시장보고서
상품코드
1830461

보틀 블로잉 머신 시장 : 기계 유형, 재료, 자동화 레벨, 구동 유형, 최종 이용 산업별 - 세계 예측(2025-2032년)

Bottle Blowing Machine Market by Machine Type, Material, Automation Level, Drive Type, End Use Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

보틀 블로잉 머신 시장은 2032년까지 CAGR 7.98%로 2억 7,058만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 1억 4,638만 달러
추정 연도 2025년 1억 5,832만 달러
예측 연도 2032 2억 7,058만 달러
CAGR(%) 7.98%

기술 발전, 재료 혁신, 비즈니스 우선 순위가 병 취입기 구매자의 자본 결정을 재정의하는 방법에 대한 전략적 방향성

보틀 블로잉 머신 부문은 기계공학, 고분자 과학, 생산 자동화의 교차점에 위치하며 세계 패키징 생태계에서 매우 중요한 역할을 담당하고 있습니다. 최근 몇 년 동안 기계 아키텍처, 공정 제어 및 재료 적합성에서 꾸준한 기술 혁신이 이루어졌으며, 생산자는 더 엄격한 지속가능성 목표, 더 엄격한 품질 공차 및 더 빠른 생산 주기에 대응할 수 있게 되었습니다. 에너지 효율성, 전환 시간, 유지보수 오버헤드, 진화하는 규제 기준 준수 등 모든 요소가 구매 결정에 반영됩니다.

이러한 배경에서 병 및 용기 제조업체들은 다운타임을 최소화하면서 다양한 폴리머 유형과 용기 포맷을 가동할 수 있는 유연한 장비를 우선시하는 방향으로 설비 계획을 변경하고 있습니다. 한편, 설계팀은 성형 정밀도와 냉각 제어에 대한 새로운 요구 사항을 부과하는 박막화 및 경량화 전략을 추진하고 있습니다. 이 소개에서는 기계적인 진화, 재료에 대한 적응, 비즈니스 우선순위가 가치사슬 전반에 걸친 전략적 선택을 형성하기 위해 어떻게 수렴되는지를 강조함으로써 본 보고서의 심층 분석을 구성합니다.

따라서 이해관계자들은 기계 구매를 단순한 자본 구매가 아닌, 제품의 품질, 지속가능성 지표, 총소유비용에 영향을 미치는 다년간의 사업적 파트너십으로 취급해야 합니다. 이 요약에서는 업계 리더들이 이 역동적인 상황을 헤쳐 나가기 위해 고려해야 할 변혁적 변화, 규제 환경의 영향, 세분화의 뉘앙스, 지역적 역학, 그리고 권장되는 행동에 대해 설명합니다.

기술 혁신, 지속가능성 의무화, 디지털 전환, 최종 용도 수요의 변화로 인해 병 취입기 조달 및 경쟁 역학이 어떻게 재편되고 있는가?

기술 혁신, 지속가능성 의무화, 디지털 통합, 그리고 최종 사용처의 수요 프로파일 변화입니다. 제어 시스템과 센서 패키지의 발전으로 연신율, 패리슨 형성, 냉각 프로파일을 보다 세밀하게 제어할 수 있게 되었으며, 그 결과 컨버터는 스크랩을 줄이면서 더 가볍고 안정적인 용기를 생산할 수 있게 되었습니다. 이러한 개발로 인해 정밀 기계와 소프트웨어 최적화가 결합된 기계의 채택이 가속화되고 있습니다.

지속가능성에 대한 요구는 소재 전환과 순환성 이니셔티브를 촉매하고 있습니다. 각 제조사는 장시간의 재조립 없이 재활용 소재와 여러 수지 제품군을 지원하는 장비를 우선시하고 있습니다. 이러한 요구는 OEM에게 캐비티 설계, 금형 핸들링 시스템, 오염 제어를 강화하도록 촉구하고 있습니다. 동시에 에너지 효율은 조달의 차별화 요소가 되고 있습니다. 수명주기 및 에너지 소비 감소가 기업의 환경 목표에 부합하는 경우, 전기 구동 시스템 및 하이브리드 구성이 점점 더 선호되고 있습니다.

