시장보고서
상품코드
1829466

고성능 플라스틱 시장 : 유형별, 제조 프로세스별, 최종사용자별 - 세계 예측(2025-2032년)

High Performance Plastic Market by Type, Manufacturing Process, End-User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

고성능 플라스틱 시장은 2032년까지 CAGR 8.19%로 619억 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 329억 6,000만 달러
추정연도 2025 355억 6,000만 달러
예측연도 2032 619억 달러
CAGR(%) 8.19%

폴리머의 능력, 규제 움직임, 제조 태세를 전략적 제품 개발의 전략적 제품 개발에 위치시키는 고성능성 플라스틱의 종합적인 방향성

고성능성 플라스틱은 높은 내열성, 내화학성, 기계적 탄성을 필요로 하는 모든 산업에서 설계의 패러다임을 재구성하고 있습니다. 이 소개에서는 이 소재 카테고리를 기존의 범용 플라스틱과 엔지니어링 금속 사이의 간극을 메우고, 설계자와 조달 리더에게 경량화, 내식성, 복잡한 형상의 제조 가능성을 제공하는 실현 가능한 폴리머의 일종으로 간주합니다.

첫 번째 견해는 고분자 화학 및 첨가제의 기술적 진보가 용도를 확장하고 성형 및 후가공의 제조 혁신이 처리량과 부품의 일관성을 향상 시켰음을 인정합니다. 동시에 제품 안전과 수명주기에 미치는 영향에 대한 규제가 강화되면서 재료 인증 프로그램 및 공급업체 감사에 대한 동기가 부여되고 있습니다. 따라서 이해관계자들은 고성능성 플라스틱을 부품으로만 볼 것이 아니라 제품 아키텍처, 인증 일정, 총소유비용에 영향을 미치는 시스템 레벨의 인에이블러로 인식해야 합니다.

컨셉에서 생산으로 전환하기 위해서는 재료 선택, 공정 능력, 공급업체의 성숙도를 조화시켜야 합니다. 이 종합적인 분석은 이러한 폴리머로 제조된 부품의 상업화 성공에 영향을 미치는 업스트림 원료 역학, 다운스트림 응용 수요, 그리고 부문 간 조정이 어떻게 작용하는지를 보여줍니다.

진화하는 소재 혁신, 지속가능성에 대한 기대, 첨단 제조 기술의 융합으로 공급업체 선택과 제품 설계의 필수 요소 재정의

소재 과학, 지속가능성에 대한 기대, 제조 자동화라는 세 가지 요소가 결합하여 고성능성 플라스틱을 둘러싼 환경은 크게 변화하고 있습니다. 새로운 고분자 화학 및 첨단 복합재료는 열적, 화학적 작동 범위를 확장하여 이전에는 금속이나 세라믹에 의존하던 분야에 대한 솔루션을 가능하게 합니다. 동시에 수명주기을 고려한 결과, 재활용성, 재자원화 적합성, 매립 탄소량 감소를 실현하는 폴리머의 채택이 가속화되고 있으며, 공급업체 선택 기준과 제품 설계의 제약이 재구성되고 있습니다.

제조 측면에서는 적층제조와 정밀 사출성형이 리드 타임을 단축하고, 조립 공정을 최소화하면서 성능을 향상시키는 복잡한 형상을 가능하게 합니다. 품질관리와 예지보전의 디지털화는 생산의 안정성과 추적성을 향상시키고 있으며, 이는 규제 대상 최종 시장에서 특히 중요합니다. 이러한 변화는 다운스트림 팀이 제조 가능성을 고려한 설계를 우선시하고, 개발 프로세스 초기에 재료 전문가를 참여시키도록 유도하고 있습니다.

이러한 역학을 종합하면 공급망에 대한 재평가가 이루어지고 있으며, 구매자는 재료의 혁신성, 공정 능력, 지속가능성에 대한 신뢰성을 갖춘 파트너를 찾고 있습니다. 순효과는 기능 간 조정과 전략적 공급업체 관계가 경쟁적 차별화를 결정하는 보다 통합된 밸류체인입니다.

최근 미국의 관세 조정에 따른 플라스틱 밸류체인 전반에서 전략적 조달 전환, 지역 생산능력 계획, 계약 리스크 재분배가 어떻게 촉진되고 있는지

최근 미국의 무역 정책 동향과 관세 조정은 고성능성 플라스틱의 밸류체인 전체에 구체적인 경영 영향을 미치고 있습니다. 특정 폴리머 카테고리 및 중간 원료에 대한 수입 관세는 전 세계에 분산된 공급 기지에 의존하는 제조업체의 조달 계산 방식을 바꾸고, 조달팀이 비용 구조, 공급업체 리스크, 재고 전략을 재검토하도록 유도하고 있습니다.

