Regulatory agencies are increasingly clarifying expectations for combination products, and clinical programs are moving beyond proof-of-concept to longer-term safety and efficacy evaluation. Consequently, industry participants are progressing along multiple commercialization pathways-ranging from localized tissue engineering constructs to implantable devices delivering endocrine or immunomodulatory functions.

Given these dynamics, strategic clarity is essential for stakeholders. Developers must prioritize material compatibility, manufacturability, and regulatory strategy concurrently, while investors and partners evaluate clinical risk against technical differentiation. This introduction frames the technical and commercial rationale for focusing resources on encapsulation, and sets the stage for deeper discussion of market drivers, segmentation, and operational considerations contained in the subsequent sections.

Identifying transformative shifts reshaping live cell encapsulation driven by scientific advances, regulatory change, and cross-disciplinary collaboration

The live cell encapsulation landscape is changing rapidly due to a set of interdependent shifts that together redefine opportunity and risk. Scientific advances in encapsulation materials and microfabrication have increased durability and cell viability, enabling longer-term functionality and expanding potential indications. At the same time, improvements in cell sourcing-particularly renewable stem cell-derived products and improved cell-line engineering-reduce variability and expand the range of therapeutic payloads that can be encapsulated.

Concurrently, regulatory frameworks are evolving to address combination products and biomaterial-device interfaces, prompting earlier dialog between developers and regulators and raising the premium on preclinical safety data, manufacturing controls, and clear benefit-risk articulation. On the commercial side, payers and health systems demand evidence of durable clinical benefit and cost-effectiveness, reshaping development priorities toward endpoints that demonstrate meaningful patient outcomes and health economic value.

These technical, regulatory, and commercial shifts are amplified by advances in supply chain logistics, quality management systems, and digital manufacturing controls, which together enable scale-up pathways previously out of reach for many developers. As a result, the industry is seeing a stratification between vertically integrated players that can manage cell sourcing, encapsulation, and manufacturing in-house, and specialized suppliers that focus on materials, devices, or contract development and manufacturing services. This transformation favors organizations that combine technical differentiation with disciplined regulatory and commercialization strategies.

Assessing the cumulative impact of United States tariffs in 2025 on supply chains, component costs, and strategic sourcing for live cell encapsulation

The imposition of tariffs and trade policy shifts in 2025 has had a cumulative effect on the live cell encapsulation ecosystem by altering the economics of imported components, spurring sourcing changes, and highlighting supply chain vulnerabilities. Many encapsulation systems depend on specialized polymers, reagents, medical-grade equipment, and precision devices sourced globally. Tariffs on inputs can increase landed cost, which in turn pressures project budgets and decision points for manufacturers, contract providers, and end users.

In response, organizations have accelerated efforts to localize critical supply chains, either by qualifying domestic suppliers, dual sourcing materials across regions, or incentivizing upstream vendors to establish production close to manufacturing hubs. This trend has implications for lead times, inventory strategies, and capital allocation for scale-up; it also influences where clinical and manufacturing activities are concentrated. Some developers have negotiated longer-term supply agreements and engaged in collaborative manufacturing partnerships to mitigate tariff exposure and maintain continuity for clinical programs.

Beyond cost impacts, tariffs have encouraged careful re-evaluation of product design and bill of materials, including a shift toward materials and components that can be sourced with fewer trade frictions. Strategic responses also include leveraging tariff mitigation mechanisms such as trade preference programs, bonded warehousing, or tariff engineering where legally appropriate. In sum, the 2025 tariff landscape has reinforced the importance of resilient sourcing strategies and early supply chain integration in commercialization planning for encapsulated cell therapies.

Key segmentation insights that clarify value pathways across application, technology, material, end user, and cell type dimensions for strategic decision-making

A nuanced segmentation framework clarifies where technical effort and commercial focus will yield the highest returns in live cell encapsulation. Based on application, the field encompasses Cell Therapy, Diabetes Management, Drug Delivery, and Tissue Engineering; within Cell Therapy developers concentrate on Cancer Immunotherapy and Regenerative Therapy, while Diabetes Management programs differentiate between Insulin-Producing Cell Delivery and Islet Cell Transplantation. Drug Delivery efforts split between Controlled Release and Targeted Drug Delivery approaches, and Tissue Engineering initiatives target Bone Tissue Engineering, Cardiac Tissue Engineering, and Cartilage Tissue Engineering. These application distinctions drive divergent requirements for device geometry, immunoisolation performance, and clinical endpoints.

