시장보고서
상품코드
1830318

차세대 시퀀싱 시장 : 기술, 제품 유형, 워크플로우, 최종사용자, 용도별 - 세계 예측(2025-2032년)

Next Generation Sequencing Market by Technology, Product Type, Workflow, End User, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

차세대 시퀀싱 시장은 2032년까지 CAGR 24.79%로 1,257억 8,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 213억 8,000만 달러
추정연도 2025 266억 9,000만 달러
예측연도 2032 1,257억 8,000만 달러
CAGR(%) 24.79%

차세대 시퀀싱에 대한 전략적 지향점은 기술 발전과 임상 도입을 업무 우선순위와 이해관계자의 의사결정로 연결

차세대 염기서열 분석(NGS)은 틈새 실험실 기술에서 생물의학 연구, 진단, 바이오의약품의 혁신을 형성하는 기반 플랫폼으로 발전했습니다. 이 소개에서는 NGS를 효과적으로 활용하기 위해 의사결정권자가 조정해야 할 기술적 성숙도, 임상 적용 확대, 운영상 과제에 대해 개괄적으로 설명합니다. 시퀀싱 화학, 장비 처리량, 생물정보학 툴 세트의 발전으로 기술적 장벽이 낮아지고 있으며, 종양학, 감염 감시, 희귀질환 유전학 등 실제 임상 적용을 통해 임상적 유용성이 입증되고 있습니다. 동시에, 시퀀싱 데이터가 환자 치료 및 치료 개발에 점점 더 유용해짐에 따라 기업은 데이터 품질, 상호 운용성 및 규제 준수에 대한 기대치가 높아지고 있습니다.

현재 상황을 이해하려면 기술의 진화와 사용자 니즈의 상호작용에 주목해야 합니다. 연구기관은 처리량과 정확도의 균형을 갖춘 재현 가능한 워크플로우를 원하고, 임상의는 전자건강기록 시스템에 통합할 수 있는 실용적인 보고서를 원하며, 치료제 개발자는 바이오마커 탐색 및 환자 계층화를 위해 고충실도 유전체 데이터에 의존하고 있습니다. 이에 따라 데이터 스토리지, 확장 가능한 계산, 견고한 분석 파이프라인 등 인프라에 대한 고려사항이 장비 선택만큼이나 중요해지고 있습니다. 도입이 진행됨에 따라 전략적 이해관계자들은 단기적인 성과 지표뿐만 아니라 장기적인 운영 비용, 벤더의 로드맵, 생태계 파트너십도 평가해야 합니다.

이 요약은 NGS가 이제 시스템 차원의 투자임을 강조함으로써 이후 섹션의 분위기를 조성하고 있습니다. 효과적인 도입은 기술 역량을 워크플로우 요구사항과 환자 중심의 결과와 일치시키면서 진화하는 규제 기대치 및 세계 공급망 역학에 적응하는 데 달려 있습니다.

시퀀싱 능력, 검증에 대한 기대, 공동 배포 모델을 재정의하는 기술적, 분석적, 규제적 동향 수렴

차세대 시퀀싱의 환경은 역량과 채택을 재구성하는 여러 수렴하는 힘에 의해 추진되는 변혁적 변화의 과정에 있습니다. 첫째, 장비의 기술 혁신은 속도, 정확성, 비용 효율성을 최우선으로 하여 신속한 감염병 병원체 식별 및 실시간 종양 모니터링과 같은 새로운 이용 사례를 가능하게 하고 있습니다. 둘째, 바이오인포매틱스는 맞춤형 스크립트에서 정렬, 주석, 임상 보고에 적합한 재현성 있는 변종 코딩을 통합한 점점 더 표준화되고 검증된 파이프라인으로 이동하고 있습니다. 이러한 방법론의 발전은 검사기관 간 편차를 줄이고, 결과 도출 시간을 단축하여 NGS의 임상적, 상업적 가치 제안을 증폭시키고 있습니다.

