시장보고서
상품코드
1830280

키토산 시장 : 유래, 형태, 분자량, 탈아세틸화 정도, 용도, 판매 채널별 - 세계 예측(2025-2032년)

Chitosan Market by Source, Form, Molecular Weight, Degree Of Deacetylation, Application, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

키토산 시장은 2032년까지 CAGR 10.69%로 48억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 21억 3,000만 달러
추정연도 2025 23억 5,000만 달러
예측연도 2032 48억 1,000만 달러
CAGR(%) 10.69%

원료의 다양성, 제품 형태의 복잡성, 산업 전반에 걸쳐 채택을 촉진하는 품질 기준의 발전에 초점을 맞춘 키토산의 상황을 소개

키토산은 농업, 퍼스널케어, 식품, 의약품, 수처리 등 재생한 원료와 고부가가치 산업 용도의 가교 역할을 하는 다목적 바이오폴리머로 부상하고 있습니다. 원료는 갑각류 유래에서 점점 더 정교해지는 곰팡이 유래까지 다양하며, 제품 형태는 분말과 플레이크에서 다양한 최종 용도의 기능성을 가능하게 하는 성능 필름, 섬유, 용액, 용도에 특화된 매트릭스까지 다양합니다. 이러한 복잡성으로 인해 규제, 성능, 제형 요건을 충족시키기 위해 분자량 분포와 탈아세틸화 정도를 조정하는 데 중점을 둔 다학제적 연구와 산업 투자가 이루어지고 있습니다. 그 결과, 상업 전략은 원료의 변동성, 공급망의 탄력성, 용도에 맞는 품질 매개변수를 조정해야 합니다.

상품으로서의 기대에서 제제 등급의 기능성 바이오소재로 전환함에 따라 업계 관계자들은 엄격한 의약품 및 식품 접촉 기준을 충족시키기 위해 스케일업 경로, 품질 보증 프로토콜 및 다운스트림 공정을 개선하고 있습니다. 동시에, 지속가능성에 대한 이야기와 순환 경제에 대한 믿음은 제조업체와 최종사용자가 추적 가능성과 환경 발자국 감소를 우선시함으로써 공급처의 선택을 재구성하고 있습니다. 이러한 배경에서 이해관계자들은 재료과학의 변형을 구체적인 성능 결과와 상업적 대안으로 전환할 수 있는 명확하고 기술적으로 근거가 있는 인사이트를 필요로 합니다.

키토산 생산, 품질관리, 용도 중심의 혁신을 재정의하는 기술적, 규제적 변곡점을 탐색

키토산의 상황은 기술 발전, 규제 강화, 공급 역학 변화로 인해 크게 변화하고 있습니다. 바이오프로세스의 혁신은 계절적 갑각류 폐기물에 대한 의존도를 줄이고 보다 안정적인 고분자 특성을 제공하는 곰팡이 키토산 경로를 열어주었습니다. 동시에 분자량 분획 및 탈아세틸화 기술을 통해 표적 약물전달 및 정밀 종자 코팅과 같은 틈새 용도에 맞게 유변학, 접착력 및 생물학적 활성 특성을 조정할 수 있게 되었습니다. 이러한 발전은 고분자 화학, 공정 공학, 용도 테스트에 대한 집중적인 투자에 의해 지원되고 있습니다.

지속가능성 및 세이프 바이 디자인 소재에 대한 규제 모멘텀은 제품 사양 및 조달 기준을 재구성하고, 제조업체가 인증, 추적성 및 오염 관리 프로세스에 투자하도록 유도하고 있습니다. 동시에 디지털화된 공급망, 수직적 통합의 발전, 원자재 공급업체와의 전략적 파트너십은 경쟁 역학을 변화시키고 일관된 품질과 준수된 문서화를 보장할 수 있는 기업에게 유리하게 작용하고 있습니다. 이해관계자들의 적응에 따라 재료 혁신, 규제 준수, 상업적 민첩성이 시장의 주도권을 결정하는 새로운 균형이 형성되고 있습니다.