디지털화도 큰 변화의 벡터입니다. 연결성, 예지보전, 원격 시운전으로 다운타임을 줄이고, 데이터 기반 프로세스 개선을 가능하게 합니다. 기계 수준의 텔레메트리를 플랜트 실행 시스템과 통합하면 근본 원인 분석이 가속화되고 품질 편차 해결에 걸리는 시간이 단축됩니다. 마지막으로, 화장품의 프리미엄화, 식품의 간편 포장, 의약품의 엄격한 무균 요건 등 최종 용도의 수요 추세는 장비의 사양을 다양한 방향으로 밀어붙여 모듈화 및 구성 가능성에 대한 필요성을 높이고 있습니다. 이러한 힘들이 결합되어 투자 기준과 OEM 및 시스템 통합업체들 간의 경쟁 구도가 재편되고 있습니다.

2025년 관세환경이 어떻게 병입기 생태계 전체의 공급망, 현지화 전략, 서비스 중심의 비즈니스 모델을 재구축할 수 있는지를 살펴봅니다.

2025년에 영향을 미치는 관세 조치가 발표됨에 따라 공급망 전반에 걸쳐 장비 제조업체, 부품 공급업체 및 최종사용자에게 새로운 복잡한 계층이 도입되었습니다. 관세 변경은 수입 기계 및 소모품의 상륙 비용 구조를 바꾸고, 현지 조립 및 제조의 매력에 영향을 미치고, 애프터 서비스 및 예비 부품 재고를 둘러싼 계산을 바꿀 수 있습니다. 구매자에게 직접적인 영향은 국내 조달, 예비 부품 비축, 공급망 중단에 대한 계약상 보호에 중점을 둔 총소유비용의 재평가입니다.

국경 간 관세 인상에 직면한 공급업체들은 주요 수요처와 가까운 곳에서 조립 작업을 확대하거나 주요 부품의 공급처를 지역으로 한정하는 등 현지화 전략을 가속화하는 방식으로 대응하고 있습니다. 이와 함께 제조사들은 첨단 장비에 대한 접근성을 유지하면서 최종사용자의 자본 장벽을 낮추기 위해 리스 및 서비스 모델을 재검토하고 있습니다. 이러한 비즈니스 모델 조정은 단기적으로는 관세로 인한 비용 상승을 완화시키지만, 장기적으로는 더 넓은 지리적 범위와 유연한 제조 네트워크를 가진 OEM에 유리한 역학을 만들어 낼 것입니다.

또한, 관세 중심의 불확실성은 지역 내 재고의 리드 타임을 단축하는 한편, 기계 가동 중단 시간을 최소화하는 애프터 서비스 지원의 가치를 높이는 경향이 있습니다. 그 결과, 강력한 서비스 네트워크와 모듈식 후착형 설계를 갖춘 기업은 정책 변화 중에도 고객을 유지하기 쉬운 위치에 있습니다. 전략적 조달팀은 계약서에 관세 위험 조항을 포함시키고, 여러 지역에 걸쳐 제조 능력을 갖춘 공급업체를 우선시하며, 조달 일정을 조정하여 갑작스러운 관세 인상에 대응하고 있습니다. 결국, 2025년 관세는 현지화를 가속화하고, 서비스 생태계의 중요성을 강화하며, 산업을 탄력적인 공급망 아키텍처로 유도하는 운영상의 충격으로 작용할 것으로 보입니다.

상세한 세분화 분석을 통해 기계 아키텍처, 재료 호환성, 자동화, 드라이브 유형 및 최종 사용 수직 방향이 성능 기준과 투자 우선순위를 정의하는 방식을 파악할 수 있습니다.