동시에 데이터 관리와 스토리지의 패러다임도 진화하고 있습니다. 이해관계자들은 데이터 주권, 대기 시간, 보안 문제를 조정하기 위해 클라우드 스토리지와 On-Premise 컴퓨팅을 결합한 하이브리드 아키텍처를 채택하는 경우가 많아지고 있습니다. 전자의무기록 및 임상 의사결정 지원 툴와의 통합이 더욱 원활하게 이루어지고 있으며, 유전체 지식이 진료현장에서의 의사결정에 반영되고 있습니다. 규제 프레임워크는 이러한 현실에 적응하고 있으며, 분석적 및 임상적 검증, 의료기기로서의 소프트웨어에 대한 고려, 참조 데이터세트의 출처 등에 더욱 초점을 맞추었습니다. 마지막으로 학술 센터, 진단 실험실, 바이오 제약사 간의 파트너십을 통해 분석 및 동반 진단 약품의 공동 개발이 가속화되고 있으며, 공동 개발 모델도 변화하고 있습니다. 이러한 변화로 인해 기술 혁신, 검증의 엄격함, 생태계 파트너십이 NGS 도입의 속도와 범위를 함께 결정하는 역동적인 환경이 조성되고 있습니다.

2025년 관세 조치로 인해 실험실 및 서비스 프로바이더 전반의 시퀀싱 공급망, 조달 행동, 업무 회복 전략이 어떻게 변화했는지

미국의 2025년 관세 도입은 유전체 기술의 근본적인 과학적 가치를 바꾸지 않으면서도 차세대 시퀀싱공급망, 조달 전략, 비용 관리 방식에 다면적인 영향을 미쳤습니다. 관세 조치는 수입품의 양륙 비용을 상승시키고 조직이 공급업체 다변화를 재평가하도록 유도하여 장비, 시약 및 보조 부품의 흐름에 영향을 미쳤습니다. 그 결과, 조달팀은 지역 공급업체의 벤더 인증 프로세스를 가속화하고 가격 및 공급 약속을 안정화하기 위해 장기 계약을 요구했습니다. 이와 병행하여 제조업체와 유통업체는 재고 전략을 조정하고, 관세와 관련된 혼란 위험을 줄이기 위해 더 높은 완충 재고를 유지하고, 제조 발자국을 재검토했습니다.

비즈니스 측면에서 실험실과 서비스 제공 업체는 시약 사용을 최적화하고, 주문을 통합하고, 관세로 인한 비용 상승을 흡수하는 번들 서비스 계약을 협상하여 적응했습니다. 임상 연속성을 우선시하는 시설에서는 장비의 가동 시간을 보장하기 위해 효과적인 현지 조달과 서비스 수준 계약 강화에 중점을 두었습니다. 또한 관세 환경은 자본 배분 일정에 대한 재평가를 촉구했습니다. 각 기관은 새로운 고처리량 시퀀서를 도입할 경우 발생할 수 있는 수입 비용 증가와 잠재적 지연을 새로운 고처리량 시퀀서 도입의 이점과 비교 검토했습니다. 동시에, 규제 준수 및 품질관리 요구 사항은 여전히 양보할 수 없는 요구 사항으로, 조달 역학이 변화하더라도 분석 성능을 유지하는 워크플로우 효율성에 대한 투자를 촉구했습니다. 요컨대, 2025년 관세의 누적 효과는 공급망 탄력성 계획을 가속화하고, 시퀀싱 프로그램을 유지하기 위한 통합 조달 전략과 운영 전략의 중요성을 강화했습니다.