미국의 최근 관세 조치가 키토산 분야공급망 선택, 조달 전략, 국내 생산 능력 결정에 미치는 다면적인 영향을 이해

2025년 중 미국에서 새로운 관세 조치가 도입됨에 따라 조달 선택, 물류 구성, 전략적 투자에 파급되는 중층적 영향이 발생합니다. 관세 관련 비용 압박은 세계 공급망 재검토를 가속화하고, 제조업체들이 수입 관세에 대한 노출을 줄이기 위해 니어쇼어링(near-shoring) 옵션을 검토하고, 국내 생산 능력 확대를 추구하게 만들었습니다. 이러한 반응은 갑각류 유래 원료에서 특히 두드러졌으며, 계절성과 무역 마찰로 인해 공급 변동이 복잡해져 다운스트림 사용자들이 곰팡이 유래 대체품을 고려하거나 공급업체 포트폴리오를 다양화하도록 유도했습니다.

또한 관세 동향은 계약 구조와 장기 조달 전략에도 영향을 미쳐 구매자는 품질 보증, 오염 관리, 시차 보충 일정을 포함한 보다 통합적인 공급 계약을 협상하게 되었습니다. 투자자와 기술 개발자들은 확장 가능하고 현지화된 가공 기술, 그리고 육류 처리 비용의 상승에도 불구하고 이윤을 유지하기 위한 자동화에 초점을 맞추어 대응해 왔습니다. 또한 의약품 및 식수 처리와 같이 규정 준수도가 높은 분야에서는 수입 마찰로 인해 시장 접근 및 리스크 관리를 지원하는 예측 가능하고 감사 가능한 공급망의 가치가 부각되면서 규제 준수 및 인증 프로세스에 대한 관심도 높아졌습니다.

원료의 원산지, 재료 형태, 분자 특성, 채널 역학을 최종 용도의 성능과 상품화로 연결하는 다차원적 세분화 프레임워크를 해독

미묘한 세분화를 통해 키토산공급원, 형태, 분자 특성, 탈아세틸화 정도, 용도, 판매 채널이 전체 키토산 생태계에서 어떻게 서로 다른 가치 풀과 기술 요구 사항을 창출하는지 알 수 있습니다. 공급원에 따라 시장은 역사적으로 게 껍질과 새우 껍질을 주원료로 사용해 왔지만, 곰팡이에서 추출한 키토산은 알레르기가 적고 생산 프로파일을 더 쉽게 제어할 수 있으므로 선호되고 있습니다. 형태별로는 섬유 및 특수지 처리를 위한 섬유 및 필름 구조, 화장품 및 식품 용도에서 유연한 배합을 가능하게 하는 플레이크 및 파우더, 코팅 및 종자 처리 공정에 적합한 솔루션 등 다양한 형태에 대응해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 키토산 시장 : 원료별

  • 게 껍질
  • 새우 껍질

제9장 키토산 시장 : 형태별

  • 파이버
  • 필름
  • 플레이크
  • 파우더
  • 솔루션

제10장 키토산 시장 : 분자량별

  • 고분자량
  • 저분자량
  • 중분자량

제11장 키토산 시장 : 탈아세틸화 정도별

  • 고탈아세틸화 정도
  • 저탈아세틸화 정도
  • 중탈아세틸화 정도

제12장 키토산 시장 : 용도별

  • 농업과 원예
    • 바이오 비료
    • 종자 코팅
  • 화장품과 퍼스널케어
    • 유화제
    • 헤어케어
    • 스킨케어
  • 식품 및 음료
    • 식이보충제
    • 향료 캐리어
    • 방부제
  • 종이와 텍스타일
    • 특수지
    • 텍스타일 처리
  • 의약품
    • 약물전달
    • 조직공학
    • 창상 피복재
  • 수처리
    • 음료수 처리
    • 폐수 처리