세분화는 병입기 전체에서 가치가 어떻게 창출되고 획득되는지를 보여주며, 이러한 차이를 이해함으로써 투자 우선순위와 제품 개발 경로를 명확히 할 수 있습니다. 업계에서는 기계의 종류에 따라 선형 스트레치 블로우 성형기, 회전식 스트레치 블로우 성형기, 1단식 블로우 성형기, 2단식 블로우 성형기로 구분하고 있습니다. 선형 및 회전식 아키텍처는 속도와 금형 복잡성의 절충안을 제시하며, 단일 단계 및 2 단계 시스템은 특정 생산 철학 및 통합 선호도에 맞게 조정할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 보틀 블로잉 머신 시장 : 기종별

  • 리니어 스트레치 블로우 성형기
  • 로터리 스트레치 블로우 성형기
  • 싱글 스테이지 블로우 성형기
  • 2단 블로우 성형기

제9장 보틀 블로잉 머신 시장 : 소재별

  • HDPE
  • PET
  • PP
  • PVC

제10장 보틀 블로잉 머신 시장 : 자동화 레벨별

  • 자동
  • 수동
  • 반자동

제11장 보틀 블로잉 머신 시장 : 드라이브 유형별

  • 전기
  • 하이브리드
  • 유압식

제12장 보틀 블로잉 머신 시장 : 최종 이용 산업별

  • 음료
    • 주류
    • 보틀형 물
    • 탄산음료
    • 주스
  • 화학제품
    • 세정용 화학제품
    • 농약
  • 화장품
    • 로션
    • 향수
    • 샴푸
  • 음식
    • 유제품
    • 식용유
  • 의약품
    • 앰플
    • 주사기
    • 바이알

제13장 보틀 블로잉 머신 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 보틀 블로잉 머신 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 보틀 블로잉 머신 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Sidel S.A.
    • Krones AG
    • SIPA S.p.A.
    • SMI S.p.A.
    • KHS GmbH
    • Aoki Miyakoshi Co., Ltd.
    • SACMI S.C.
    • Nissei ASB Machine Co., Ltd.
    • Bekum Maschinenfabriken GmbH
    • JBT Corporation
KSM 25.10.15

The Bottle Blowing Machine Market is projected to grow by USD 270.58 million at a CAGR of 7.98% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 146.38 million
Estimated Year [2025] USD 158.32 million
Forecast Year [2032] USD 270.58 million
CAGR (%) 7.98%

A strategic orientation to how technological evolution, materials innovation, and operational priorities are redefining capital decisions for bottle blowing machinery purchasers

The bottle blowing machine sector sits at the intersection of mechanical engineering, polymer science, and production automation, and it plays a pivotal role in the global packaging ecosystem. Recent years have seen steady innovation in machine architecture, process controls, and material compatibility, enabling producers to meet stricter sustainability goals, tighter quality tolerances, and faster production cycles. Procurement teams and plant managers now evaluate suppliers on a broader set of criteria than throughput alone: energy efficiency, changeover time, maintenance overhead, and compliance with evolving regulatory standards all factor into purchasing decisions.

Against this backdrop, manufacturers of bottles and containers are reorienting capital plans to favor flexible equipment capable of running multiple polymer types and container formats with minimal downtime. Meanwhile, design teams are driving thin-walling and weight reduction strategies that impose new requirements on molding precision and cooling control. This introduction frames the report's deeper analysis by highlighting how mechanical evolution, materials adaptation, and operational priorities converge to shape strategic choices across the value chain.

Consequently, stakeholders should treat machine acquisition not as a simple capital buy but as a multi-year operational partnership that impacts product quality, sustainability metrics, and total cost of ownership. The rest of this executive summary expands on the transformative shifts, regulatory influences, segmentation nuances, regional dynamics, and recommended actions that industrial leaders should consider when navigating this dynamic landscape.