Based on technology, encapsulation solutions fall into Macroencapsulation and Microencapsulation. Macroencapsulation developers use approaches such as Hollow Fiber Devices and Hydrogel Sheets, prioritizing implantability and retrievability, while Microencapsulation leverages techniques like Emulsion Technique, Extrusion Technique, and Spray Drying to optimize mass transfer and cell packing density. Material selection is another critical axis: Alginate, Chitosan, Collagen, and Synthetic Polymer each present distinctive biocompatibility and manufacturing profiles, with Alginate variants categorized as High Gelation and Low Gelation and Chitosan available as Crosslinked and Deacetylated forms.

End user segmentation highlights the divergent needs of Biotechnology Companies, Hospitals & Clinics, Pharmaceutical Companies, and Research Institutes, influencing support services, regulatory expectations, and purchasing behaviors. Finally, cell type matters: Islet Cells are differentiated into Donor Islet Cells and Stem Cell Derived Islet Cells; Probiotic Bacteria include Bifidobacterium and Lactobacillus; Stem Cells break down into Induced Pluripotent Stem Cells and Mesenchymal Stem Cells. Together, these segmentation dimensions emphasize that commercial strategy must align material science, encapsulation technique, and clinical pathway to the chosen therapeutic application.

Regional dynamics and strategic considerations across the Americas, Europe Middle East & Africa, and Asia-Pacific that influence adoption and commercialization

Regional dynamics shape adoption, regulatory strategy, and supply chain design for live cell encapsulation technologies. In the Americas, markets are characterized by strong venture capital activity, advanced clinical trial ecosystems, and a regulatory environment that emphasizes early sponsor-regulator interaction; this region often serves as a proving ground for clinical evidence and reimbursement models. Europe, Middle East & Africa presents a mosaic of regulatory regimes and health system structures, where alignment with regional regulatory bodies and payer evidence requirements is essential to broaden access across diverse markets. Asia-Pacific shows rapid investment in domestic manufacturing capacity, an expanding base of clinical centres, and government-led initiatives to foster biotech innovation, which together accelerate local development and commercial pathways.

These regional distinctions matter for market entry timing, partner selection, and manufacturing footprint. For example, a development program may choose to validate clinical endpoints and build health economic models in the Americas before pursuing broader regulatory harmonization in Europe, Middle East & Africa, while simultaneously engaging manufacturing partners in Asia-Pacific to reduce cost and shorten lead times. Trade policy, intellectual property frameworks, and public funding priorities vary by region, and successful players synchronize clinical development, supply chain resilience, and commercial launch sequencing to exploit regional strengths. In short, a deliberate regional strategy that leverages complementary advantages across the Americas, Europe, Middle East & Africa, and Asia-Pacific will materially improve scalability and access.

Profiles of leading companies, competitive positioning, and strategic moves shaping product development, partnerships, and commercialization in the live cell encapsulation arena

Company strategies in live cell encapsulation reveal a split between vertically integrated developers and specialized technology providers. Leading innovators invest in proprietary materials, device architectures, and process controls, positioning themselves to capture downstream value through product differentiation and integrated manufacturing. At the same time, a cohort of suppliers focuses on enabling components-high-purity polymers, encapsulation machinery, and contract development and manufacturing services-creating an ecosystem that reduces barriers to entry for clinical-stage developers.

Partnerships and collaborations are a commonplace strategic play. Biotech firms often enter co-development agreements with materials specialists or device manufacturers to accelerate translational timelines and de-risk technical challenges. Meanwhile, contract organizations are expanding capabilities to support aseptic processing, quality systems, and scale-up for combination product manufacturing. Competitive positioning is also shaped by intellectual property around encapsulation chemistries and microfabrication methods, and companies with defensible IP portfolios can secure advantageous licensing arrangements or investment.

Mergers and strategic alliances continue to consolidate capabilities, particularly where a partner can offer complementary strengths such as clinical development expertise, regulatory experience, or commercial distribution. For decision-makers, the landscape rewards clarity about where to invest internally versus where to partner, and encourages an early focus on manufacturability, regulatory alignment, and demonstrable clinical benefit to sustain competitive advantage.