제13장 키토산 시장 : 판매 채널별

  • 직접 판매
  • 판매업체 및 트레이더
  • 온라인 마켓플레이스

제14장 키토산 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 키토산 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 키토산 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Primex ehf.
    • KitoZyme SA
    • Advanced Biopolymers AS
    • Biophrame Technologies
    • Chitosanlab
    • Dainichiseika Color & Chemicals Mfg. Co. Ltd.
    • FMC Corporation
    • Foodchem International Corporation
    • G.T.C. Bio Corporation
    • Golden-Shell Pharmaceutical Co. Ltd.
    • Heppe Medical Chitosan GmbH
    • KIMICA Corporation
    • Koyo World(Hong Kong) Co. Ltd.
    • KYTOSAN LLC
    • Mahtani Chitosan Private Limited
    • Merck KGaA
    • Meron Biopolymers
    • Nano3Bio
    • Panvo Organics Pvt. Ltd.
    • Qingdao Yunzhou Biochemistry Co.
    • United Chitotechnologies Inc.
KSA 25.10.24

The Chitosan Market is projected to grow by USD 4.81 billion at a CAGR of 10.69% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.13 billion
Estimated Year [2025] USD 2.35 billion
Forecast Year [2032] USD 4.81 billion
CAGR (%) 10.69%

Introduce the chitosan landscape highlighting feedstock diversity, product form complexity, and advancing quality standards driving cross-sector adoption

Chitosan is emerging as a versatile biopolymer that bridges renewable feedstocks and high-value industrial applications across agriculture, personal care, food, pharmaceuticals, and water treatment. The raw material landscape spans crustacean-derived sources and increasingly sophisticated fungal alternatives, while product forms range from powders and flakes to performance films, fibers, solutions, and application-specific matrices that enable diverse end-use functionalities. This complexity has prompted multidisciplinary research and industrial investment focused on tuning molecular weight distributions and degree of deacetylation to meet regulatory, performance, and formulation requirements. As a result, commercial strategies must reconcile raw material variability, supply chain resilience, and application-specific quality parameters.

Transitioning from commodity expectations toward formulation-grade, functional biomaterials, industry participants are refining scale-up pathways, quality assurance protocols, and downstream processing to meet stringent pharmaceutical and food-contact standards. Concurrently, sustainability narratives and circular-economy credentials are reshaping sourcing choices, with manufacturers and end-users prioritizing traceability and lower environmental footprints. Given this backdrop, stakeholders need clear, technically grounded insights that translate material science variations into tangible performance outcomes and commercial options.

Explore the technological and regulatory inflection points that are redefining chitosan production, quality control, and application-driven innovation

The chitosan landscape is undergoing transformative shifts driven by technological advances, regulatory tightening, and changing supply dynamics. Innovations in bioprocessing have unlocked fungal chitosan pathways that reduce reliance on seasonal crustacean waste and offer more consistent polymer characteristics. At the same time, tailored deacetylation techniques and molecular-weight fractionation are enabling formulators to tailor rheological, adhesive, and bioactive properties for niche applications such as targeted drug delivery and precision seed coatings. These advances are supported by convergent investments across polymer chemistry, process engineering, and application-specific testing.

Regulatory momentum toward sustainability and safe-by-design materials is reshaping product specifications and procurement criteria, prompting manufacturers to invest in certification, traceability, and contamination-control processes. Simultaneously, digitized supply chains, increased vertical integration, and strategic partnerships with raw material suppliers are changing competitive dynamics, favoring players that can guarantee consistent quality and compliant documentation. As stakeholders adapt, a new equilibrium is emerging where material innovation, regulatory compliance, and commercial agility determine market leadership.

Understand the multifaceted effects of recent United States tariff actions on supply chain choices, procurement strategies, and domestic capacity decisions in the chitosan sector

The introduction of new tariff measures in the United States during 2025 has produced layered effects that ripple through sourcing choices, logistics configurations, and strategic investment. Tariff-related cost pressures accelerated a reassessment of global supply chains, prompting manufacturers to examine nearshoring options and to pursue domestic capacity expansion to mitigate exposure to import duties. This response has been particularly pronounced for crustacean-derived feedstocks, where seasonality and trade frictions compound supply volatility, nudging downstream users to consider fungal-derived alternatives or to diversify supplier portfolios.