기술 유형, 제품 카테고리, 워크플로우 단계, 최종사용자 프로파일, 용도 중심의 우선순위에 따라 통합 세분화 분석을 통해 전략적 투자를 유도

주요 세분화에 대한 인사이트를 통해 기술적 강점과 워크플로우 요구사항이 교차하고 도입 및 역량 우선순위가 형성되는 지점을 파악할 수 있습니다. 기술별로 보면 앰플리콘 시퀀싱, 유전자 패널 시퀀싱, RNA 시퀀싱, 타겟 시퀀싱, 전엑솜 시퀀싱(WES), 전장유전체 시퀀싱(WGS)이 있으며, 각각 깊이, 넓이, 임상적 유용성의 균형이 다르기 때문에 플랫폼 및 분석의 선택에 도움이 됩니다. 제품 유형에 따라 제품은 소모품 시약, 장비, 소프트웨어 서비스로 구성됩니다. 소모품 시약은 효소와 키트에 초점을 맞추고, 장비는 시퀀서와 보조 장비를 구분하고, 소프트웨어 서비스는 검증된 분석과 관리된 해석의 중요성이 높아짐에 따라 데이터 분석 소프트웨어 및 서비스로 나뉩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 차세대 시퀀싱 시장 : 기술별

  • 앰플리콘 시퀀싱
  • 유전자 패널 시퀀싱
  • RNA 시퀀싱
  • 타겟 시퀀싱
  • 전엑솜 시퀀싱(WES)
  • 전게놈 시퀀싱(WGS)

제9장 차세대 시퀀싱 시장 : 제품 유형별

  • 소모품 시약
    • 효소
    • 키트
  • 기기
    • 보조 기기
    • 시퀸서
  • 소프트웨어 서비스
    • 데이터 분석 소프트웨어
    • 서비스

제10장 차세대 시퀀싱 시장 : 워크플로우별

  • 데이터 분석
    • 얼라이먼트
    • 주석
    • 배리언트 호출
  • 데이터 스토리지
    • 클라우드 스토리지
    • 온프레미스 스토리지
  • 샘플 조제
    • 라이브러리 준비
    • 템플릿 준비
  • 시퀀싱

제11장 차세대 시퀀싱 시장 : 최종사용자별

  • 학술 조사기관
  • 헬스케어 진단 실험실
  • 제약 바이오테크놀러지 기업

제12장 차세대 시퀀싱 시장 : 용도별

  • 농업유전체학
  • 캐리어 스크리닝
  • 에피게노믹스
  • 법의학 유전체학
  • 유전성 질환 및 희귀질환
  • 감염증
  • 신경 유전체학
  • 종양학
  • 약물유전체학

제13장 차세대 시퀀싱 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 차세대 시퀀싱 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 차세대 시퀀싱 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Illumina, Inc.
    • Thermo Fisher Scientific Inc.
    • Roche Holding AG
    • QIAGEN N.V.
    • bioMerieux S.A.
    • Merck KGaA
    • Oxford Nanopore Technologies Ltd.
    • Agilent Technologies, Inc.
    • Danaher Corporation
    • F. Hoffmann-La Roche Ltd.
KSA 25.10.27

The Next Generation Sequencing Market is projected to grow by USD 125.78 billion at a CAGR of 24.79% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 21.38 billion
Estimated Year [2025] USD 26.69 billion
Forecast Year [2032] USD 125.78 billion
CAGR (%) 24.79%

A strategic orientation to next generation sequencing that ties technological advances and clinical adoption to operational priorities and stakeholder decision-making

Next generation sequencing (NGS) has transitioned from a niche laboratory technique to a foundational platform shaping biomedical research, diagnostics, and biopharmaceutical innovation. This introduction outlines the technological maturation, broadening clinical applications, and operational challenges that decision-makers must reconcile to harness NGS effectively. Advances in sequencing chemistry, instrument throughput, and bioinformatic toolsets have lowered technical barriers, while real-world deployments in oncology, infectious disease surveillance, and rare disease genetics demonstrate tangible clinical utility. At the same time, organizations face rising expectations for data quality, interoperability, and regulatory compliance as sequencing data increasingly informs patient care and therapeutic development.