Actionable recommendations for industry leaders to accelerate innovation, de-risk supply chains, and optimize clinical translation pathways in live cell encapsulation

Industry leaders should prioritize a set of actionable initiatives that reduce technical risk, strengthen supply chains, and accelerate clinical translation. First, diversify supplier relationships for critical materials and components while qualifying alternate sources and creating contingency inventory strategies to buffer against geopolitical and trade disruptions. Second, invest in material science efforts aimed at improving biocompatibility and mechanical stability to lengthen device lifetimes and reduce immune responses, thereby improving clinical outcomes and payer receptivity.

Third, engage regulators early with robust preclinical packages and clear manufacturing controls to shorten approval cycles and de-risk pivotal studies. Simultaneously, design clinical programs with endpoints that address patient-centered outcomes and health economic measures to facilitate reimbursement discussions. Fourth, pursue modular manufacturing strategies and digital quality systems to scale production efficiently and maintain traceability across cell-based processes. Fifth, build strategic partnerships with contract manufacturers and clinical trial networks to accelerate enrollment and reduce the time from bench to bedside.

Finally, adopt a proactive IP and commercialization playbook: protect core material and fabrication innovations while licensing or partnering where complementary capabilities exist. Together, these steps create a roadmap for organizations seeking to translate encapsulation innovations into durable products that satisfy regulators, payers, and clinicians alike.

Research methodology that underpins the analysis including data triangulation, stakeholder interviews, and validation protocols for credible live cell encapsulation insights

The research underpinning this analysis employed a multi-method approach combining qualitative and quantitative validation to ensure robustness and relevance. Primary research included structured interviews with senior executives, R&D leaders, regulatory experts, contract manufacturers, and clinical investigators to capture first-hand perspectives on technical barriers, commercialization challenges, and strategic priorities. Secondary sources comprised peer-reviewed literature, patent filings, clinical trial registries, regulatory guidance documents, and supplier catalogs to map technological evolution and identify enabling materials and processes.

Data triangulation was used to corroborate findings across independent sources, and a synthesis layer reconciled clinical, technical, and commercial inputs into actionable insights. The methodology also incorporated supply chain mapping to identify chokepoints and geographic dependencies, and a regulatory heatmap to align development pathways with region-specific requirements. Throughout the process, validation workshops with external experts refined interpretations and ensured practical applicability for decision-makers.

Limitations of the research are acknowledged, including the evolving nature of clinical data and the potential for rapid innovation to shift competitive dynamics. Nonetheless, the methodology emphasizes transparency, stakeholder validation, and reproducibility to provide a credible foundation for strategic decisions in live cell encapsulation.

Concluding synthesis that ties scientific, commercial, and regulatory threads into a coherent outlook for stakeholders engaged in live cell encapsulation

The synthesis presented in this report emphasizes that progress in live cell encapsulation is both technological and organizational. Technically, advances in materials, microfabrication, and cell sourcing are reducing historical barriers to durability and biocompatibility, enabling longer-term therapeutic effects. Organizationally, regulatory evolution, payer scrutiny, and supply chain reconfiguration are shaping which programs advance and which must pivot or consolidate. These dual forces determine the practical pathway to commercialization for encapsulated cell therapies.

Looking across segmentation, technology choices must be matched to application-specific clinical objectives and end-user needs, while regional strategies must balance clinical validation hubs with manufacturing pragmatism. Firms that align product design, material selection, and manufacturable processes with a clear regulatory and reimbursement plan are most likely to achieve sustainable clinical and commercial success. Moreover, the 2025 trade dynamics underscore the value of resilient sourcing and adaptive cost management in maintaining program continuity.