How technological innovation, sustainability mandates, digital transformation, and shifting end-use demands are jointly reshaping procurement and competitive dynamics in bottle blowing machinery

The landscape of bottle blowing machinery is undergoing transformative shifts driven by four converging forces: technological innovation, sustainability mandates, digital integration, and changing end-use demand profiles. Advances in control systems and sensor packages enable finer control of stretch ratios, parison formation, and cooling profiles, which in turn allow converters to produce lighter, more consistent containers while reducing scrap. These developments are accelerating adoption of machines that combine precision mechanics with software-driven optimization.

Sustainability imperatives are catalyzing material shifts and circularity initiatives. Manufacturers are prioritizing equipment that supports recycled content and multiple resin families without lengthy retooling. This requirement is prompting OEMs to enhance cavity designs, mold handling systems, and contamination controls. At the same time, energy efficiency has become a procurement differentiator; electric drive systems and hybrid configurations are increasingly favored where lower lifecycle energy consumption aligns with corporate environmental goals.

Digitalization is another major vector of change. Connectivity, predictive maintenance, and remote commissioning reduce downtime and enable data-driven process improvement. Integrating machine-level telemetry with plant execution systems accelerates root-cause analysis and shortens time-to-resolution for quality deviations. Finally, end-use demand trends-such as premiumization in cosmetics, convenience packaging in food, and stringent sterility requirements in pharmaceuticals-are pushing equipment specifications in divergent directions, increasing the need for modularity and configurability. Together, these forces are reshaping investment criteria and the competitive dynamics among OEMs and system integrators.

Examining how the 2025 tariff environment is reshaping supply chains, localization strategies, and service-centric business models across the bottle blowing machine ecosystem

The announced tariff measures affecting 2025 have introduced a new layer of complexity for equipment manufacturers, component suppliers, and end users across the supply chain. Tariff changes alter landed cost structures for imported machines and consumables, influence the attractiveness of local assembly or manufacturing, and can shift the calculus around aftermarket service and spare-parts inventories. For buyers, the immediate implication is a reassessment of total cost of ownership that emphasizes domestic sourcing, spare parts stockpiling, and contractual protections against supply-chain disruptions.

Suppliers facing higher cross-border duties are adapting by accelerating localization strategies, either by expanding assembly operations closer to major demand centers or by qualifying regional supply sources for critical components. In parallel, manufacturers are revisiting leasing and service models to reduce the capital barrier for end users while preserving access to advanced equipment. These business-model adjustments mitigate near-term tariff-driven cost increases but also create longer-term dynamics that favor OEMs with broader geographic footprints and flexible manufacturing networks.

Moreover, tariff-driven uncertainty tends to compress lead times for in-region inventory while raising the value of aftersales support that minimizes machine downtime. As a result, companies with strong service networks and modular retrofittable designs are better positioned to retain customers during policy shifts. Strategic procurement teams are responding by incorporating tariff risk clauses into contracts, prioritizing suppliers with multi-region manufacturing capability, and using staggered procurement schedules to hedge against sudden duty escalations. Ultimately, tariffs in 2025 will act as an operational shock that accelerates localization, reinforces the importance of service ecosystems, and nudges the industry toward resilient supply-chain architectures.

In-depth segmentation analysis revealing how machine architecture, material compatibility, automation, drive type, and end-use verticals define performance criteria and investment priorities

Segmentation informs how value is created and captured across the bottle blowing machine landscape, and understanding these distinctions clarifies investment priorities and product development pathways. Based on machine type, the industry differentiates between linear stretch blow molding machines, rotary stretch blow molding machines, single stage blow molding machines, and two stage blow molding machines; each class targets distinct throughput requirements, footprint considerations, and format flexibility. Linear and rotary architectures present trade-offs between speed and tooling complexity, while single stage and two stage systems align with specific production philosophies and integration preferences.