Moreover, tariff dynamics have influenced contract structures and long-term procurement strategies, driving buyers to negotiate more integrated supply agreements that include quality guarantees, contamination controls, and staggered replenishment schedules. Investors and technology developers have responded by focusing on scalable, localized processing technologies and on automation to preserve margins despite higher landed costs. Regulatory compliance and certification processes also gained prominence as import friction highlighted the value of predictable, auditable supply chains that support market access and risk management for high-compliance sectors such as pharmaceuticals and potable water treatment.

Decode the multi-dimensional segmentation framework that links feedstock origin, material form, molecular characteristics, and channel dynamics to end-use performance and commercialization

A nuanced segmentation view reveals how source, form, molecular attributes, degree of deacetylation, application, and sales channels create distinct value pools and technical requirements across the chitosan ecosystem. Based on source, the market has historically depended on crab shell and shrimp shell as primary feedstocks, yet fungal-derived chitosan is gaining traction due to its lower allergenicity and more controllable production profiles. Based on form, producers must accommodate a spectrum that includes fiber and film structures for textile and specialty paper treatments, flakes and powder for formulation flexibility in cosmetics and food applications, and solutions suited for coating and seed-treatment processes.

Based on molecular weight, performance differentiation between high, medium, and low molecular-weight fractions is critical for applications ranging from wound dressing matrices and tissue engineering scaffolds to fine-functionality carriers in dietary supplements. Based on degree of deacetylation, high, medium, and low grades allow tuning of solubility, charge density, and bioactivity, which in turn influence compatibility with emulsifiers, drug delivery systems, and water-treatment flocculation. Based on application, sectors include agriculture and horticulture with specific uses such as biofertilizer formulations and seed coatings, cosmetics and personal care where roles cover emulsifier functions as well as hair care and skin care formulations, food and beverages with applications in dietary supplements, flavor carriers, and preservative systems, paper and textiles encompassing specialty paper production and textile treatment, pharmaceuticals with targeted needs in drug delivery, tissue engineering and wound dressing, and water treatment addressing both drinking water and wastewater treatment streams. Finally, based on sales channel, go-to-market strategies span direct sales relationships, distribution and trading networks, and digital platforms or online marketplaces that influence customer reach, pricing dynamics, and service models.

Assess how divergent regional drivers, regulatory regimes, and industrial capabilities are shaping supply, innovation, and demand patterns across the global chitosan landscape

Regional dynamics shape supply chains, regulatory expectations, and innovation clusters in distinct ways across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, there is an emphasis on building resilient domestic processing and enhancing supply security, driven by both sustainability objectives and recent trade measures that incentivize local production. This has prompted investment in processing units and partnerships that shorten logistics and improve traceability for high-compliance end uses. By contrast, the regulatory landscape in Europe, Middle East & Africa is characterized by stringent product safety and environmental standards that favor certified, well-documented material streams and stimulate demand for higher-purity and pharma-grade chitosan.

Asia-Pacific continues to play a dual role as a major raw-material producer and as a center for scale-up manufacturing, with robust capabilities in both crustacean processing and emerging fungal fermentation technologies. Regional research hubs and industrial clusters have supported rapid innovation in molecular-weight manipulation and application-specific formulations. Across regions, differences in agricultural practices, cosmetic regulation, and water-treatment infrastructure create divergent demand profiles that suppliers must navigate through localized product development and region-specific compliance strategies.