Understanding the current landscape requires attention to the interplay between technology evolution and user needs. Laboratories seek reproducible workflows that balance throughput with accuracy, clinicians demand actionable reports that integrate into electronic health record systems, and developers of therapeutics rely on high-fidelity genomic data for biomarker discovery and patient stratification. Consequently, infrastructure considerations such as data storage, scalable compute, and robust analysis pipelines have become as important as instrument selection. As adoption deepens, strategic stakeholders must evaluate not only immediate performance metrics but also long-term operational costs, vendor roadmaps, and ecosystem partnerships.

This summary sets the scene for subsequent sections by emphasizing that NGS is now a systems-level investment. Effective deployment hinges on aligning technical capabilities with workflow requirements and patient-centric outcomes, while adapting to evolving regulatory expectations and global supply chain dynamics.

Converging technological, analytical, and regulatory trends that are redefining sequencing capabilities, validation expectations, and collaborative deployment models

The landscape of next generation sequencing is undergoing transformative shifts driven by multiple converging forces that reshape both capability and adoption. First, instrument innovation continues to prioritize speed, accuracy, and cost-efficiency, enabling new use cases such as rapid infectious disease pathogen identification and real-time oncology monitoring. Second, bioinformatics has shifted from bespoke scripts to increasingly standardized, validated pipelines that incorporate alignment, annotation, and variant calling with reproducible outputs suitable for clinical reporting. These methodological advances reduce variability between laboratories and accelerate time-to-result, which in turn amplifies the clinical and commercial value proposition of NGS.

Concurrently, data management and storage paradigms have evolved; stakeholders increasingly adopt hybrid architectures that combine cloud storage with on-premise compute to reconcile data sovereignty, latency, and security concerns. Integration with electronic health records and clinical decision support tools is becoming more seamless, enabling genomic insights to inform point-of-care decisions. Regulatory frameworks are adapting to this reality, with a stronger focus on analytical and clinical validation, software-as-a-medical-device considerations, and the provenance of reference data sets. Finally, collaboration models are shifting as partnerships between academic centers, diagnostic labs, and biopharma accelerate co-development of assays and companion diagnostics. Together, these shifts create a dynamic environment where technical innovation, validation rigor, and ecosystem partnerships jointly determine the rate and scope of NGS adoption.

How 2025 tariff measures reshaped sequencing supply chains, procurement behaviors, and operational resilience strategies across laboratories and service providers

The introduction of tariffs by the United States in 2025 has exerted a multifaceted influence on next generation sequencing supply chains, procurement strategies, and cost-management practices without altering the underlying scientific value of genomic technologies. Tariff measures affected the flow of instruments, reagents, and ancillary components by increasing landed costs for imported items and prompting organizations to re-evaluate supplier diversification. As a result, procurement teams accelerated vendor qualification processes for regional suppliers and sought longer-term contracts to stabilize pricing and supply commitments. In parallel, manufacturers and distributors adjusted inventory strategies, maintaining higher buffer stocks and revisiting manufacturing footprints to mitigate the risk of tariff-related disruptions.

Operationally, laboratories and service providers adapted by optimizing reagent utilization, consolidating orders, and negotiating bundled service agreements that absorb some tariff-driven cost pressures. For institutions prioritizing clinical continuity, the emphasis shifted toward validated local sourcing and strengthened service-level agreements to ensure instrument uptime. Furthermore, the tariff environment prompted a reassessment of capital allocation timelines: organizations weighed the benefits of acquiring new high-throughput sequencers against incremental import costs and potential delays. At the same time, regulatory compliance and quality control requirements remained non-negotiable, driving investments in workflow efficiencies that preserve analytical performance even as procurement dynamics change. In essence, the cumulative effect of tariffs in 2025 accelerated supply-chain resilience planning and reinforced the importance of integrated procurement and operational strategies to sustain sequencing programs.