Based on material, machine capability must accommodate HDPE, PET, PP, and PVC; each resin family imposes different thermal, rheological, and conditioning needs that influence cycle engineering and mold design. Machines optimized for PET generally emphasize precise temperature control and biaxial orientation, whereas HDPE and PP applications may prioritize melt-handling robustness and post-molding cooling regimes. PVC demands special attention to processing additives and thermal stability, requiring tailored handling systems.

Based on automation level, the spectrum runs from fully automatic to manual and semi-automatic equipment; automation level dictates labor requirements, consistency of output, and the degree to which process controls can be leveraged for quality assurance. Based on drive type, electric, hybrid, and hydraulic options offer distinct profiles in energy consumption, maintenance complexity, and dynamic control capabilities, with electric drives increasingly preferred for precision and energy efficiency.

Based on end use industry, the machines serve beverage, chemical, cosmetic, food, and pharmaceutical sectors. The beverage segment further separates into alcoholic drinks, bottled water, carbonated soft drinks, and juice, each with unique packaging attributes and speed demands. The chemical segment includes cleaning chemicals and pesticides, where material compatibility and safety features are paramount. The cosmetic segment covers lotions, perfumes, and shampoos, where premium aesthetics and lightweighting drive tooling innovation. The food segment addresses dairy products and edible oils, emphasizing hygiene and contamination control. The pharmaceutical segment spans ampoules, syringes, and vials, where sterility, traceability, and regulatory compliance set the highest technical bar. Recognizing how these segmentation axes intersect helps OEMs and end users prioritize R&D, aftermarket offerings, and sales strategies that match specific operational requirements.

Regional forces shaping equipment demand and supplier strategies across the Americas, Europe Middle East & Africa, and Asia-Pacific driven by regulation, manufacturing patterns, and service networks

Regional dynamics remain a critical determinant of strategy for manufacturers, suppliers, and buyers of bottle blowing machines, with distinct commercial and regulatory environments shaping demand and vendor footprints. The Americas exhibit diverse buyer profiles, ranging from large beverage converters seeking high-speed rotary systems to specialty producers requiring flexible, lower-volume lines. Incentives for domestic production and intermittent tariff pressure influence sourcing decisions and spur investments in regional service and parts networks to lower lifecycle risk.

Europe, the Middle East & Africa combine stringent environmental regulations with strong demand for lightweighting and recycled-content capabilities. In this region, energy efficiency, recyclability, and compliance with circularity frameworks drive equipment procurement choices, and suppliers that offer retrofit packages for older lines find receptive customers. The regulatory environment also elevates the importance of adherence to material and chemical standards, particularly in food and pharmaceutical applications.

Asia-Pacific presents a heterogeneous picture: high-volume beverage and consumer goods production coexists with rapidly developing pharmaceutical and specialty packaging segments. In many APAC markets, adoption of electric drives and automation is accelerating as labor costs and quality expectations rise. Regional manufacturing hubs support a dense supplier ecosystem, but the pace of capacity expansion and technology adoption varies by country, creating opportunities for modular and scalable solutions. Taken together, these regional insights emphasize the need for flexible commercial models, localized service capabilities, and product portfolios that address both high-throughput and high-compliance applications.

How product modularity, aftersales excellence, strategic partnerships, and sustainability-focused roadmaps determine competitive advantage among bottle blowing machine manufacturers

Leading companies in the bottle blowing machine domain differentiate through a combination of engineering excellence, global service reach, and a pipeline of incremental innovations that address energy use, material flexibility, and automation. Competitive positioning increasingly hinges on the ability to offer modular platforms that support rapid format changeovers, retrofittable upgrades, and digital services such as predictive maintenance and remote diagnostics. Firms that pair mechanical reliability with software-enabled optimization capture disproportionate aftersales revenue and customer loyalty.