In conclusion, stakeholders should pursue disciplined technical validation, early regulatory engagement, and strategic partnerships to translate encapsulation innovations into therapies that demonstrate durable patient benefit. The path forward rewards integrated approaches that connect scientific differentiation with operational excellence and clear commercial value propositions.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of microfluidic droplet generation techniques for scalable cell encapsulation to enhance uniformity and viability
  • 5.2. Emergence of alginate-based hydrogel modulators enriched with RGD peptides to improve cell differentiation and functionality in encapsulation
  • 5.3. Adoption of 3D bioprinting methods to fabricate customizable cell-laden capsules for targeted drug delivery and tissue engineering
  • 5.4. Implementation of immune-evasive polymer coatings to extend in vivo survival of encapsulated islet cells in diabetes therapy
  • 5.5. Development of sensor-integrated encapsulation systems enabling real-time monitoring of cell microenvironment and metabolic status
  • 5.6. Use of co-encapsulation strategies combining stem cells with growth factor-loaded nanoparticles for synergistic regenerative outcomes
  • 5.7. Regulatory momentum around standardized quality control assays for ensuring consistent batch-to-batch performance of encapsulated cell products
  • 5.8. Rising interest in cryoprotectant-free encapsulation workflows to improve post-thaw viability of cell therapies
  • 5.9. Development of scalable bioreactor platforms for high-throughput production of microcapsules carrying therapeutic cells
  • 5.10. Integration of artificial intelligence-driven process optimization in encapsulation workflows for enhanced reproducibility and scalability

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Live Cell Encapsulation Market, by Application

  • 8.1. Cell Therapy
    • 8.1.1. Cancer Immunotherapy
    • 8.1.2. Regenerative Therapy
  • 8.2. Diabetes Management
    • 8.2.1. Insulin-Producing Cell Delivery
    • 8.2.2. Islet Cell Transplantation
  • 8.3. Drug Delivery
    • 8.3.1. Controlled Release
    • 8.3.2. Targeted Drug Delivery
  • 8.4. Tissue Engineering
    • 8.4.1. Bone Tissue Engineering
    • 8.4.2. Cardiac Tissue Engineering
    • 8.4.3. Cartilage Tissue Engineering

9. Live Cell Encapsulation Market, by Technology

  • 9.1. Macroencapsulation
    • 9.1.1. Hollow Fiber Devices
    • 9.1.2. Hydrogel Sheets
  • 9.2. Microencapsulation
    • 9.2.1. Emulsion Technique
    • 9.2.2. Extrusion Technique
    • 9.2.3. Spray Drying

10. Live Cell Encapsulation Market, by Material

  • 10.1. Alginate
    • 10.1.1. High Gelation Alginate
    • 10.1.2. Low Gelation Alginate
  • 10.2. Chitosan
    • 10.2.1. Crosslinked Chitosan
    • 10.2.2. Deacetylated Chitosan
  • 10.3. Collagen
  • 10.4. Synthetic Polymer

11. Live Cell Encapsulation Market, by End User

  • 11.1. Biotechnology Companies
  • 11.2. Hospitals & Clinics
  • 11.3. Pharmaceutical Companies
  • 11.4. Research Institutes

12. Live Cell Encapsulation Market, by Cell Type

  • 12.1. Islet Cells
    • 12.1.1. Donor Islet Cells
    • 12.1.2. Stem Cell Derived Islet Cells
  • 12.2. Probiotic Bacteria
    • 12.2.1. Bifidobacterium
    • 12.2.2. Lactobacillus
  • 12.3. Stem Cells
    • 12.3.1. Induced Pluripotent Stem Cells
    • 12.3.2. Mesenchymal Stem Cells

13. Live Cell Encapsulation Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Live Cell Encapsulation Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Live Cell Encapsulation Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. AUSTRIANOVA
    • 16.3.2. Merck KGaA
    • 16.3.3. Sphere Fluidics Ltd.
    • 16.3.4. ViaCyte, Inc.
    • 16.3.5. Blacktrace Holdings Ltd. (Dolomite Microfluidics)
    • 16.3.6. BIO INX
    • 16.3.7. Living Cell Technologies Ltd.
    • 16.3.8. Sigilon Therapeutics, Inc.
    • 16.3.9. Isogen
    • 16.3.10. Diatranz Otsuka Ltd.
    • 16.3.11. Sernova Corporation
    • 16.3.12. Atelerix Ltd.
    • 16.3.13. Neurotech Pharmaceuticals
    • 16.3.14. Kadimastem
    • 16.3.15. BUCHI Labortechnik AG
    • 16.3.16. Fluigent
    • 16.3.17. Encapsys LLC
    • 16.3.18. MiKroCaps
    • 16.3.19. Reed Pacific Pty Limited
    • 16.3.20. Lycored
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제