Integrated segmentation analysis that aligns technology types, product categories, workflow stages, end-user profiles, and application-driven priorities to guide strategic investment

Key segmentation insights reveal where technological strengths and workflow demands intersect to shape adoption and capability priorities. Based on Technology, the landscape spans Amplicon Sequencing, Gene Panel Sequencing, RNA Sequencing, Targeted Sequencing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS), each offering a distinct balance of depth, breadth, and clinical utility that informs platform and assay selection. Based on Product Type, offerings are organized across Consumables Reagents, Instruments, and Software Services; within Consumables Reagents the focus narrows to Enzymes and Kits, while Instruments distinguish Ancillary Instruments from Sequencers, and Software Services break down into Data Analysis Software and Services, reflecting the rising importance of validated analytics and managed interpretation.

Based on Workflow, critical stages include Data Analysis, Data Storage, Sample Preparation, and Sequencing; Data Analysis further segments into Alignment, Annotation, and Variant Calling, Data Storage differentiates Cloud Storage from On-Premise Storage, and Sample Preparation separates Library Preparation from Template Preparation, underscoring that bottlenecks can occur at multiple touchpoints beyond the sequencer itself. Based on End User, adoption patterns differ among Academic Research Institutes, Healthcare Diagnostic Laboratories, and Pharmaceutical Biotechnology Companies, each of which prioritizes different performance metrics, regulatory rigor, and scale considerations. Based on Application, deployments range across Agrigenomics, Carrier screening, Epigenomics, Forensic Genomics, Genetic & Rare Diseases, Infectious Diseases, Neurogenomics, Oncology, and Pharmacogenomics, demonstrating that application-specific requirements drive assay design, data interpretation needs, and downstream clinical or commercial pathways.

Taken together, these segmentation lenses show that strategic investments should align technology choice with specific workflow pinch points and end-user requirements, while emphasizing interoperable analysis and storage solutions that accommodate diverse applications and validation needs.

Regional deployment dynamics that influence sequencing adoption, regulatory alignment, and infrastructure investments across the Americas, Europe Middle East & Africa, and Asia-Pacific

Regional dynamics continue to shape how next generation sequencing capabilities roll out and scale across different health systems, research networks, and commercial ecosystems. In the Americas, deployment trends emphasize clinical diagnostics, oncology applications, and a robust diagnostics services market supported by advanced bioinformatics providers and cloud-native storage solutions. North American academic centers and biotech hubs drive method validation and translational research, while commercial lab networks focus on assay standardization and high-throughput workflows.

In Europe, Middle East & Africa, regulatory harmonization, data protection frameworks, and diverse healthcare reimbursement models influence adoption cadence. European research consortia and national public health initiatives frequently collaborate to establish reference standards, while regional manufacturers and service providers respond to varying data sovereignty requirements by offering localized storage and compute options. Emerging hubs in the Middle East and North Africa are investing in sequencing capacity for public health surveillance and precision medicine pilot programs.

Across Asia-Pacific, growth patterns reflect a mix of government-led sequencing initiatives, expansive clinical sequencing adoption in select markets, and strong manufacturing capabilities for instruments and reagents. Several countries prioritize genomics for population health, infectious disease surveillance, and agriculture, prompting significant investments in laboratory infrastructure and workforce training. In each region, the balance of public and private funding, regulatory pathways, and local academic-industry collaborations determines how sequencing technologies are integrated into broader healthcare and research agendas.

Competitive ecosystem analysis revealing how instrument makers, reagent suppliers, analytics vendors, and service laboratories converge to offer integrated sequencing value propositions

Competitive positioning in the sequencing ecosystem reflects a blend of instrument manufacturers, reagent suppliers, software and analytics providers, and service laboratories, each pursuing distinct value propositions. Leading instrument providers concentrate on throughput, accuracy, and integrated workflow solutions, while reagent and kit suppliers emphasize reliability, lot-to-lot consistency, and regulatory-ready documentation to meet clinical validation needs. Software and services vendors differentiate through validated analysis pipelines, interpretive content, and managed services that reduce the interpretive burden on laboratories and clinicians.