Strategic partnerships and alliances also shape competitive advantage. Collaborations between OEMs, mold makers, and polymer suppliers produce integrated solutions that shorten qualification cycles for new resins and recycled content. In addition, players investing in local assembly or regional parts depots reduce lead times and mitigate tariff exposure. Aftermarket capabilities-training, spares provisioning, and field service excellence-serve as key differentiators, especially in industries where downtime carries steep penalties.

Finally, corporate strategies that prioritize sustainability credentials, such as energy-efficient drive systems and designs compatible with recycled polymers, resonate with large corporate buyers and regulatory stakeholders. As a result, companies that align product roadmaps with global environmental and operational priorities stand to strengthen their relationships with blue-chip customers and gain advantage in tender processes that weight lifecycle performance alongside price.

Practical and tactical recommendations for OEMs, converters, and buyers to enhance resilience, digitalization, and sustainability in equipment strategy and supply chains

Industry leaders should adopt a set of immediate and medium-term actions to align operations and offerings with the evolving market landscape. First, prioritize flexible platforms that can accommodate multiple machine types and resin families to reduce changeover risk and support recycled-content goals. Investing in modular tooling and retrofit kits preserves prior capital investments and accelerates responsiveness to new product specifications.

Second, expand regional service footprints and spare-parts inventories to reduce vulnerability to tariff and logistics disruptions. Strengthening field service capabilities and remote-support infrastructure will materially lower unplanned downtime and increase customer retention. Third, accelerate digital integration by deploying machine-level telemetry and analytics to improve yield, enable predictive maintenance, and demonstrate quantifiable energy and scrap reductions to customers. These capabilities also create opportunities for new commercial models such as performance-based contracts and condition-based service agreements.

Fourth, align product development with sustainability objectives by optimizing energy profiles and validating compatibility with higher percentages of recycled content. Fifth, embed tariff risk mitigation into procurement and contracting practices by qualifying local suppliers, adopting flexible sourcing strategies, and negotiating cost-sharing arrangements for rapid duty changes. Finally, cultivate cross-industry partnerships-particularly with polymer innovators and packaging designers-to co-develop solutions that meet emerging aesthetic and functional requirements. Taken together, these actions will help organizations reduce operational risk, capture premium opportunities, and deepen customer relationships.

Methodological overview explaining how technical evaluations, stakeholder interviews, and cross-validated evidence were combined to derive rigorous, practice-oriented insights

This research synthesizes primary and secondary evidence to deliver actionable insights grounded in industry practice, engineering analysis, and stakeholder interviews. The methodology integrates technical review of machine designs and control systems with qualitative interviews across OEM engineering, plant operations, and aftermarket service teams to triangulate where capability gaps and adoption barriers exist. In addition, policy and tariff developments were reviewed to assess their operational implications for sourcing, assembly, and inventory management.

Technical assessments focused on comparative analysis of drive technologies, control architectures, and material-handling subsystems, while commercial analysis examined service models, regional footprints, and partnership networks. To ensure validity, findings reflect cross-checked information from product documentation, field case studies, and expert consultations. Wherever possible, the study emphasized observable operational metrics such as energy consumption patterns, changeover times, and mean time to repair, rather than speculative projections, to provide reliable guidance for capital planners and operations leaders.

Finally, interpretation of segmentation and regional dynamics drew on a structured framework that maps machine capability against end-use requirements, compliance constraints, and commercial models. This layered approach ensures that recommendations are tailored to practical constraints and opportunities faced by manufacturers and converters across different geographies and verticals.

Concluding synthesis highlighting how modularity, service excellence, and resilient supply chains will determine winners in the evolving bottle blowing machine landscape

In sum, the bottle blowing machine industry is transitioning to a phase defined by modularity, digitalization, and sustainability, with procurement decisions increasingly driven by total lifecycle performance rather than upfront cost alone. Equipment that supports multiple materials, enables rapid changeovers, and integrates telemetry will be preferred by converters seeking operational resilience and environmental compliance. Tariff shifts in 2025 underscore the strategic value of regional manufacturing footprints and robust aftersales networks that minimize supply-chain exposure.