이에 따라 많은 기업이 조달 다변화를 모색하고, 2차 공급업체의 자격 인증을 강화하고, 관세의 영향을 줄이기 위해 현지 조달 프로그램을 가속화하고 있습니다. 이러한 변화는 또한 공급업체들의 비용 누적에 대한 투명성을 높이고, 관세 리스크를 배분하는 장기 계약에 대한 논의를 촉진하고 있습니다. 이와 함께 일부 제조업체는 관세 투입물에 대한 의존도를 낮추기 위해 BOM 및 부품 설계 조정을 평가하고, 일부 제조업체는 리드 타임을 단축하고 규제 준수 관리를 개선하기 위해 니어쇼어링 노력을 가속화하고 있습니다.

그 누적된 효과로 인해 상업 및 운영 리더들은 관세 변동에 대비한 불의의 사태에 대비하여 시나리오 플래닝에 중점을 두게 되었습니다. 이러한 현실적인 대응은 단기적인 공급 연속성과 지역 생산 능력 및 공급업체 개발에 대한 장기적인 전략적 투자 사이의 균형을 맞추고, 제품 성능 및 인증 타임라인을 손상시키지 않으면서도 탄력성을 확보하는 것입니다.

고분자 화학, 가공 경로, 최종 시장 요구 사항이 어떻게 교차하는지, 전략적 재료 선택이 어떻게 형성되는지, 세분화 중심의 심층적 인 관점을 밝힙니다.

고성능성 플라스틱 생태계에서 가치와 기술적 차별화가 어디에 있는지 이해하기 위해서는 부문 수준의 명확성이 필수적이며, 카테고리 분석에 사용되는 핵심 세분화 프레임워크에서 인사이트를 명확하게 도출할 수 있습니다. 유형별로 보면 폴리아미드(나일론), 폴리아미드이미드(PAI), 폴리에테르에테르케톤(PEEK), 폴리에테르이미드(PEI), 폴리에틸렌(PE), 폴리테트라플루오로에틸렌(PTFE), 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 폴리염화비닐(PVC), 폴리염화비닐(PVC) 등이 있습니다. 폴리염화비닐(PVC) 등이 있으며, 각 폴리머 클래스는 기계적 특성, 열 안정성, 내화학성 등 특정 용도에 적합한 특성을 가지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 고성능 플라스틱 시장 : 유형별

  • 폴리아미드(나일론)
  • 폴리아미드이미드(PAI)
  • 폴리에테르에테르케톤(PEEK)
  • 폴리에테르이미드(PEI)
  • 폴리에틸렌(PE)
  • 폴리테트라플루오로에틸렌(PTFE)
  • 폴리이미드(PI)
  • 폴리페닐렌설파이드(PPS)
  • 폴리염화비닐(PVC)

제9장 고성능 플라스틱 시장 : 제조 프로세스별

  • 블로우 성형
  • 압축 성형
  • 사출성형
  • 회전 성형

제10장 고성능 플라스틱 시장 : 최종사용자별

  • 항공우주 및 방위
  • 농업
  • 자동차
  • 건설
  • 일렉트로닉스
  • 의료기기

제11장 고성능 플라스틱 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 고성능 플라스틱 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 고성능 플라스틱 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Altana AG
    • Arkema S.A.
    • Asahi Kasei Corporation
    • Avient Corporation
    • BASF SE
    • Celanese Corporation
    • Covestro AG
    • Dow Inc.
    • DuPont de Nemours, Inc.
    • Ensinger Group
    • Evonik Industries AG
    • Hengst SE
    • Heraeus Holding GmbH
    • Kraiburg TPE GmbH
    • Lanxess AG
    • LyondellBasell Industries N.V.
    • Merck KGaA
    • Mitsubishi Chemical Group Corporation
    • Radici Partecipazioni SpA
    • RTP Company
    • Rochling SE & Co. KG
    • SABIC Group
    • SGL Carbon SE
    • Solvay S.A.
    • Sumitomo Chemical Co., Ltd.
    • Toray Industries, Inc.
    • TW Plastics GmbH & Co. KG
    • Victrex plc
    • Wacker Chemie AG
KSA 25.10.23

The High Performance Plastic Market is projected to grow by USD 61.90 billion at a CAGR of 8.19% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 32.96 billion
Estimated Year [2025] USD 35.56 billion
Forecast Year [2032] USD 61.90 billion
CAGR (%) 8.19%

A comprehensive orientation to high performance plastics that situates polymer capabilities, regulatory dynamics, and manufacturing readiness within strategic product development

High performance plastics are reshaping design paradigms across industries that demand elevated thermal, chemical, and mechanical resilience. This introduction frames the material category as an enabling class of polymers that bridge the gap between traditional commodity plastics and engineered metals, offering designers and procurement leaders a combination of weight reduction, corrosion resistance, and complex-form manufacturability.