Service laboratories and contract research organizations play a complementary role by offering scalable sequencing capacity, assay development partnerships, and decentralized testing models that allow clinical and research customers to access advanced capabilities without immediate capital investment. Strategic partnerships and licensing deals increasingly blur traditional vendor boundaries, as companies combine hardware, consumables, and analytic services into cohesive offerings that accelerate end-to-end validation. In response, purchasers evaluate vendors not only on instrument specifications but also on ecosystem support, data portability, and long-term roadmap commitments that ensure compatibility with evolving clinical standards and bioinformatic requirements.

Practical strategic guidance for leaders to align technology selection, data infrastructure, supply resilience, and partnership models to scale sequencing responsibly

Actionable recommendations for industry leaders focus on aligning technology selection, operational design, and partnership strategies to capture the full potential of sequencing while managing risks related to validation, supply chain, and data governance. First, prioritize modular and validated workflows that allow incremental scaling; selecting platforms and consumables that interoperate with standardized analysis pipelines reduces time-to-clinical-readiness and simplifies regulatory pathways. Second, invest in hybrid data architectures that balance cloud scalability with on-premise control to meet data sovereignty requirements and latency-sensitive clinical use cases. Third, develop supplier diversity strategies and longer-term procurement agreements that address tariff and supply disruption risks while preserving quality and documentation standards required for clinical use.

Additionally, cultivate strategic partnerships that extend beyond transactional procurement: co-development agreements with assay developers, data-sharing partnerships with academic centers, and managed service arrangements with analytics providers accelerate validation and broaden access. Upskilling laboratory staff in bioinformatics and quality systems is essential to maintain analytical rigor as workflows scale, and embedding interpretive expertise into clinical reports will improve clinician confidence and patient outcomes. Finally, regularly assess regulatory trajectories and engage with standards-setting bodies to ensure that internal validation programs and software development practices remain aligned with emerging guidance. These steps together create a resilient, scalable pathway from laboratory innovation to routine clinical impact.

A triangulated research methodology combining primary stakeholder interviews, laboratory workflow benchmarking, and secondary validation to produce robust sequencing insights

The research methodology underpinning this report synthesizes primary stakeholder interviews, laboratory workflow analyses, and rigorous secondary-source validation to ensure evidence-based conclusions. Primary inputs included consultations with instrument engineers, clinical laboratory directors, bioinformatics leaders, and procurement specialists to capture real-world constraints and innovation priorities. These qualitative engagements were complemented by structured workflow observations and technical benchmark assessments that focused on sequencing accuracy, time-to-result, and integration challenges across sample preparation, sequencing, and analysis stages.

Secondary validation incorporated peer-reviewed literature, regulatory guidance documents, and technology white papers to corroborate trends identified in primary research and to contextualize developments in bioinformatics and data management. Where applicable, comparative assessments of analytical pipelines-covering alignment, annotation, and variant calling-were performed to highlight reproducibility considerations and interpretive bottlenecks. The methodology emphasizes triangulation across data sources, transparency in assumptions, and clarity about the limits of inference, ensuring that findings are both actionable and grounded in a robust evidence base. Throughout, the approach maintained strict attention to data integrity, reproducibility, and the practical needs of laboratory and clinical stakeholders.

Concluding synthesis emphasizing that validated workflows, resilient operations, and collaborative execution unlock the full clinical and research value of sequencing technologies

This executive summary synthesizes the strategic realities of next generation sequencing: technological advances have expanded application breadth and clinical relevance, while operational complexities related to workflows, data, and procurement determine effective adoption. Stakeholders must approach sequencing as a systems challenge that spans instrument selection, validated consumables, interoperable analytics, and resilient supply chains. Emerging regulatory emphasis on validation and software integrity increases the premium on reproducible pipelines and documented quality management systems, and tariff-related procurement dynamics highlight the necessity of diversified sourcing and strategic vendor relationships.