The convergence of precise mechanical engineering, improved material science, and software-enabled process control creates fertile ground for innovation, but also raises the performance bar for suppliers who must demonstrate verifiable gains in energy efficiency, scrap reduction, and uptime. For buyers, the most important evaluation criteria will be the supplier's ability to deliver on configurability, service responsiveness, and evidence-based improvements in operational metrics.

Ultimately, success in the coming years will favor organizations that combine technological foresight with pragmatic supply-chain strategies and customer-centric service models. Stakeholders that act on these insights will reduce operational risk, capture new revenue channels, and position themselves competitively as the industry moves toward a more automated, sustainable, and resilient future.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of IoT-enabled monitoring systems for real-time bottle quality assurance
  • 5.2. Adoption of energy-efficient heating and cooling modules to reduce production carbon footprint
  • 5.3. Shift towards fully automated bottle blowing lines with robotic arm integration to boost throughput
  • 5.4. Development of multi-layer bottle designs for enhanced barrier properties and product shelf life
  • 5.5. Rising demand for recyclable PET bottles driving innovation in post-consumer recycled resin compatibility
  • 5.6. Implementation of predictive maintenance algorithms to minimize downtime in bottle blowing equipment
  • 5.7. Customization of bottle shapes and sizes through modular tooling systems for niche packaging applications
  • 5.8. Use of AI-powered vision inspection for defect detection in high-speed bottle production lines
  • 5.9. Increasing focus on reducing cycle times through advanced stretch blow molding technologies
  • 5.10. Emergence of lightweight bottle structures to lower material usage and shipping costs

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Bottle Blowing Machine Market, by Machine Type

  • 8.1. Linear Stretch Blow Molding Machine
  • 8.2. Rotary Stretch Blow Molding Machine
  • 8.3. Single Stage Blow Molding Machine
  • 8.4. Two Stage Blow Molding Machine

9. Bottle Blowing Machine Market, by Material

  • 9.1. Hdpe
  • 9.2. Pet
  • 9.3. Pp
  • 9.4. Pvc

10. Bottle Blowing Machine Market, by Automation Level

  • 10.1. Automatic
  • 10.2. Manual
  • 10.3. Semi Automatic

11. Bottle Blowing Machine Market, by Drive Type

  • 11.1. Electric
  • 11.2. Hybrid
  • 11.3. Hydraulic

12. Bottle Blowing Machine Market, by End Use Industry

  • 12.1. Beverage
    • 12.1.1. Alcoholic Drinks
    • 12.1.2. Bottled Water
    • 12.1.3. Carbonated Soft Drinks
    • 12.1.4. Juice
  • 12.2. Chemical
    • 12.2.1. Cleaning Chemicals
    • 12.2.2. Pesticides
  • 12.3. Cosmetic
    • 12.3.1. Lotions
    • 12.3.2. Perfumes
    • 12.3.3. Shampoos
  • 12.4. Food
    • 12.4.1. Dairy Products
    • 12.4.2. Edible Oils
  • 12.5. Pharmaceutical
    • 12.5.1. Ampoules
    • 12.5.2. Syringes
    • 12.5.3. Vials

13. Bottle Blowing Machine Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Bottle Blowing Machine Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Bottle Blowing Machine Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Sidel S.A.
    • 16.3.2. Krones AG
    • 16.3.3. SIPA S.p.A.
    • 16.3.4. SMI S.p.A.
    • 16.3.5. KHS GmbH
    • 16.3.6. Aoki Miyakoshi Co., Ltd.
    • 16.3.7. SACMI S.C.
    • 16.3.8. Nissei ASB Machine Co., Ltd.
    • 16.3.9. Bekum Maschinenfabriken GmbH
    • 16.3.10. JBT Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제