Examine how leading players build competitive advantage through feedstock control, tailored R&D, quality systems, and close collaboration with application partners

Leading companies in the chitosan arena are differentiating through a combination of vertical integration, targeted R&D investments, and strategic partnerships that bridge raw material sourcing and end-use application development. Some organizations are prioritizing control of feedstock streams by securing long-term partnerships with fisheries and alternative biomass suppliers, while others focus on fermentation-based production platforms to achieve consistency and regulatory compatibility. Across the board, companies are enhancing their formulation expertise to deliver application-ready grades tailored for pharmaceuticals, food-contact systems, and advanced agriscience solutions.

Commercial strategies increasingly pair technical services with product offerings, enabling suppliers to support trial programs, regulatory dossiers, and scale-up activities for strategic customers. Investments in quality-management systems, certification, and laboratory capabilities are enabling supply chain differentiation that reduces adoption friction for high-compliance sectors. Additionally, a subset of companies are exploring licensing and co-development models with material-science labs and end-user OEMs to accelerate product-market fit and to share the risks of new application commercialization.

Implement an integrated strategy that balances feedstock diversification, targeted material-grade development, compliance excellence, customer co-development, and geographic resilience

Industry leaders should adopt a multi-pronged strategy that balances supply resilience, technical differentiation, and commercial agility. First, diversifying feedstock portfolios to include both crustacean-derived and fungal-sourced chitosan will reduce exposure to seasonal and trade-related disruptions while creating options for allergen-sensitive and regulatory-constrained applications. Second, investing in fractionation capabilities to produce targeted molecular-weight and degree-of-deacetylation grades will enable tighter alignment with demanding end uses such as wound care and drug delivery, and will support premium positioning.

Third, pursue closer integration with strategic customers through co-development agreements, pilot programs, and technical service offerings that reduce time-to-market and create stickier commercial relationships. Fourth, strengthen compliance and sustainability credentials by implementing traceability systems, contamination control, and environmental performance metrics that satisfy regulators and brand owners. Fifth, optimize channel strategies by balancing direct sales for large strategic accounts, distributor partnerships for regional penetration, and digital marketplace presence for niche and emerging customers. Lastly, consider geographic diversification of processing capacity to mitigate tariff impacts and to meet localized regulatory expectations, while using targeted M&A or partnerships to accelerate capability acquisition where appropriate.

Outline a rigorous mixed-methods research process combining expert interviews, lab verification, regulatory review, and data triangulation to underpin actionable insights

The research approach combined primary expert engagement, laboratory verification, and systematic secondary analysis to ensure findings are robust and application-relevant. Primary inputs included structured interviews with material scientists, process engineers, procurement leads, and regulatory specialists across industrial, academic, and end-user organizations, enabling cross-validation of technical performance requirements and commercial priorities. Laboratory-level assessments focused on molecular-weight distribution profiling, degree-of-deacetylation measurement, and functional performance assays relevant to coatings, formulations, and flocculation, providing empirical grounding for material-differentiation insights.

Secondary analysis synthesized peer-reviewed literature, regulatory guidance documents, patent landscapes, and trade data to map supply chain configurations and to identify technology trajectories. Data triangulation methods were used to reconcile qualitative inputs with experimental findings and documented regulatory positions. Throughout the process, quality controls included reproducibility checks, expert peer review, and methodological transparency in the appendix to enable replication. Acknowledged limitations include the evolving nature of fungal-production technologies and the potential for rapid regulatory change, which are addressed through sensitivity analyses and scenario planning in the supporting materials.

Summarize the strategic implications of evolving material science, supply-chain resilience, and application-driven commercialization for chitosan stakeholders

In conclusion, chitosan is transitioning from a commodity-derived polymer to a strategically important functional biomaterial with application-specific performance expectations and regulatory constraints. This evolution is driven by advances in feedstock diversification, molecular tailoring, and process control, as well as by shifting trade dynamics that have heightened the importance of supply-chain resilience. For stakeholders across agriculture, personal care, food, pharmaceuticals, and water treatment, the imperative is to align material specifications with end-use requirements while building procurement and production strategies that can withstand policy and market shocks.