Looking forward, the most successful organizations will combine technical excellence with operational foresight-investing in hybrid data infrastructures, workforce upskilling, and collaborative partnerships that accelerate validation and clinical integration. By focusing on validated workflows, robust data governance, and adaptive procurement strategies, leaders can translate sequencing capabilities into measurable research and clinical value. This conclusion underscores that the promise of genomic technologies will be realized not solely through isolated innovations, but through disciplined execution across the full sequencing ecosystem.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of single-cell multiomics and spatial transcriptomics for precision oncology
  • 5.2. Expansion of long-read sequencing applications in structural variant analysis and diagnostics
  • 5.3. Adoption of real-time nanopore sequencing for on-site infectious disease surveillance and control
  • 5.4. Implementation of automated NGS library preparation systems to reduce turnaround times and errors
  • 5.5. Growth of AI and machine learning platforms for accelerated NGS data analysis and interpretation
  • 5.6. Emergence of direct RNA sequencing methods to improve transcriptome profiling accuracy and throughput
  • 5.7. Rising adoption of liquid biopsy NGS assays for early cancer detection and minimal residual disease monitoring
  • 5.8. Integration of cloud-native bioinformatics pipelines for scalable and secure NGS data management workflows
  • 5.9. Expansion of regulatory approvals and reimbursement pathways for NGS-based companion diagnostics in oncology
  • 5.10. Development of synthetic long-read technologies to resolve complex genomic regions and haplotype phasing

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Next Generation Sequencing Market, by Technology

  • 8.1. Amplicon Sequencing
  • 8.2. Gene Panel Sequencing
  • 8.3. RNA Sequencing
  • 8.4. Targeted Sequencing
  • 8.5. Whole Exome Sequencing (WES)
  • 8.6. Whole Genome Sequencing (WGS)

9. Next Generation Sequencing Market, by Product Type

  • 9.1. Consumables Reagents
    • 9.1.1. Enzymes
    • 9.1.2. Kits
  • 9.2. Instruments
    • 9.2.1. Ancillary Instruments
    • 9.2.2. Sequencers
  • 9.3. Software Services
    • 9.3.1. Data Analysis Software
    • 9.3.2. Services

10. Next Generation Sequencing Market, by Workflow

  • 10.1. Data Analysis
    • 10.1.1. Alignment
    • 10.1.2. Annotation
    • 10.1.3. Variant Calling
  • 10.2. Data Storage
    • 10.2.1. Cloud Storage
    • 10.2.2. On-Premise Storage
  • 10.3. Sample Preparation
    • 10.3.1. Library Preparation
    • 10.3.2. Template Preparation
  • 10.4. Sequencing

11. Next Generation Sequencing Market, by End User

  • 11.1. Academic Research Institutes
  • 11.2. Healthcare Diagnostic Laboratories
  • 11.3. Pharmaceutical Biotechnology Companies

12. Next Generation Sequencing Market, by Application

  • 12.1. Agrigenomics
  • 12.2. Carrier screening
  • 12.3. Epigenomics
  • 12.4. Forensic Genomics
  • 12.5. Genetic & Rare Diseases
  • 12.6. Infectious Diseases
  • 12.7. Neurogenomics
  • 12.8. Oncology
  • 12.9. Pharmacogenomics

13. Next Generation Sequencing Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Next Generation Sequencing Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Next Generation Sequencing Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Illumina, Inc.
    • 16.3.2. Thermo Fisher Scientific Inc.
    • 16.3.3. Roche Holding AG
    • 16.3.4. QIAGEN N.V.
    • 16.3.5. bioMerieux S.A.
    • 16.3.6. Merck KGaA
    • 16.3.7. Oxford Nanopore Technologies Ltd.
    • 16.3.8. Agilent Technologies, Inc.
    • 16.3.9. Danaher Corporation
    • 16.3.10. F. Hoffmann-La Roche Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제