The opening perspective acknowledges that technological advances in polymer chemistry and additives have expanded application windows, while manufacturing innovations in molding and post-processing have improved throughput and part consistency. At the same time, heightened regulatory attention to product safety and lifecycle impacts is motivating material qualification programs and supplier audits. Thus, stakeholders should view high performance plastics not only as components but as system-level enablers that influence product architecture, certification timelines, and total cost of ownership.

Transitioning from concept to production requires harmonizing material selection, process capability, and supplier maturity. This synthesis sets the stage for deeper analysis, highlighting how upstream raw material dynamics, downstream application demands, and cross-functional coordination together determine successful commercialization of components built from these polymers.

Evolving material innovations, sustainability expectations, and advanced manufacturing technologies converging to redefine supplier selection and product design imperatives

The landscape for high performance plastics is undergoing transformative shifts driven by converging forces in material science, sustainability imperatives, and manufacturing automation. Emerging polymer chemistries and advanced composites are expanding thermal and chemical operating envelopes, enabling solutions in sectors that previously relied on metals or ceramics. Concurrently, lifecycle considerations are accelerating adoption of polymers that offer recyclability, recyclate compatibility, or reduced embedded carbon, thereby reshaping supplier selection criteria and product design constraints.

On the manufacturing side, additive manufacturing and precision injection molding are reducing lead times and enabling complex geometries that improve performance while minimizing assembly steps. Digitalization in quality control and predictive maintenance is elevating production stability and traceability, which is especially important for regulated end markets. These shifts are prompting downstream teams to prioritize design for manufacturability and to engage materials experts earlier in the development process.

Taken together, these dynamics are prompting a re-evaluation of supply chains, with buyers seeking partners that combine material innovation, process capability, and sustainability credentials. The net effect is a more integrated value chain where cross-functional coordination and strategic supplier relationships determine competitive differentiation.

How recent United States tariff adjustments are prompting strategic sourcing shifts, regional capacity planning, and contractual risk reallocation across the plastics value chain

Recent trade policy developments and tariff adjustments in the United States are producing tangible operational consequences across the high performance plastics value chain. Import duties on certain polymer categories and intermediate feedstocks are altering sourcing calculus for manufacturers that rely on globally dispersed supply bases, prompting procurement teams to reassess cost structures, supplier risk, and inventory strategies.

As a result, many organizations are exploring diversified sourcing, increasing qualification efforts for secondary suppliers, and accelerating local content programs to mitigate duty exposure. These shifts are also encouraging greater transparency in supplier cost build-ups and stimulating discussions around long-term contractual arrangements that allocate tariff risk. In parallel, some manufacturers are evaluating adjustments to bill-of-materials and component designs to reduce dependence on tariffed inputs, while others are accelerating nearshoring initiatives to shorten lead times and improve control over regulatory compliance.

The cumulative effect is heightened focus on scenario planning, with commercial and operations leaders building contingencies that incorporate tariff volatility. This pragmatic response balances short-term supply continuity with longer-term strategic investments in regional capacity and supplier development, ensuring resilience without compromising product performance or certification timelines.

Deep segmentation-driven perspective revealing how polymer chemistry, processing routes, and end-market requirements intersect to shape strategic material selection

Segment-level clarity is critical to understanding where value and technical differentiation reside within the high performance plastics ecosystem, and insights are drawn explicitly from the core segmentation framework used to analyze the category. Based on Type, market coverage includes Polyamide (Nylon), Polyamide-imide (PAI), Polyetheretherketone (PEEK), Polyetherimide (PEI), Polyethylene (PE), Polytetrafluoroethylene (PTFE), Polyimide (PI), Polyphenylene sulfide (PPS), and Polyvinyl Chloride (PVC), and each polymer class brings a distinct combination of mechanical properties, thermal stability, and chemical resistance that drives suitability for specific applications.

Based on Manufacturing Process, the landscape is examined across Blow Molding, Compression Molding, Injection Molding, and Rotational Molding, and these process families influence achievable geometries, tolerances, and cost per part, shaping design choices and qualification timelines. Based on End-User, the principal application sectors considered are Aerospace & Defense, Agriculture, Automotive, Construction, Electronics, and Medical Devices, and end-market requirements dictate priorities such as weight reduction, outgassing behavior, sterilizability, and exposure resistance.