Organizations that proactively invest in targeted material capabilities, quality and compliance systems, and customer-centric commercialization models will be best positioned to capture the value created by application-driven demand. Conversely, firms that maintain a narrow focus on commodity supply without addressing the technical and regulatory nuances risk margin compression and customer attrition. The path forward emphasizes integration of technical excellence with commercial foresight to transform chitosan from a raw input into a differentiated solution component.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Emergence of nanochitosan formulations for targeted drug delivery in oncology and neurology
  • 5.2. Development of eco friendly chitosan extraction methods leveraging enzymatic hydrolysis to reduce chemical usage
  • 5.3. Integration of chitosan based biodegradable films in sustainable packaging solutions for perishable foods
  • 5.4. Rising strategic collaborations between chitosan suppliers and pharmaceutical companies for advanced wound healing applications
  • 5.5. Increasing regulatory approvals for medical grade chitosan scaffolds in tissue engineering and regenerative medicine
  • 5.6. Adoption of chitosan coated fertilizers to enhance soil health and optimize nutrient uptake in precision agriculture systems

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Chitosan Market, by Source

  • 8.1. Crab Shell
  • 8.2. Fungal
  • 8.3. Shrimp Shell

9. Chitosan Market, by Form

  • 9.1. Fiber
  • 9.2. Film
  • 9.3. Flakes
  • 9.4. Powder
  • 9.5. Solution

10. Chitosan Market, by Molecular Weight

  • 10.1. High Molecular Weight
  • 10.2. Low Molecular Weight
  • 10.3. Medium Molecular Weight

11. Chitosan Market, by Degree Of Deacetylation

  • 11.1. High Degree Of Deacetylation
  • 11.2. Low Degree Of Deacetylation
  • 11.3. Medium Degree Of Deacetylation

12. Chitosan Market, by Application

  • 12.1. Agriculture And Horticulture
    • 12.1.1. Biofertilizer
    • 12.1.2. Seed Coating
  • 12.2. Cosmetics And Personal Care
    • 12.2.1. Emulsifier
    • 12.2.2. Hair Care
    • 12.2.3. Skin Care
  • 12.3. Food And Beverages
    • 12.3.1. Dietary Supplement
    • 12.3.2. Flavor Carrier
    • 12.3.3. Preservative
  • 12.4. Paper And Textiles
    • 12.4.1. Specialty Paper
    • 12.4.2. Textile Treatment
  • 12.5. Pharmaceuticals
    • 12.5.1. Drug Delivery
    • 12.5.2. Tissue Engineering
    • 12.5.3. Wound Dressing
  • 12.6. Water Treatment
    • 12.6.1. Drinking Water Treatment
    • 12.6.2. Wastewater Treatment

13. Chitosan Market, by Sales Channel

  • 13.1. Direct Sales
  • 13.2. Distributors & Traders
  • 13.3. Online Marketplaces

14. Chitosan Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Chitosan Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Chitosan Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Primex ehf.
    • 17.3.2. KitoZyme SA
    • 17.3.3. Advanced Biopolymers AS
    • 17.3.4. Biophrame Technologies
    • 17.3.5. Chitosanlab
    • 17.3.6. Dainichiseika Color & Chemicals Mfg. Co. Ltd.
    • 17.3.7. FMC Corporation
    • 17.3.8. Foodchem International Corporation
    • 17.3.9. G.T.C. Bio Corporation
    • 17.3.10. Golden-Shell Pharmaceutical Co. Ltd.
    • 17.3.11. Heppe Medical Chitosan GmbH
    • 17.3.12. KIMICA Corporation
    • 17.3.13. Koyo World (Hong Kong) Co. Ltd.
    • 17.3.14. KYTOSAN LLC
    • 17.3.15. Mahtani Chitosan Private Limited
    • 17.3.16. Merck KGaA
    • 17.3.17. Meron Biopolymers
    • 17.3.18. Nano3Bio
    • 17.3.19. Panvo Organics Pvt. Ltd.
    • 17.3.20. Qingdao Yunzhou Biochemistry Co.
    • 17.3.21. United Chitotechnologies Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제