Viewed together, the segmentation highlights intersections where material selection and processing constraints converge with industry-specific certifications. This integrated perspective informs where investments in material development, tool design, and supplier capability will yield the greatest commercial and technical returns.

Regional dynamics that shape supply chain resilience, regulatory compliance, and customer proximity across Americas, Europe Middle East & Africa, and Asia-Pacific markets

Geographic dynamics continue to be a defining factor in commercial strategy for high performance plastics, and regional considerations influence supply chain resilience, regulatory compliance, and proximity to end markets. In the Americas, demand patterns are influenced by localized manufacturing clusters, automotive and aerospace program cycles, and policy shifts that affect trade and onshoring decisions. This region's proximity to key original equipment manufacturers creates opportunities for just-in-time partnerships and collaborative qualification programs.

In Europe, Middle East & Africa, regulatory stringency and sustainability mandates are strong drivers of material innovation and supplier transparency. Manufacturers in this region are increasingly prioritizing polymers with clear end-of-life pathways and documented supply chain traceability. Meanwhile, Asia-Pacific remains a center of production scale, advanced polymer manufacturing, and downstream assembly, where cost efficiency and manufacturing agility support rapid prototyping and high-volume production.

Across these regions, differences in regulatory frameworks, logistics infrastructure, and supplier ecosystems require tailored commercial approaches. Companies that align regional investment with local certification requirements, talent availability, and customer proximity will be better positioned to capture long-term opportunities while managing operational complexity.

Competitive dynamics, strategic partnerships, and portfolio differentiation among resin producers and compounders shaping supplier selection and innovation pathways

Competitive dynamics among suppliers and material innovators are central to how technology adoption and cost structures evolve in the industry. Leading resin manufacturers and specialized compounders are increasingly focusing on portfolio differentiation through advanced formulations, proprietary additive systems, and validated processing windows that reduce qualification time for customers. Strategic partnerships between material suppliers and OEMs are becoming more prevalent, facilitating co-development programs that accelerate time-to-market for critical applications.

Mergers and targeted acquisitions continue to be employed to access niche chemistries, expand regional footprint, and secure capacity for high margin material grades. At the same time, new entrants are leveraging application-specific know-how and flexible manufacturing to serve segments of the market that demand rapid customization. This dynamic creates opportunities for tiered supplier models where global players provide baseline reliability and scale, while specialized firms supply high-value grades and technical support.

From a purchasing perspective, supplier selection increasingly weighs technical support, regulatory documentation, and sustainability performance alongside traditional metrics such as lead time and price. Companies that can demonstrate robust compliance frameworks, transparent supply chains, and collaborative development processes will secure preferred positions with OEMs operating in regulated or mission-critical sectors.

High-impact, practical actions for executives to integrate materials expertise, diversify supply, and secure sustainability credentials to accelerate program delivery

Leaders seeking to capture value in the high performance plastics arena should adopt a set of pragmatic, action-oriented priorities that address technology, supply chain, and commercial execution. First, embed materials expertise into early-stage product definition so that polymer selection, processing constraints, and regulatory requirements are resolved before tooling commitment. This reduces redesign risk and shortens qualification cycles.

Second, diversify supplier relationships and formalize dual-sourcing strategies for critical feedstocks to mitigate geopolitical and tariff exposure. Complement commercial contracts with scenario-based inventory policies and regular supplier performance reviews. Third, invest in partnerships with specialist compounders and processing experts to secure access to niche grades and technical know-how, particularly for regulated end markets such as medical devices and aerospace.

Finally, prioritize sustainability credentials that align with customer procurement policies, including material traceability and end-of-life strategies. By combining these actions-early technical integration, supply base resilience, targeted partnerships, and sustainability alignment-industry leaders will improve time-to-market, reduce program risk, and enhance long-term supplier relationships.

A mixed-methods research approach blending expert interviews, technical literature synthesis, and rigorous validation to ensure actionable and verifiable insights

The research approach for this analysis combined qualitative expert consultations, technical literature synthesis, and cross-functional practitioner interviews to build a robust understanding of material performance, processing realities, and commercial dynamics. Primary inputs included conversations with polymer scientists, process engineers, procurement leaders, and product managers who provided insight into qualification pain points, supplier capabilities, and end-market requirements.

Secondary inputs comprised peer-reviewed publications, regulatory guidance, and standards documentation that underpin material selection and certification processes. Data validation was achieved through triangulation across sources and iterative review with industry specialists to ensure technical accuracy. Methodological transparency was maintained by documenting assumptions, inclusion criteria for segmentation, and the scope of end markets covered.

Where uncertainty persisted, sensitivity checks and scenario analyses were used to examine the operational implications of supply disruptions, tariff movements, and material substitution. This mixed-methods approach ensures that conclusions are grounded in observable practice and technical consensus while remaining applicable to strategic decision-making.

Concluding perspective on how integrated material strategy, supplier resilience, and operational alignment are essential to unlocking high performance polymer advantages

In conclusion, high performance plastics occupy a strategic position at the intersection of material innovation, manufacturing capability, and regulatory scrutiny. Their elevated performance characteristics enable design freedom and system-level benefits, yet realizing those benefits depends on early collaboration between design, materials, and procurement teams. Supply chain resilience, regional nuance, and tariff dynamics add complexity that must be actively managed through diversified sourcing, supplier partnerships, and scenario planning.

Companies that integrate materials expertise early, pursue targeted supplier collaboration, and prioritize sustainability and traceability will be best positioned to capitalize on technological advances. The ongoing evolution of processing technologies and polymer chemistries will continue to expand application windows, but competitive advantage will accrue to organizations that convert technical capability into reliable, certifiable production at scale.

This summary underscores the importance of strategic alignment across functions and geographies to unlock the potential of high performance polymers while managing regulatory and commercial risk.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising demand for bio-based high performance plastics in automotive lightweighting applications
  • 5.2. Integration of additive manufacturing technologies with high performance polymer materials for rapid prototyping
  • 5.3. Development of flame retardant high performance plastics for aerospace safety and weight reduction
  • 5.4. Adoption of high performance thermoplastic composites for renewable energy components like wind turbine blades
  • 5.5. Innovations in high temperature resistant plastics for oil and gas exploration and production equipment
  • 5.6. Growing use of high performance polymer blends in medical devices for sterilization and biocompatibility
  • 5.7. Expansion of recyclable or chemically recyclable high performance plastics to meet circular economy goals
  • 5.8. Customization of high performance plastics through nanocomposite enhancements for improved mechanical performance
  • 5.9. Regulatory drivers and incentives shaping high performance plastic formulations with reduced environmental impact
  • 5.10. Strategic partnerships between material suppliers and OEMs to co-develop next generation high performance polymers

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. High Performance Plastic Market, by Type

  • 8.1. Polyamide (Nylon)
  • 8.2. Polyamide-imide(PAI)
  • 8.3. Polyetheretherketone(PEEK)
  • 8.4. Polyetherimide(PEI)
  • 8.5. Polyethylene (PE)
  • 8.6. Polyetrafluorethylene(PTFE)
  • 8.7. Polyimide(PI)
  • 8.8. Polyphenyleensulfid(PPS)
  • 8.9. Polyvinyl Chloride (PVC)

9. High Performance Plastic Market, by Manufacturing Process

  • 9.1. Blow Molding
  • 9.2. Compression Molding
  • 9.3. Injection Molding
  • 9.4. Rotational Molding

10. High Performance Plastic Market, by End-User

  • 10.1. Aerospace & Defense
  • 10.2. Agriculture
  • 10.3. Automotive
  • 10.4. Construction
  • 10.5. Electronics
  • 10.6. Medical Devices

11. High Performance Plastic Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. High Performance Plastic Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. High Performance Plastic Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Altana AG
    • 14.3.2. Arkema S.A.
    • 14.3.3. Asahi Kasei Corporation
    • 14.3.4. Avient Corporation
    • 14.3.5. BASF SE
    • 14.3.6. Celanese Corporation
    • 14.3.7. Covestro AG
    • 14.3.8. Dow Inc.
    • 14.3.9. DuPont de Nemours, Inc.
    • 14.3.10. Ensinger Group
    • 14.3.11. Evonik Industries AG
    • 14.3.12. Hengst SE
    • 14.3.13. Heraeus Holding GmbH
    • 14.3.14. Kraiburg TPE GmbH
    • 14.3.15. Lanxess AG
    • 14.3.16. LyondellBasell Industries N.V.
    • 14.3.17. Merck KGaA
    • 14.3.18. Mitsubishi Chemical Group Corporation
    • 14.3.19. Radici Partecipazioni SpA
    • 14.3.20. RTP Company
    • 14.3.21. Rochling SE & Co. KG
    • 14.3.22. SABIC Group
    • 14.3.23. SGL Carbon SE
    • 14.3.24. Solvay S.A.
    • 14.3.25. Sumitomo Chemical Co., Ltd.
    • 14.3.26. Toray Industries, Inc.
    • 14.3.27. TW Plastics GmbH & Co. KG
    • 14.3.28. Victrex plc
    • 14.3.29. Wacker Chemie AG
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제